Skip to main content
Top
Published in: BMC Medical Research Methodology 1/2012

Open Access 01-12-2012 | Software

Artificial neural networks versus proportional hazards Cox models to predict 45-year all-cause mortality in the Italian Rural Areas of the Seven Countries Study

Authors: Paolo Emilio Puddu, Alessandro Menotti

Published in: BMC Medical Research Methodology | Issue 1/2012

Login to get access

Abstract

Background

Projection pursuit regression, multilayer feed-forward networks, multivariate adaptive regression splines and trees (including survival trees) have challenged classic multivariable models such as the multiple logistic function, the proportional hazards life table Cox model (Cox), the Poisson’s model, and the Weibull’s life table model to perform multivariable predictions. However, only artificial neural networks (NN) have become popular in medical applications.

Results

We compared several Cox versus NN models in predicting 45-year all-cause mortality (45-ACM) by 18 risk factors selected a priori: age; father life status; mother life status; family history of cardiovascular diseases; job-related physical activity; cigarette smoking; body mass index (linear and quadratic terms); arm circumference; mean blood pressure; heart rate; forced expiratory volume; serum cholesterol; corneal arcus; diagnoses of cardiovascular diseases, cancer and diabetes; minor ECG abnormalities at rest. Two Italian rural cohorts of the Seven Countries Study, made up of men aged 40 to 59 years, enrolled and first examined in 1960 in Italy. Cox models were estimated by: a) forcing all factors; b) a forward-; and c) a backward-stepwise procedure. Observed cases of deaths and of survivors were computed in decile classes of estimated risk. Forced and stepwise NN were run and compared by C-statistics (ROC analysis) with the Cox models. Out of 1591 men, 1447 died. Model global accuracies were extremely high by all methods (ROCs > 0.810) but there was no clear-cut superiority of any model to predict 45-ACM. The highest ROCs (> 0.838) were observed by NN. There were inter-model variations to select predictive covariates: whereas all models concurred to define the role of 10 covariates (mainly cardiovascular risk factors), family history, heart rate and minor ECG abnormalities were not contributors by Cox models but were so by forced NN. Forced expiratory volume and arm circumference (two protectors), were not selected by stepwise NN but were so by the Cox models.

Conclusions

There were similar global accuracies of NN versus Cox models to predict 45-ACM. NN detected specific predictive covariates having a common thread with physical fitness as related to job physical activity such as arm circumference and forced expiratory volume. Future attention should be concentrated on why NN versus Cox models detect different predictors.
Appendix
Available only for authorised users
Literature
1.
go back to reference Afifi AA, Clark V: Computer aided multivariate analysis. 1990, Van Nostrand Reinhold Co, New York Afifi AA, Clark V: Computer aided multivariate analysis. 1990, Van Nostrand Reinhold Co, New York
2.
go back to reference Miller Ch C, Reardon MJ, Safi HJ: Risk stratification. 2001, University Press, A practical guide for clinicians. CambridgeCrossRef Miller Ch C, Reardon MJ, Safi HJ: Risk stratification. 2001, University Press, A practical guide for clinicians. CambridgeCrossRef
3.
go back to reference Menotti A, Puddu PE, Lanti M: Il rischio in Cardiologia: dalla teoria alla pratica. 2004, Edizioni Internazionali srl, Pavia Menotti A, Puddu PE, Lanti M: Il rischio in Cardiologia: dalla teoria alla pratica. 2004, Edizioni Internazionali srl, Pavia
4.
go back to reference Friedman JH, Stuetzle RJ: Projection pursuit regression. J Am Stat Assoc. 1981, 76: 817-823. 10.1080/01621459.1981.10477729.CrossRef Friedman JH, Stuetzle RJ: Projection pursuit regression. J Am Stat Assoc. 1981, 76: 817-823. 10.1080/01621459.1981.10477729.CrossRef
5.
go back to reference Hornik K, Stinchcomb X, White X: Miltilayer feedforward networks are universal approximators. Neural Net. 1989, 2: 359-366. 10.1016/0893-6080(89)90020-8.CrossRef Hornik K, Stinchcomb X, White X: Miltilayer feedforward networks are universal approximators. Neural Net. 1989, 2: 359-366. 10.1016/0893-6080(89)90020-8.CrossRef
6.
go back to reference Friedman JH: Multivariate adaptive regression splines. Ann Stat. 1991, 19: 1-141. 10.1214/aos/1176347963.CrossRef Friedman JH: Multivariate adaptive regression splines. Ann Stat. 1991, 19: 1-141. 10.1214/aos/1176347963.CrossRef
7.
go back to reference Ciampi A, Hogg SA, McKinney S, Thiffault J: RECPAM, a computer program for recursive partition and amalgamation for censored survival data and other situations frequently occurring in biostatistics. I. methods and program features. Comp Meth Progr Biomed. 1988, 26: 239-256. 10.1016/0169-2607(88)90004-1.CrossRef Ciampi A, Hogg SA, McKinney S, Thiffault J: RECPAM, a computer program for recursive partition and amalgamation for censored survival data and other situations frequently occurring in biostatistics. I. methods and program features. Comp Meth Progr Biomed. 1988, 26: 239-256. 10.1016/0169-2607(88)90004-1.CrossRef
8.
go back to reference Zhang H: Recursive partitioning and tree-based methods. Handbook of computational statistics. Edited by: Gentle JE, Hardle W, Mori Y. 2004, Springer, Berlin Zhang H: Recursive partitioning and tree-based methods. Handbook of computational statistics. Edited by: Gentle JE, Hardle W, Mori Y. 2004, Springer, Berlin
9.
go back to reference Lee JW, Um SH, Lee JB, Mun J, Cho H: Scoring and staging systems using Cox linear regression modeling and recursive partitioning. Meth Inform Med. 2006, 45: 37-43.PubMed Lee JW, Um SH, Lee JB, Mun J, Cho H: Scoring and staging systems using Cox linear regression modeling and recursive partitioning. Meth Inform Med. 2006, 45: 37-43.PubMed
10.
go back to reference Delen D, Oztekin A, Kong ZJ: A machine learning-based approach to prognostic analysis of thoracic transplantations. Artif Intel Med. 2010, 49: 33-42. 10.1016/j.artmed.2010.01.002.CrossRef Delen D, Oztekin A, Kong ZJ: A machine learning-based approach to prognostic analysis of thoracic transplantations. Artif Intel Med. 2010, 49: 33-42. 10.1016/j.artmed.2010.01.002.CrossRef
11.
go back to reference Tu JV: Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J Clin Epidemiol. 1996, 49: 1225-1231. 10.1016/S0895-4356(96)00002-9.CrossRefPubMed Tu JV: Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J Clin Epidemiol. 1996, 49: 1225-1231. 10.1016/S0895-4356(96)00002-9.CrossRefPubMed
12.
go back to reference Dayhoff JE, DeLeo JM: Artificial neural networks. Opening the black box. Cancer. 2001, 91: 1615-1635. 10.1002/1097-0142(20010415)91:8+<1615::AID-CNCR1175>3.0.CO;2-L.CrossRefPubMed Dayhoff JE, DeLeo JM: Artificial neural networks. Opening the black box. Cancer. 2001, 91: 1615-1635. 10.1002/1097-0142(20010415)91:8+<1615::AID-CNCR1175>3.0.CO;2-L.CrossRefPubMed
13.
go back to reference Hosmer DW, Lemeshow S: Applied logistic regression. 2000, John Wiley and Sons, New York, 2CrossRef Hosmer DW, Lemeshow S: Applied logistic regression. 2000, John Wiley and Sons, New York, 2CrossRef
14.
go back to reference Hanley JA, McNeil BJ: The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982, 143: 29-36.CrossRefPubMed Hanley JA, McNeil BJ: The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982, 143: 29-36.CrossRefPubMed
15.
go back to reference Zweig MH, Campbell G: Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem. 1993, 39: 561-577.PubMed Zweig MH, Campbell G: Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem. 1993, 39: 561-577.PubMed
16.
go back to reference Obuchowski NA: Receiver operating characteristic curves and their use in radiology. Radiology. 2003, 229: 3-8. 10.1148/radiol.2291010898.CrossRefPubMed Obuchowski NA: Receiver operating characteristic curves and their use in radiology. Radiology. 2003, 229: 3-8. 10.1148/radiol.2291010898.CrossRefPubMed
17.
go back to reference Pepe MS: The statistical evaluation of medical tests for classification and prediction. 2003, Oxford University Press, New York Pepe MS: The statistical evaluation of medical tests for classification and prediction. 2003, Oxford University Press, New York
18.
go back to reference Hanley JA, McNeil BJ: A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology. 1983, 148: 839-843.CrossRefPubMed Hanley JA, McNeil BJ: A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology. 1983, 148: 839-843.CrossRefPubMed
19.
go back to reference DeLong ER, DeLong DM, Clarke-Pearson DL: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988, 44: 837-845. 10.2307/2531595.CrossRefPubMed DeLong ER, DeLong DM, Clarke-Pearson DL: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988, 44: 837-845. 10.2307/2531595.CrossRefPubMed
20.
go back to reference Bandos AI, Rockette HE, Gur D: A conditional nonparametric test for comparing two areas under the ROC curves from paired design. Acad Radiol. 2005, 12: 291-297. 10.1016/j.acra.2004.08.013.CrossRefPubMed Bandos AI, Rockette HE, Gur D: A conditional nonparametric test for comparing two areas under the ROC curves from paired design. Acad Radiol. 2005, 12: 291-297. 10.1016/j.acra.2004.08.013.CrossRefPubMed
21.
go back to reference Hense HW: Observations, predictions and decisions assessing cardiovascular risk assessment. Int J Epidemiol. 2004, 33: 235-239. 10.1093/ije/dyh118.CrossRefPubMed Hense HW: Observations, predictions and decisions assessing cardiovascular risk assessment. Int J Epidemiol. 2004, 33: 235-239. 10.1093/ije/dyh118.CrossRefPubMed
22.
go back to reference Shahian DM, Blackstone EH, Edwards FH, Grover FL, Grunkemeier GL, Naftel DC, Nashef SAM, Nugent WC, Peterson ED: Cardiac surgery risk models: a position article. Ann Thorac Surg. 2004, 78: 1868-1877. 10.1016/j.athoracsur.2004.05.054.CrossRefPubMed Shahian DM, Blackstone EH, Edwards FH, Grover FL, Grunkemeier GL, Naftel DC, Nashef SAM, Nugent WC, Peterson ED: Cardiac surgery risk models: a position article. Ann Thorac Surg. 2004, 78: 1868-1877. 10.1016/j.athoracsur.2004.05.054.CrossRefPubMed
23.
go back to reference Warner BA: Thoughts and considerations on modelling coronary bypass surgery risk. Ann Thorac Surg. 1997, 63: 1529-1530.CrossRefPubMed Warner BA: Thoughts and considerations on modelling coronary bypass surgery risk. Ann Thorac Surg. 1997, 63: 1529-1530.CrossRefPubMed
24.
go back to reference Orr RK: Use of a probabilistic neural network to estimate the risk of mortality after surgery. Med Decis Making. 1997, 17: 178-185. 10.1177/0272989X9701700208.CrossRefPubMed Orr RK: Use of a probabilistic neural network to estimate the risk of mortality after surgery. Med Decis Making. 1997, 17: 178-185. 10.1177/0272989X9701700208.CrossRefPubMed
26.
go back to reference Lippmann RP, Shahian DM: Coronary artery bypass risk prediction using neural networks. Ann Thorac Surg. 1997, 63: 1635-1643. 10.1016/S0003-4975(97)00225-7.CrossRefPubMed Lippmann RP, Shahian DM: Coronary artery bypass risk prediction using neural networks. Ann Thorac Surg. 1997, 63: 1635-1643. 10.1016/S0003-4975(97)00225-7.CrossRefPubMed
27.
go back to reference Nilsson J, Ohlsson M, Thulin L, Höglund P, Nashef SAM, Brandt J: Risk factor identification and mortality prediction in cardiac surgery using artificial neural networks. J Thorac Cardiovasc Surg. 2006, 132: 12-19. 10.1016/j.jtcvs.2005.12.055.CrossRefPubMed Nilsson J, Ohlsson M, Thulin L, Höglund P, Nashef SAM, Brandt J: Risk factor identification and mortality prediction in cardiac surgery using artificial neural networks. J Thorac Cardiovasc Surg. 2006, 132: 12-19. 10.1016/j.jtcvs.2005.12.055.CrossRefPubMed
28.
go back to reference Voss R, Cullen P, Schulte H, Assmann G: Prediction of risk of coronary events in middle-aged men in the prospective cardiovascular Münster study (PROCAM) using neural networks. Int J Epidemiol. 2002, 31: 1253-1262. 10.1093/ije/31.6.1253.CrossRefPubMed Voss R, Cullen P, Schulte H, Assmann G: Prediction of risk of coronary events in middle-aged men in the prospective cardiovascular Münster study (PROCAM) using neural networks. Int J Epidemiol. 2002, 31: 1253-1262. 10.1093/ije/31.6.1253.CrossRefPubMed
29.
go back to reference Puddu PE, Menotti A: Artificial neural network versus multiple logistic function to predict 25-year coronary heart disease mortality in the Seven Countries Study. Eur J Cardiovasc Prev Rehabil. 2009, 16: 583-591. 10.1097/HJR.0b013e32832d49e1.CrossRefPubMed Puddu PE, Menotti A: Artificial neural network versus multiple logistic function to predict 25-year coronary heart disease mortality in the Seven Countries Study. Eur J Cardiovasc Prev Rehabil. 2009, 16: 583-591. 10.1097/HJR.0b013e32832d49e1.CrossRefPubMed
30.
go back to reference May M: Commentary: improved coronary risk prediction using neural networks. Int J Epidemiol. 2002, 31: 1262-1263. 10.1093/ije/31.6.1262.CrossRef May M: Commentary: improved coronary risk prediction using neural networks. Int J Epidemiol. 2002, 31: 1262-1263. 10.1093/ije/31.6.1262.CrossRef
31.
go back to reference Menotti A, Lanti M, Maiani G, Kromhout D: Determinants of longevity and all-cause mortality among middle-aged men. Role of 48 personal characteristics in a 40-year follow-up of Italian Rural Areas in the Seven Countries Study. Aging Clin Exp Res. 2006, 18: 394-406.CrossRefPubMed Menotti A, Lanti M, Maiani G, Kromhout D: Determinants of longevity and all-cause mortality among middle-aged men. Role of 48 personal characteristics in a 40-year follow-up of Italian Rural Areas in the Seven Countries Study. Aging Clin Exp Res. 2006, 18: 394-406.CrossRefPubMed
32.
go back to reference Keys A, Blackburn H, Menotti A, Buzina R, Mohacek I, Karvonen MJ, Punsar S, Aravanis C, Corcondilas A, Dontas AS, Lekos D, Fidanza F, Puddu V, Taylor HL, Monti M, Kimura N, Van Buchem FSP, Djordjevic BS, Strasser T, Anderson JT, Den Hartog C, Pekkarinen M, Roine P, Sdrin H: Coronary heart disease in seven countries. Circulation. 1970, 41 (suppl 1): 1-211. Keys A, Blackburn H, Menotti A, Buzina R, Mohacek I, Karvonen MJ, Punsar S, Aravanis C, Corcondilas A, Dontas AS, Lekos D, Fidanza F, Puddu V, Taylor HL, Monti M, Kimura N, Van Buchem FSP, Djordjevic BS, Strasser T, Anderson JT, Den Hartog C, Pekkarinen M, Roine P, Sdrin H: Coronary heart disease in seven countries. Circulation. 1970, 41 (suppl 1): 1-211.
33.
go back to reference Anderson JT, Keys A: Cholesterol in serum and lipoprotein fractions: its measurement and stability. Clin Chem. 1956, 2: 145-159.PubMed Anderson JT, Keys A: Cholesterol in serum and lipoprotein fractions: its measurement and stability. Clin Chem. 1956, 2: 145-159.PubMed
34.
go back to reference Rose G, Blackburn H: Cardiovascular survey methods. 1968, World Health Organization, Geneva Rose G, Blackburn H: Cardiovascular survey methods. 1968, World Health Organization, Geneva
35.
go back to reference Gini C: Measurement of inequality of incomes. Econ J. 1921, 31: 124-126. 10.2307/2223319.CrossRef Gini C: Measurement of inequality of incomes. Econ J. 1921, 31: 124-126. 10.2307/2223319.CrossRef
36.
go back to reference Cox DR: Regression models and life tables. J Roy Stat Soc. 1972, B43: 185-220. Cox DR: Regression models and life tables. J Roy Stat Soc. 1972, B43: 185-220.
37.
go back to reference White H: Learning in artificial neural networks: a statistical perspective. Neural Comput. 1989, 1: 425-464. 10.1162/neco.1989.1.4.425.CrossRef White H: Learning in artificial neural networks: a statistical perspective. Neural Comput. 1989, 1: 425-464. 10.1162/neco.1989.1.4.425.CrossRef
38.
go back to reference Liestol K, Andersen PK, Andersen U: Survival analysis and neural nets. Stat Med. 1994, 13: 1189-1200. 10.1002/sim.4780131202.CrossRefPubMed Liestol K, Andersen PK, Andersen U: Survival analysis and neural nets. Stat Med. 1994, 13: 1189-1200. 10.1002/sim.4780131202.CrossRefPubMed
39.
go back to reference Keys A, Aravanis C, Blackburn H, Buzina R, Djordjevic BS, Dontas AS, Fidanza F, Karvonen MJ, Kimura N, Menotti A, Mohacek I, Nedeljkovic S, Puddu V, Punsar S, Taylor HL, Van Buchem F: Seven Countries Study. A multivariate analysis of death and coronary heart disease. Edited by: Keys A. 1980, Harvard Univ Press, Cambridge, MassCrossRef Keys A, Aravanis C, Blackburn H, Buzina R, Djordjevic BS, Dontas AS, Fidanza F, Karvonen MJ, Kimura N, Menotti A, Mohacek I, Nedeljkovic S, Puddu V, Punsar S, Taylor HL, Van Buchem F: Seven Countries Study. A multivariate analysis of death and coronary heart disease. Edited by: Keys A. 1980, Harvard Univ Press, Cambridge, MassCrossRef
40.
go back to reference Puddu PE, Brancaccio G, Leacche M, Monti F, Lanti M, Menotti A, Gaudio C, Papalia U, Marino B, OP-RISK Study Group: Prediction of early and delayed postoperative deaths after coronary artery bypass surgery in Italy. Multivariate prediction based on Cox and logistic models and a chart based on the accelerated failure time model. Ital Heart J. 2002, 3: 166-181.PubMed Puddu PE, Brancaccio G, Leacche M, Monti F, Lanti M, Menotti A, Gaudio C, Papalia U, Marino B, OP-RISK Study Group: Prediction of early and delayed postoperative deaths after coronary artery bypass surgery in Italy. Multivariate prediction based on Cox and logistic models and a chart based on the accelerated failure time model. Ital Heart J. 2002, 3: 166-181.PubMed
41.
go back to reference Sciangula A, Puddu PE, Schiariti M, Acconcia MC, Missiroli B, Papalia U, Gaudio C, Martinelli G, Cassese M: Comparative application of multivariate models developed in Italy and Europe to predict early (28 days) and late (1 year) postoperative death after on- or off-pump coronary artery bypass grafting. Heart Surg Forum. 2007, 10: E258-E266. 10.1532/HSF98.20071021.CrossRefPubMed Sciangula A, Puddu PE, Schiariti M, Acconcia MC, Missiroli B, Papalia U, Gaudio C, Martinelli G, Cassese M: Comparative application of multivariate models developed in Italy and Europe to predict early (28 days) and late (1 year) postoperative death after on- or off-pump coronary artery bypass grafting. Heart Surg Forum. 2007, 10: E258-E266. 10.1532/HSF98.20071021.CrossRefPubMed
42.
go back to reference Puddu PE, Menotti A, Tolonen H, Nedeljkovic S, Kafatos A: Determinants of 40-year all-cause mortality in the European cohorts of the Seven Countries Study. Eur J Epidemiol. 2011, 26: 595-608. 10.1007/s10654-011-9600-7. 8CrossRefPubMed Puddu PE, Menotti A, Tolonen H, Nedeljkovic S, Kafatos A: Determinants of 40-year all-cause mortality in the European cohorts of the Seven Countries Study. Eur J Epidemiol. 2011, 26: 595-608. 10.1007/s10654-011-9600-7. 8CrossRefPubMed
43.
go back to reference Lim T-S, Loh W-Y, Shih Y-S: A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms. Machine Learn. 2000, 40: 203-228. 10.1023/A:1007608224229.CrossRef Lim T-S, Loh W-Y, Shih Y-S: A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms. Machine Learn. 2000, 40: 203-228. 10.1023/A:1007608224229.CrossRef
44.
go back to reference Wolfe R, McKenzie DP, Black J, Simpson P, Gabbe BJ, Cameron PA: Models developed by three techniques did not achieve acceptable prediction of binary trauma outcomes. J Clin Epidemiol. 2006, 59: 26-35. 10.1016/j.jclinepi.2005.05.007.CrossRefPubMed Wolfe R, McKenzie DP, Black J, Simpson P, Gabbe BJ, Cameron PA: Models developed by three techniques did not achieve acceptable prediction of binary trauma outcomes. J Clin Epidemiol. 2006, 59: 26-35. 10.1016/j.jclinepi.2005.05.007.CrossRefPubMed
45.
go back to reference Austin PC: A comparison of regression trees, logistic regression, generalized additive models, and multivariate adaptive regression splines for predicting AMI mortality. Stat Med. 2007, 26: 2937-2957. 10.1002/sim.2770.CrossRefPubMed Austin PC: A comparison of regression trees, logistic regression, generalized additive models, and multivariate adaptive regression splines for predicting AMI mortality. Stat Med. 2007, 26: 2937-2957. 10.1002/sim.2770.CrossRefPubMed
46.
go back to reference Austin PC, Tu JV, Lee DS: Logistic regression had superior performance compared with regression trees for predicting in-hospital mortality in patients hospitalized with heart failure. J Clin Epidemiol. 2010, 63: 1145-1155. 10.1016/j.jclinepi.2009.12.004.CrossRefPubMed Austin PC, Tu JV, Lee DS: Logistic regression had superior performance compared with regression trees for predicting in-hospital mortality in patients hospitalized with heart failure. J Clin Epidemiol. 2010, 63: 1145-1155. 10.1016/j.jclinepi.2009.12.004.CrossRefPubMed
47.
go back to reference Anderson KM, Castelli WP, Levy D: Cholesterol and mortality. 30 years of follow-up from the Framingham study. JAMA. 1987, 257: 2176-2180. 10.1001/jama.1987.03390160062027.CrossRefPubMed Anderson KM, Castelli WP, Levy D: Cholesterol and mortality. 30 years of follow-up from the Framingham study. JAMA. 1987, 257: 2176-2180. 10.1001/jama.1987.03390160062027.CrossRefPubMed
48.
go back to reference Ferrie JE, Singh-Manoux A, Kivimäki M, Mindell J, Breeze E, Smith GD, Shipley MJ: Cardiorespiratory risk factors as predictors of 40-year mortality in women and men. Heart. 2009, 95: 1250-1257. 10.1136/hrt.2008.164251.CrossRefPubMedPubMedCentral Ferrie JE, Singh-Manoux A, Kivimäki M, Mindell J, Breeze E, Smith GD, Shipley MJ: Cardiorespiratory risk factors as predictors of 40-year mortality in women and men. Heart. 2009, 95: 1250-1257. 10.1136/hrt.2008.164251.CrossRefPubMedPubMedCentral
49.
go back to reference Goto A, Yasumura S, Nishise Y, Sakihara S: Association of health behavior and social role with total mortality among Japanese elders in Okinawa, Japan. Aging Clin Exp Res. 2003, 15: 443-450.CrossRefPubMed Goto A, Yasumura S, Nishise Y, Sakihara S: Association of health behavior and social role with total mortality among Japanese elders in Okinawa, Japan. Aging Clin Exp Res. 2003, 15: 443-450.CrossRefPubMed
Metadata
Title
Artificial neural networks versus proportional hazards Cox models to predict 45-year all-cause mortality in the Italian Rural Areas of the Seven Countries Study
Authors
Paolo Emilio Puddu
Alessandro Menotti
Publication date
01-12-2012
Publisher
BioMed Central
Published in
BMC Medical Research Methodology / Issue 1/2012
Electronic ISSN: 1471-2288
DOI
https://doi.org/10.1186/1471-2288-12-100

Other articles of this Issue 1/2012

BMC Medical Research Methodology 1/2012 Go to the issue