Skip to main content
Top
Published in: BMC Pediatrics 1/2024

Open Access 01-12-2024 | Research

Assessing the quality and value of metabolic chart data for capturing core outcomes for pediatric medium-chain acyl-CoA dehydrogenase (MCAD) deficiency

Authors: Ryan Iverson, Monica Taljaard, Michael T. Geraghty, Michael Pugliese, Kylie Tingley, Doug Coyle, Jonathan B. Kronick, Kumanan Wilson, Valerie Austin, Catherine Brunel-Guitton, Daniela Buhas, Nancy J. Butcher, Alicia K. J. Chan, Sarah Dyack, Sharan Goobie, Cheryl R. Greenberg, Shailly Jain-Ghai, Michal Inbar-Feigenberg, Natalya Karp, Mariya Kozenko, Erica Langley, Matthew Lines, Julian Little, Jennifer MacKenzie, Bruno Maranda, Saadet Mercimek-Andrews, Aizeddin Mhanni, John J. Mitchell, Laura Nagy, Martin Offringa, Amy Pender, Murray Potter, Chitra Prasad, Suzanne Ratko, Ramona Salvarinova, Andreas Schulze, Komudi Siriwardena, Neal Sondheimer, Rebecca Sparkes, Sylvia Stockler-Ipsiroglu, Kendra Tapscott, Yannis Trakadis, Lesley Turner, Clara Van Karnebeek, Anthony Vandersteen, Jagdeep S. Walia, Brenda J. Wilson, Andrea C. Yu, Beth K. Potter, Pranesh Chakraborty

Published in: BMC Pediatrics | Issue 1/2024

Login to get access

Abstract

Background

Generating rigorous evidence to inform care for rare diseases requires reliable, sustainable, and longitudinal measurement of priority outcomes. Having developed a core outcome set for pediatric medium-chain acyl-CoA dehydrogenase (MCAD) deficiency, we aimed to assess the feasibility of prospective measurement of these core outcomes during routine metabolic clinic visits.

Methods

We used existing cohort data abstracted from charts of 124 children diagnosed with MCAD deficiency who participated in a Canadian study which collected data from birth to a maximum of 11 years of age to investigate the frequency of clinic visits and quality of metabolic chart data for selected outcomes. We recorded all opportunities to collect outcomes from the medical chart as a function of visit rate to the metabolic clinic, by treatment centre and by child age. We applied a data quality framework to evaluate data based on completeness, conformance, and plausibility for four core MCAD outcomes: emergency department use, fasting time, metabolic decompensation, and death.

Results

The frequency of metabolic clinic visits decreased with increasing age, from a rate of 2.8 visits per child per year (95% confidence interval, 2.3–3.3) among infants 2 to 6 months, to 1.0 visit per child per year (95% confidence interval, 0.9–1.2) among those ≥ 5 years of age. Rates of emergency department visits followed anticipated trends by child age. Supplemental findings suggested that some emergency visits occur outside of the metabolic care treatment centre but are not captured. Recommended fasting times were updated relatively infrequently in patients’ metabolic charts. Episodes of metabolic decompensation were identifiable but required an operational definition based on acute manifestations most commonly recorded in the metabolic chart. Deaths occurred rarely in these patients and quality of mortality data was not evaluated.

Conclusions

Opportunities to record core outcomes at the metabolic clinic occur at least annually for children with MCAD deficiency. Methods to comprehensively capture emergency care received at outside institutions are needed. To reduce substantial heterogeneous recording of core outcome across treatment centres, improved documentation standards are required for recording of recommended fasting times and a consensus definition for metabolic decompensations needs to be developed and implemented.
Appendix
Available only for authorised users
Literature
1.
go back to reference Horvath GA, Davidson AGF, Stockler-Ipsiroglu SG, Lillquist YP, Waters PJ, Olpin S, et al. Newborn screening for MCAD deficiency: Experience of the first three years in British Columbia, Canada. Can J Public Heal. 2008;99(4):276–80.CrossRef Horvath GA, Davidson AGF, Stockler-Ipsiroglu SG, Lillquist YP, Waters PJ, Olpin S, et al. Newborn screening for MCAD deficiency: Experience of the first three years in British Columbia, Canada. Can J Public Heal. 2008;99(4):276–80.CrossRef
2.
go back to reference Kennedy S, Potter BK, Wilson K, Fisher L, Geraghty M, Milburn J, et al. The first three years of screening for medium chain acyl-CoA dehydrogenase deficiency (MCADD) by newborn screening ontario. BMC Pediatr. 2010;10:82.CrossRefPubMedPubMedCentral Kennedy S, Potter BK, Wilson K, Fisher L, Geraghty M, Milburn J, et al. The first three years of screening for medium chain acyl-CoA dehydrogenase deficiency (MCADD) by newborn screening ontario. BMC Pediatr. 2010;10:82.CrossRefPubMedPubMedCentral
3.
go back to reference Zschocke J, Schulze A, Lindner M, Fiesel S, Olgemöller K, Hoffman GF, et al. Molecular and functional characterisation of mild MCAD deficiency. Hum Genet. 2001;108(5):404–8.CrossRefPubMed Zschocke J, Schulze A, Lindner M, Fiesel S, Olgemöller K, Hoffman GF, et al. Molecular and functional characterisation of mild MCAD deficiency. Hum Genet. 2001;108(5):404–8.CrossRefPubMed
4.
go back to reference Merritt JL 2nd, Chang IJ. Medium-Chain Acyl-Coenzyme A Dehydrogenase Deficiency. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2023. 2000. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1424/. Updated 2019 Jun 27. Merritt JL 2nd, Chang IJ. Medium-Chain Acyl-Coenzyme A Dehydrogenase Deficiency. In: Adam MP, Feldman J, Mirzaa GM, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2023. 2000. Available from: https://​www.​ncbi.​nlm.​nih.​gov/​books/​NBK1424/​. Updated 2019 Jun 27.
5.
go back to reference Piercy H, Machaczek K, Ali P, Yap S. Parental experiences of raising a child with medium chain Acyl-CoA dehydrogenase deficiency. Glob Qual Nurs Res. 2017;4:2333393617707080.PubMedPubMedCentral Piercy H, Machaczek K, Ali P, Yap S. Parental experiences of raising a child with medium chain Acyl-CoA dehydrogenase deficiency. Glob Qual Nurs Res. 2017;4:2333393617707080.PubMedPubMedCentral
6.
go back to reference Schatz UA, Ensenauer R. The clinical manifestation of MCAD deficiency: Challenges towards adulthood in the screened population. J Inherit Metab Dis. 2010;33(5):513–20.CrossRefPubMed Schatz UA, Ensenauer R. The clinical manifestation of MCAD deficiency: Challenges towards adulthood in the screened population. J Inherit Metab Dis. 2010;33(5):513–20.CrossRefPubMed
7.
go back to reference Iafolla AK, Thompson RJ, Roe CR. Medium-chain acyl-coenzyme A dehydrogenase deficiency: Clinical course in 120 affected children. J Pediatr. 1994;124(3):409–15.CrossRefPubMed Iafolla AK, Thompson RJ, Roe CR. Medium-chain acyl-coenzyme A dehydrogenase deficiency: Clinical course in 120 affected children. J Pediatr. 1994;124(3):409–15.CrossRefPubMed
8.
go back to reference McGregor TL, Berry SA, Dipple KM, Hamid R. Management principles for acute illness in patients with medium-chain acyl-coenzyme a dehydrogenase deficiency. Pediatrics. 2021;147(1): e2020040303.CrossRefPubMed McGregor TL, Berry SA, Dipple KM, Hamid R. Management principles for acute illness in patients with medium-chain acyl-coenzyme a dehydrogenase deficiency. Pediatrics. 2021;147(1): e2020040303.CrossRefPubMed
9.
go back to reference Batten W, Chronopoulou E, Pierre G. P37 A single paediatric centre experience of l-carnitine supplementation in medium-chain acyl-coa dehydrogenase deficiency (mcadd). Arch Dis Child. 2018;103: e2.CrossRef Batten W, Chronopoulou E, Pierre G. P37 A single paediatric centre experience of l-carnitine supplementation in medium-chain acyl-coa dehydrogenase deficiency (mcadd). Arch Dis Child. 2018;103: e2.CrossRef
10.
go back to reference Lee PJ, Harrison EL, Jones MG, Jones S, Leonard JV, Chalmers RA. L-Carnitine and exercise tolerance in medium-chain acyl-coenzyme A dehydrogenase (MCAD) deficiency: A pilot study. J Inherit Metab Dis. 2005;28(2):141–52.CrossRefPubMed Lee PJ, Harrison EL, Jones MG, Jones S, Leonard JV, Chalmers RA. L-Carnitine and exercise tolerance in medium-chain acyl-coenzyme A dehydrogenase (MCAD) deficiency: A pilot study. J Inherit Metab Dis. 2005;28(2):141–52.CrossRefPubMed
11.
go back to reference Madsen KL, Preisler N, Orngreen MC, Andersen SP, Olesen JH, Lund AM, et al. Patients with medium-chain acyl-coenzyme a dehydrogenase deficiency have impaired oxidation of fat during exercise but no effect of L-Carnitine supplementation. J Clin Endocrinol Metab. 2013;98(4):1667–75.CrossRefPubMed Madsen KL, Preisler N, Orngreen MC, Andersen SP, Olesen JH, Lund AM, et al. Patients with medium-chain acyl-coenzyme a dehydrogenase deficiency have impaired oxidation of fat during exercise but no effect of L-Carnitine supplementation. J Clin Endocrinol Metab. 2013;98(4):1667–75.CrossRefPubMed
12.
go back to reference Potter BK, Little J, Chakraborty P, Kronick JB, Evans J, Frei J, et al. Variability in the clinical management of fatty acid oxidation disorders: Results of a survey of Canadian metabolic physicians. J Inherit Metab Dis. 2012;35(1):115–23.CrossRefPubMed Potter BK, Little J, Chakraborty P, Kronick JB, Evans J, Frei J, et al. Variability in the clinical management of fatty acid oxidation disorders: Results of a survey of Canadian metabolic physicians. J Inherit Metab Dis. 2012;35(1):115–23.CrossRefPubMed
13.
go back to reference Potter BK, Khangura SD, Tingley K, Chakraborty P, Little J. Translating rare-disease therapies into improved care for patients and families: What are the right outcomes, designs, and engagement approaches in health-systems research? Genet Med. 2016;18(2):117–23.CrossRefPubMed Potter BK, Khangura SD, Tingley K, Chakraborty P, Little J. Translating rare-disease therapies into improved care for patients and families: What are the right outcomes, designs, and engagement approaches in health-systems research? Genet Med. 2016;18(2):117–23.CrossRefPubMed
15.
go back to reference Prinsen CAC, Vohra S, Rose MR, King-Jones S, Ishaque S, Bhaloo Z, et al. Core Outcome Measures in Effectiveness Trials (COMET) initiative: Protocol for an international Delphi study to achieve consensus on how to select outcome measurement instruments for outcomes included in a “core outcome set.” Trials. 2014;15:247.CrossRefPubMedPubMedCentral Prinsen CAC, Vohra S, Rose MR, King-Jones S, Ishaque S, Bhaloo Z, et al. Core Outcome Measures in Effectiveness Trials (COMET) initiative: Protocol for an international Delphi study to achieve consensus on how to select outcome measurement instruments for outcomes included in a “core outcome set.” Trials. 2014;15:247.CrossRefPubMedPubMedCentral
16.
go back to reference Kodra Y, Weinbach J, Posada-De-La-Paz M, Coi A, Lemonnier SL, van Enckevort D, et al. Recommendations for improving the quality of rare disease registries. Int J Environ Res Public Health. 2018;15(8):1644.CrossRefPubMedPubMedCentral Kodra Y, Weinbach J, Posada-De-La-Paz M, Coi A, Lemonnier SL, van Enckevort D, et al. Recommendations for improving the quality of rare disease registries. Int J Environ Res Public Health. 2018;15(8):1644.CrossRefPubMedPubMedCentral
17.
18.
go back to reference Pugliese M, Tingley K, Chow A, Pallone N, Smith M, Rahman A, et al. Outcomes in pediatric studies of medium-chain acyl-coA dehydrogenase (MCAD) deficiency and phenylketonuria (PKU): a review. Orphanet J Rare Dis. 2020;15(1):12.CrossRefPubMedPubMedCentral Pugliese M, Tingley K, Chow A, Pallone N, Smith M, Rahman A, et al. Outcomes in pediatric studies of medium-chain acyl-coA dehydrogenase (MCAD) deficiency and phenylketonuria (PKU): a review. Orphanet J Rare Dis. 2020;15(1):12.CrossRefPubMedPubMedCentral
19.
go back to reference Pugliese M, Tingley K, Chow A, Pallone N, Smith M, Chakraborty P, et al. Core Outcome Sets for Medium-Chain Acyl-CoA Dehydrogenase Deficiency and Phenylketonuria. Pediatrics. 2021;148(2): e2020037747.CrossRefPubMed Pugliese M, Tingley K, Chow A, Pallone N, Smith M, Chakraborty P, et al. Core Outcome Sets for Medium-Chain Acyl-CoA Dehydrogenase Deficiency and Phenylketonuria. Pediatrics. 2021;148(2): e2020037747.CrossRefPubMed
20.
go back to reference Karaceper MD, Khangura SD, Wilson K, Coyle D, Brownell M, Davies C, et al. Health services use among children diagnosed with medium-chain acyl-CoA dehydrogenase deficiency through newborn screening: A cohort study in Ontario, Canada. Orphanet J Rare Dis. 2019;14(1):70.CrossRefPubMedPubMedCentral Karaceper MD, Khangura SD, Wilson K, Coyle D, Brownell M, Davies C, et al. Health services use among children diagnosed with medium-chain acyl-CoA dehydrogenase deficiency through newborn screening: A cohort study in Ontario, Canada. Orphanet J Rare Dis. 2019;14(1):70.CrossRefPubMedPubMedCentral
21.
go back to reference Prinsen CAC, Vohra S, Rose MR, Boers M, Tugwell P, Clarke M, et al. How to select outcome measurement instruments for outcomes included in a “Core Outcome Set” - a practical guideline. Trials. 2016;17(1):449.CrossRefPubMedPubMedCentral Prinsen CAC, Vohra S, Rose MR, Boers M, Tugwell P, Clarke M, et al. How to select outcome measurement instruments for outcomes included in a “Core Outcome Set” - a practical guideline. Trials. 2016;17(1):449.CrossRefPubMedPubMedCentral
22.
go back to reference Tingley K, Lamoureux M, Pugliese M, Geraghty M, Kronick J, Potter B, et al. Evaluation of the quality of clinical data collection for a pan-Canadian cohort of children affected by inherited metabolic diseases: Lessons learned from the Canadian Inherited Metabolic Diseases Research Network. Orphanet J Rare Dis. 2020;15(1):89.CrossRefPubMedPubMedCentral Tingley K, Lamoureux M, Pugliese M, Geraghty M, Kronick J, Potter B, et al. Evaluation of the quality of clinical data collection for a pan-Canadian cohort of children affected by inherited metabolic diseases: Lessons learned from the Canadian Inherited Metabolic Diseases Research Network. Orphanet J Rare Dis. 2020;15(1):89.CrossRefPubMedPubMedCentral
23.
go back to reference Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap) – A metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inf. 2009;42(2):377–81.CrossRef Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap) – A metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inf. 2009;42(2):377–81.CrossRef
24.
go back to reference Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O’Neal L, et al. The REDCap consortium: Building an international community of software platform partners. J Biomed Inform. 2019;95: 103208.CrossRefPubMedPubMedCentral Harris PA, Taylor R, Minor BL, Elliott V, Fernandez M, O’Neal L, et al. The REDCap consortium: Building an international community of software platform partners. J Biomed Inform. 2019;95: 103208.CrossRefPubMedPubMedCentral
25.
go back to reference Kahn MG, Callahan TJ, Barnard J, Bauck AE, Brown J, Davidson BN, et al. A Harmonized Data Quality Assessment Terminology and Framework for the Secondary Use of Electronic Health Record Data. eGEMs. 2016;4(1):1244.CrossRefPubMedPubMedCentral Kahn MG, Callahan TJ, Barnard J, Bauck AE, Brown J, Davidson BN, et al. A Harmonized Data Quality Assessment Terminology and Framework for the Secondary Use of Electronic Health Record Data. eGEMs. 2016;4(1):1244.CrossRefPubMedPubMedCentral
26.
go back to reference Derks TGJ, Van Spronsen FJ, Rake JP, Van Der Hilst CS, Span MM, Smit GPA. Safe and unsafe duration of fasting for children with MCAD deficiency. Eur J Pediatr. 2007;166(1):5–11.CrossRefPubMed Derks TGJ, Van Spronsen FJ, Rake JP, Van Der Hilst CS, Span MM, Smit GPA. Safe and unsafe duration of fasting for children with MCAD deficiency. Eur J Pediatr. 2007;166(1):5–11.CrossRefPubMed
27.
go back to reference McHugh ML. Interrater reliability: The kappa statistic. Biochem Medica. 2012;22(3):276–82.CrossRef McHugh ML. Interrater reliability: The kappa statistic. Biochem Medica. 2012;22(3):276–82.CrossRef
28.
go back to reference Wang SS. Medium chain acyl-CoA dehydrogenase deficiency: Human genome epidemiology review. Genet Med. 1999;1(7):332–9.CrossRefPubMed Wang SS. Medium chain acyl-CoA dehydrogenase deficiency: Human genome epidemiology review. Genet Med. 1999;1(7):332–9.CrossRefPubMed
29.
go back to reference Klose DA, Kölker S, Heinrich B, Prietsch V, Mayatepek E, Von Kries R, et al. Incidence and short-term outcome of children with symptomatic presentation of organic acid and fatty acid oxidation disorders in Germany. Pediatrics. 2002;110(6):1204–11.CrossRefPubMed Klose DA, Kölker S, Heinrich B, Prietsch V, Mayatepek E, Von Kries R, et al. Incidence and short-term outcome of children with symptomatic presentation of organic acid and fatty acid oxidation disorders in Germany. Pediatrics. 2002;110(6):1204–11.CrossRefPubMed
31.
go back to reference Derks TGJ, Reijngoud DJ, Waterham HR, Gerver WJM, van den Berg MP, Sauer PJJ, et al. The natural history of medium-chain acyl CoA dehydrogenase deficiency in the Netherlands: Clinical presentation and outcome. J Pediatr. 2006;148(5):665–70.CrossRefPubMed Derks TGJ, Reijngoud DJ, Waterham HR, Gerver WJM, van den Berg MP, Sauer PJJ, et al. The natural history of medium-chain acyl CoA dehydrogenase deficiency in the Netherlands: Clinical presentation and outcome. J Pediatr. 2006;148(5):665–70.CrossRefPubMed
32.
go back to reference Allori AC, Kelley T, Meara JG, Albert A, Bonanthaya K, Chapman K, et al. A standard set of outcome measures for the comprehensive appraisal of cleft care. Cleft Palate Craniofac J. 2017;54(5):540–54.CrossRefPubMed Allori AC, Kelley T, Meara JG, Albert A, Bonanthaya K, Chapman K, et al. A standard set of outcome measures for the comprehensive appraisal of cleft care. Cleft Palate Craniofac J. 2017;54(5):540–54.CrossRefPubMed
33.
go back to reference Grosse SD, Khoury MJ, Greene CL, Crider KS, Pollitt RJ. The epidemiology of medium chain acyl-CoA dehydrogenase deficiency: An update. Genet Med. 2006;8(4):205–12.CrossRefPubMed Grosse SD, Khoury MJ, Greene CL, Crider KS, Pollitt RJ. The epidemiology of medium chain acyl-CoA dehydrogenase deficiency: An update. Genet Med. 2006;8(4):205–12.CrossRefPubMed
34.
go back to reference Pan L, Fergusson D, Schweitzer I, Hebert PC. Ensuring high accuracy of data abstracted from patient charts: The use of a standardized medical record as a training tool. J Clin Epidemiol. 2005;58(9):918–23.CrossRefPubMed Pan L, Fergusson D, Schweitzer I, Hebert PC. Ensuring high accuracy of data abstracted from patient charts: The use of a standardized medical record as a training tool. J Clin Epidemiol. 2005;58(9):918–23.CrossRefPubMed
Metadata
Title
Assessing the quality and value of metabolic chart data for capturing core outcomes for pediatric medium-chain acyl-CoA dehydrogenase (MCAD) deficiency
Authors
Ryan Iverson
Monica Taljaard
Michael T. Geraghty
Michael Pugliese
Kylie Tingley
Doug Coyle
Jonathan B. Kronick
Kumanan Wilson
Valerie Austin
Catherine Brunel-Guitton
Daniela Buhas
Nancy J. Butcher
Alicia K. J. Chan
Sarah Dyack
Sharan Goobie
Cheryl R. Greenberg
Shailly Jain-Ghai
Michal Inbar-Feigenberg
Natalya Karp
Mariya Kozenko
Erica Langley
Matthew Lines
Julian Little
Jennifer MacKenzie
Bruno Maranda
Saadet Mercimek-Andrews
Aizeddin Mhanni
John J. Mitchell
Laura Nagy
Martin Offringa
Amy Pender
Murray Potter
Chitra Prasad
Suzanne Ratko
Ramona Salvarinova
Andreas Schulze
Komudi Siriwardena
Neal Sondheimer
Rebecca Sparkes
Sylvia Stockler-Ipsiroglu
Kendra Tapscott
Yannis Trakadis
Lesley Turner
Clara Van Karnebeek
Anthony Vandersteen
Jagdeep S. Walia
Brenda J. Wilson
Andrea C. Yu
Beth K. Potter
Pranesh Chakraborty
Publication date
01-12-2024
Publisher
BioMed Central
Published in
BMC Pediatrics / Issue 1/2024
Electronic ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-023-04393-4

Other articles of this Issue 1/2024

BMC Pediatrics 1/2024 Go to the issue