Skip to main content
Top
Published in: Diabetology & Metabolic Syndrome 1/2015

Open Access 01-12-2015 | Research

Assessing cardiometabolic risk in middle-aged adults using body mass index and waist–height ratio: are two indices better than one? A cross-sectional study

Authors: Seán R. Millar, Ivan J. Perry, Catherine M. Phillips

Published in: Diabetology & Metabolic Syndrome | Issue 1/2015

Login to get access

Abstract

Background

A novel obesity classification method has been proposed using body mass index (BMI) and waist–height ratio (WHtR) together. However, the utility of this approach is unclear. In this study we compare the metabolic profiles in subjects defined as overweight or obese by both measures. We examine a range of metabolic syndrome features, pro-inflammatory cytokines, acute-phase response proteins, coagulation factors and white blood cell counts to determine whether a combination of both indices more accurately identifies individuals at increased obesity-related cardiometabolic risk.

Methods

This was a cross-sectional study involving a random sample of 1856 men and women aged 46–73 years. Metabolic and anthropometric profiles were assessed. Linear and logistic regression analyses were used to compare lipid, lipoprotein, blood pressure, glycaemic and inflammatory biomarker levels between BMI and WHtR tertiles. Multinomial logistic regression was performed to determine cardiometabolic risk feature associations with BMI and WHtR groupings. Receiver operating characteristic curve analysis was used to evaluate index discriminatory ability.

Results

The combination of BMI and WHtR tertiles identified consistent metabolic variable differences relative to those characterised on the basis of one index. Similarly, odds ratios of having cardiometabolic risk features were noticeably increased in subjects classified as overweight or obese by both measures when compared to study participants categorised by either BMI or WHtR separately. Significant discriminatory improvement was observed for detecting individual cardiometabolic risk features and adverse biomarker levels. In a fully adjusted model, only individuals within the highest tertile for both indices displayed a significant and positive association with pre-diabetes, OR: 3.4 (95 % CI: 1.9, 6.0), P < 0.001.

Conclusions

These data provide evidence that the use of BMI and WHtR together may improve body fat classification. Risk stratification using a composite index may provide a more accurate method for identifying high and low-risk subjects.
Literature
1.
go back to reference Guh D, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis A. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health. 2009;9(1):88.PubMedCentralCrossRefPubMed Guh D, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis A. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health. 2009;9(1):88.PubMedCentralCrossRefPubMed
2.
go back to reference Phillips CM, Perry IJ. Does inflammation determine metabolic health status in obese and nonobese adults? J Clin Endocrinol Metab. 2013;98(10):E1610–9.CrossRefPubMed Phillips CM, Perry IJ. Does inflammation determine metabolic health status in obese and nonobese adults? J Clin Endocrinol Metab. 2013;98(10):E1610–9.CrossRefPubMed
3.
go back to reference Grundy SM, Benjamin IJ, Burke GL, Chait A, Eckel RH, Howard BV, et al. Diabetes and cardiovascular disease a statement for healthcare professionals from the American Heart Association. Circulation. 1999;100(10):1134–46.CrossRefPubMed Grundy SM, Benjamin IJ, Burke GL, Chait A, Eckel RH, Howard BV, et al. Diabetes and cardiovascular disease a statement for healthcare professionals from the American Heart Association. Circulation. 1999;100(10):1134–46.CrossRefPubMed
4.
go back to reference Connor JM, Millar SR, Buckley CM, Kearney PM, Perry IJ. The prevalence and determinants of undiagnosed and diagnosed type 2 diabetes in middle-aged Irish adults. PLoS One. 2013;8(11):e80504.CrossRef Connor JM, Millar SR, Buckley CM, Kearney PM, Perry IJ. The prevalence and determinants of undiagnosed and diagnosed type 2 diabetes in middle-aged Irish adults. PLoS One. 2013;8(11):e80504.CrossRef
5.
go back to reference Collaboration PS. Body-mass index and cause-specific mortality in 900,000 adults: collaborative analyses of 57 prospective studies. Lancet. 2009;373(9669):1083–96.CrossRef Collaboration PS. Body-mass index and cause-specific mortality in 900,000 adults: collaborative analyses of 57 prospective studies. Lancet. 2009;373(9669):1083–96.CrossRef
6.
go back to reference Gómez-Ambrosi J, Silva C, Galofré J, Escalada J, Santos S, Millán D, et al. Body mass index classification misses subjects with increased cardiometabolic risk factors related to elevated adiposity. Int J Obes. 2011;36(2):286–94.CrossRef Gómez-Ambrosi J, Silva C, Galofré J, Escalada J, Santos S, Millán D, et al. Body mass index classification misses subjects with increased cardiometabolic risk factors related to elevated adiposity. Int J Obes. 2011;36(2):286–94.CrossRef
7.
go back to reference Curtis JP, Selter JG, Wang Y, Rathore SS, Jovin IS, Jadbabaie F, et al. The obesity paradox: body mass index and outcomes in patients with heart failure. Arch Intern Med. 2005;165(1):55.CrossRefPubMed Curtis JP, Selter JG, Wang Y, Rathore SS, Jovin IS, Jadbabaie F, et al. The obesity paradox: body mass index and outcomes in patients with heart failure. Arch Intern Med. 2005;165(1):55.CrossRefPubMed
8.
go back to reference Arsenault BJ, Després JP, Boekholdt SM. Hypertriglyceridemic waist: missing piece of the global cardiovascular risk assessment puzzle? Clin Lipidol. 2011;6(6):639–51.CrossRef Arsenault BJ, Després JP, Boekholdt SM. Hypertriglyceridemic waist: missing piece of the global cardiovascular risk assessment puzzle? Clin Lipidol. 2011;6(6):639–51.CrossRef
9.
go back to reference Klein S, Allison DB, Heymsfield SB, Kelley DE, Leibel RL, Nonas C, et al. Waist circumference and cardiometabolic risk: a consensus statement from shaping America’s health: Association for Weight Management and Obesity Prevention; NAASO, the Obesity Society; the American Society for Nutrition; and the American Diabetes Association. Obesity. 2012;15(5):1061–7.CrossRef Klein S, Allison DB, Heymsfield SB, Kelley DE, Leibel RL, Nonas C, et al. Waist circumference and cardiometabolic risk: a consensus statement from shaping America’s health: Association for Weight Management and Obesity Prevention; NAASO, the Obesity Society; the American Society for Nutrition; and the American Diabetes Association. Obesity. 2012;15(5):1061–7.CrossRef
10.
go back to reference Organization WH. Waist circumference and waist-hip ratio: report of a WHO expert consultation. Geneva: Switzerland; 2008. p. 8–11. Organization WH. Waist circumference and waist-hip ratio: report of a WHO expert consultation. Geneva: Switzerland; 2008. p. 8–11.
11.
go back to reference Millar SR, Perry IJ, Phillips CM. Surrogate measures of adiposity and cardiometabolic risk—why the uncertainty? A Review of recent meta-analytic studies. J Diabetes Metab. 2013;S11:004. doi:10.4172/2155-6156.S11-004. Millar SR, Perry IJ, Phillips CM. Surrogate measures of adiposity and cardiometabolic risk—why the uncertainty? A Review of recent meta-analytic studies. J Diabetes Metab. 2013;S11:004. doi:10.​4172/​2155-6156.​S11-004.
12.
go back to reference Ashwell M, Gibson S. Waist to height ratio is a simple and effective obesity screening tool for cardiovascular risk factors: analysis of data from the British National Diet and Nutrition Survey of adults aged 19–64 years. Obes Facts. 2009;2(2):97–103.CrossRefPubMed Ashwell M, Gibson S. Waist to height ratio is a simple and effective obesity screening tool for cardiovascular risk factors: analysis of data from the British National Diet and Nutrition Survey of adults aged 19–64 years. Obes Facts. 2009;2(2):97–103.CrossRefPubMed
13.
go back to reference Ashwell M, Hsieh SD. Six reasons why the waist-to-height ratio is a rapid and effective global indicator for health risks of obesity and how its use could simplify the international public health message on obesity. Int J Food Sci Nutr. 2005;56(5):303–7.CrossRefPubMed Ashwell M, Hsieh SD. Six reasons why the waist-to-height ratio is a rapid and effective global indicator for health risks of obesity and how its use could simplify the international public health message on obesity. Int J Food Sci Nutr. 2005;56(5):303–7.CrossRefPubMed
14.
go back to reference Can AS. Body mass index, waist-to-height ratio, cardiometabolic risk factors and diseases in a new obesity classification proposal. Open Obes J. 2011;3:55–61. Can AS. Body mass index, waist-to-height ratio, cardiometabolic risk factors and diseases in a new obesity classification proposal. Open Obes J. 2011;3:55–61.
15.
go back to reference Ashwell M, Gunn P, Gibson S. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: systematic review and meta-analysis. Obes Rev. 2012;13(3):275–86.CrossRefPubMed Ashwell M, Gunn P, Gibson S. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: systematic review and meta-analysis. Obes Rev. 2012;13(3):275–86.CrossRefPubMed
16.
go back to reference Savva SC, Lamnisos D, Kafatos AG. Predicting cardiometabolic risk: waist-to-height ratio or BMI. A meta-analysis. Diabetes Metab Syndr Obes Target Ther. 2013;6:403–19. Savva SC, Lamnisos D, Kafatos AG. Predicting cardiometabolic risk: waist-to-height ratio or BMI. A meta-analysis. Diabetes Metab Syndr Obes Target Ther. 2013;6:403–19.
17.
go back to reference Kodama S, Horikawa C, Fujihara K, Heianza Y, Hirasawa R, Yachi Y, et al. Comparisons of the strength of associations with future type 2 diabetes risk among anthropometric obesity indicators, including waist-to-height ratio: a meta-analysis. Am J Epidemiol. 2012;176(11):959–69.CrossRefPubMed Kodama S, Horikawa C, Fujihara K, Heianza Y, Hirasawa R, Yachi Y, et al. Comparisons of the strength of associations with future type 2 diabetes risk among anthropometric obesity indicators, including waist-to-height ratio: a meta-analysis. Am J Epidemiol. 2012;176(11):959–69.CrossRefPubMed
18.
19.
20.
go back to reference Booth ML, Ainsworth BE, Pratt M, Ekelund U, Yngve A, Sallis JF, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;195(9131/03):1381–3508. Booth ML, Ainsworth BE, Pratt M, Ekelund U, Yngve A, Sallis JF, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;195(9131/03):1381–3508.
21.
go back to reference Grundy SM, Brewer HB Jr, Cleeman JI, Smith SC Jr, Lenfant C. Definition of metabolic syndrome report of the National Heart, Lung, and Blood Institute/American Heart Association Conference on scientific issues related to definition. Circulation. 2004;109(3):433–8.CrossRefPubMed Grundy SM, Brewer HB Jr, Cleeman JI, Smith SC Jr, Lenfant C. Definition of metabolic syndrome report of the National Heart, Lung, and Blood Institute/American Heart Association Conference on scientific issues related to definition. Circulation. 2004;109(3):433–8.CrossRefPubMed
22.
go back to reference Matthews D, Hosker J, Rudenski A, Naylor B, Treacher D, Turner R. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9.CrossRefPubMed Matthews D, Hosker J, Rudenski A, Naylor B, Treacher D, Turner R. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9.CrossRefPubMed
23.
go back to reference Association AD. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2013;36(Suppl 1):S67–74.CrossRef Association AD. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2013;36(Suppl 1):S67–74.CrossRef
24.
go back to reference Phillips CM. Metabolically healthy obesity: definitions, determinants and clinical implications. Rev Endocr Metab Disord. 2013;14(3):219–27.CrossRefPubMed Phillips CM. Metabolically healthy obesity: definitions, determinants and clinical implications. Rev Endocr Metab Disord. 2013;14(3):219–27.CrossRefPubMed
25.
go back to reference Flegal KM, Kit BK, Orpana H, Graubard BI. Association of All-cause mortality with overweight and obesity using standard body mass index categories. Syst Rev Meta-Anal JAMA. 2013;309(1):71–82. Flegal KM, Kit BK, Orpana H, Graubard BI. Association of All-cause mortality with overweight and obesity using standard body mass index categories. Syst Rev Meta-Anal JAMA. 2013;309(1):71–82.
26.
go back to reference Shea JL, Randell EW, Sun G. The prevalence of metabolically healthy obese subjects defined by BMI and Dual-energy X-ray absorptiometry. Obesity. 2011;19(3):624–30.CrossRefPubMed Shea JL, Randell EW, Sun G. The prevalence of metabolically healthy obese subjects defined by BMI and Dual-energy X-ray absorptiometry. Obesity. 2011;19(3):624–30.CrossRefPubMed
27.
go back to reference Chan JM, Rimm EB, Colditz GA, Stampfer MJ, Willett WC. Obesity, fat distribution, and weight gain as risk factors for clinical diabetes in men. Diabetes Care. 1994;17(9):961–9.CrossRefPubMed Chan JM, Rimm EB, Colditz GA, Stampfer MJ, Willett WC. Obesity, fat distribution, and weight gain as risk factors for clinical diabetes in men. Diabetes Care. 1994;17(9):961–9.CrossRefPubMed
28.
go back to reference Carey VJ, Walters EE, Colditz GA, Solomon CG, Willet WC, Rosner BA, et al. body fat distribution and risk of non-insulin-dependent diabetes mellitus in women The Nurses’ Health Study. Am J Epidemiol. 1997;145(7):614–9.CrossRefPubMed Carey VJ, Walters EE, Colditz GA, Solomon CG, Willet WC, Rosner BA, et al. body fat distribution and risk of non-insulin-dependent diabetes mellitus in women The Nurses’ Health Study. Am J Epidemiol. 1997;145(7):614–9.CrossRefPubMed
29.
go back to reference Kabir M, Catalano KJ, Ananthnarayan S, Kim SP, Van Citters GW, Dea MK, et al. Molecular evidence supporting the portal theory: a causative link between visceral adiposity and hepatic insulin resistance. Am J Physiol Endocrinol Metab. 2005;288(2):E454–61.CrossRefPubMed Kabir M, Catalano KJ, Ananthnarayan S, Kim SP, Van Citters GW, Dea MK, et al. Molecular evidence supporting the portal theory: a causative link between visceral adiposity and hepatic insulin resistance. Am J Physiol Endocrinol Metab. 2005;288(2):E454–61.CrossRefPubMed
31.
go back to reference McCarron P, Okasha M, McEwen J, Smith GD. Height in young adulthood and risk of death from cardiorespiratory disease: a prospective study of male former students of Glasgow University, Scotland. Am J Epidemiol. 2002;155(8):683–7.CrossRefPubMed McCarron P, Okasha M, McEwen J, Smith GD. Height in young adulthood and risk of death from cardiorespiratory disease: a prospective study of male former students of Glasgow University, Scotland. Am J Epidemiol. 2002;155(8):683–7.CrossRefPubMed
32.
go back to reference Engeland A, Bjørge T, Selmer RM, Tverdal A. Height and body mass index in relation to total mortality. Epidemiology. 2003;14(3):293–9.PubMed Engeland A, Bjørge T, Selmer RM, Tverdal A. Height and body mass index in relation to total mortality. Epidemiology. 2003;14(3):293–9.PubMed
33.
go back to reference Alberti K, Zimmet P, Shaw J. Metabolic syndrome—a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet Med. 2006;23(5):469–80.CrossRefPubMed Alberti K, Zimmet P, Shaw J. Metabolic syndrome—a new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet Med. 2006;23(5):469–80.CrossRefPubMed
34.
go back to reference Stern MP, Williams K, González-Villalpando C, Hunt KJ, Haffner SM. Does the metabolic syndrome improve identification of individuals at risk of type 2 diabetes and/or cardiovascular disease? Diabetes Care. 2004;27(11):2676–81.CrossRefPubMed Stern MP, Williams K, González-Villalpando C, Hunt KJ, Haffner SM. Does the metabolic syndrome improve identification of individuals at risk of type 2 diabetes and/or cardiovascular disease? Diabetes Care. 2004;27(11):2676–81.CrossRefPubMed
35.
go back to reference Bosy-Westphal A, Booke C-A, Blöcker T, Kossel E, Goele K, Later W, et al. Measurement site for waist circumference affects its accuracy as an index of visceral and abdominal subcutaneous fat in a Caucasian population. J Nutr. 2010;140(5):954–61.CrossRefPubMed Bosy-Westphal A, Booke C-A, Blöcker T, Kossel E, Goele K, Later W, et al. Measurement site for waist circumference affects its accuracy as an index of visceral and abdominal subcutaneous fat in a Caucasian population. J Nutr. 2010;140(5):954–61.CrossRefPubMed
36.
go back to reference Phillips CM, Tierney AC, Perez-Martinez P, Defoort C, Blaak EE, Gjelstad IM, et al. Obesity and body fat classification in the metabolic syndrome: impact on cardiometabolic risk metabotype. Obesity. 2013;21(1):E154–61.CrossRefPubMed Phillips CM, Tierney AC, Perez-Martinez P, Defoort C, Blaak EE, Gjelstad IM, et al. Obesity and body fat classification in the metabolic syndrome: impact on cardiometabolic risk metabotype. Obesity. 2013;21(1):E154–61.CrossRefPubMed
37.
go back to reference Ashwell M. Plea for simplicity: use of waist-to-height ratio as a primary screening tool to assess cardiometabolic risk. Clin Obes. 2012;2(1–2):3–5.CrossRefPubMed Ashwell M. Plea for simplicity: use of waist-to-height ratio as a primary screening tool to assess cardiometabolic risk. Clin Obes. 2012;2(1–2):3–5.CrossRefPubMed
38.
go back to reference Standardization WECoB, Organization WH. Physical status: the use and interpretation of anthropometry: report of a WHO Expert Committee. World Health Organization; 1995. Standardization WECoB, Organization WH. Physical status: the use and interpretation of anthropometry: report of a WHO Expert Committee. World Health Organization; 1995.
39.
go back to reference Cronin S, Berger S, Ding J, Schymick JC, Washecka N, Hernandez DG, et al. A genome-wide association study of sporadic ALS in a homogenous Irish population. Hum Mol Genet. 2008;17(5):768–74.CrossRefPubMed Cronin S, Berger S, Ding J, Schymick JC, Washecka N, Hernandez DG, et al. A genome-wide association study of sporadic ALS in a homogenous Irish population. Hum Mol Genet. 2008;17(5):768–74.CrossRefPubMed
40.
go back to reference Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047–53.CrossRefPubMed Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047–53.CrossRefPubMed
Metadata
Title
Assessing cardiometabolic risk in middle-aged adults using body mass index and waist–height ratio: are two indices better than one? A cross-sectional study
Authors
Seán R. Millar
Ivan J. Perry
Catherine M. Phillips
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Diabetology & Metabolic Syndrome / Issue 1/2015
Electronic ISSN: 1758-5996
DOI
https://doi.org/10.1186/s13098-015-0069-5

Other articles of this Issue 1/2015

Diabetology & Metabolic Syndrome 1/2015 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine