Skip to main content
Top
Published in: Knee Surgery, Sports Traumatology, Arthroscopy 12/2023

Open Access 17-11-2023 | Artificial Intelligence | KNEE

Artificial intelligence-based analyses of varus leg alignment and after high tibial osteotomy show high accuracy and reproducibility

Authors: Christoph Stotter, Thomas Klestil, Kenneth Chen, Allan Hummer, Christoph Salzlechner, Peter Angele, Stefan Nehrer

Published in: Knee Surgery, Sports Traumatology, Arthroscopy | Issue 12/2023

Login to get access

Abstract

Purpose

The aim of this study was to investigate the performance of an artificial intelligence (AI)-based software for fully automated analysis of leg alignment pre- and postoperatively after high tibial osteotomy (HTO) on long-leg radiographs (LLRs).

Methods

Long-leg radiographs of 95 patients with varus malalignment that underwent medial open-wedge HTO were analyzed pre- and postoperatively. Three investigators and an AI software using deep learning algorithms (LAMA™, ImageBiopsy Lab, Vienna, Austria) evaluated the hip–knee–ankle angle (HKA), mechanical axis deviation (MAD), joint line convergence angle (JLCA), medial proximal tibial angle (MPTA), and mechanical lateral distal femoral angle (mLDFA). All measurements were performed twice and the performance of the AI software was compared with individual human readers using a Bayesian mixed model. In addition, the inter-observer intraclass correlation coefficient (ICC) for inter-observer reliability was evaluated by comparing measurements from manual readers. The intra-reader variability for manual measurements and the AI-based software was evaluated using the intra-observer ICC.

Results

Initial varus malalignment was corrected to slight valgus alignment after HTO. Measured by the AI algorithm and manually HKA (5.36° ± 3.03° and 5.47° ± 2.90° to − 0.70 ± 2.34 and − 0.54 ± 2.31), MAD (19.38 mm ± 11.39 mm and 20.17 mm ± 10.99 mm to − 2.68 ± 8.75 and − 2.10 ± 8.61) and MPTA (86.29° ± 2.42° and 86.08° ± 2.34° to 91.6 ± 3.0 and 91.81 ± 2.54) changed significantly from pre- to postoperative, while JLCA and mLDFA were not altered. The fully automated AI-based analyses showed no significant differences for all measurements compared with manual reads neither in native preoperative radiographs nor postoperatively after HTO. Mean absolute differences between the AI-based software and mean manual observer measurements were 0.5° or less for all measurements. Inter-observer ICCs for manual measurements were good to excellent for all measurements, except for JLCA, which showed moderate inter-observer ICCs. Intra-observer ICCs for manual measurements were excellent for all measurements, except for JLCA and for MPTA postoperatively. For the AI-aided analyses, repeated measurements showed entirely consistent results for all measurements with an intra-observer ICC of 1.0.

Conclusions

The AI-based software can provide fully automated analyses of native long-leg radiographs in patients with varus malalignment and after HTO with great accuracy and reproducibility and could support clinical workflows.

Level of evidence

Diagnostic study, Level III.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bode G, Ogon P, Pestka J et al (2015) Clinical outcome and return to work following single-stage combined autologous chondrocyte implantation and high tibial osteotomy. Int Orthop 39(4):689–696CrossRefPubMed Bode G, Ogon P, Pestka J et al (2015) Clinical outcome and return to work following single-stage combined autologous chondrocyte implantation and high tibial osteotomy. Int Orthop 39(4):689–696CrossRefPubMed
2.
go back to reference Bode G, Schmal H, Pestka JM, Ogon P, Südkamp NP, Niemeyer P (2013) A non-randomized controlled clinical trial on autologous chondrocyte implantation (ACI) in cartilage defects of the medial femoral condyle with or without high tibial osteotomy in patients with varus deformity of less than 5°. Arch Orthop Trauma Surg 133(1):43–49CrossRefPubMed Bode G, Schmal H, Pestka JM, Ogon P, Südkamp NP, Niemeyer P (2013) A non-randomized controlled clinical trial on autologous chondrocyte implantation (ACI) in cartilage defects of the medial femoral condyle with or without high tibial osteotomy in patients with varus deformity of less than 5°. Arch Orthop Trauma Surg 133(1):43–49CrossRefPubMed
3.
go back to reference Bowman A, Shunmugam M, Watts AR, Bramwell DC, Wilson C, Krishnan J (2016) Inter-observer and intra-observer reliability of mechanical axis alignment before and after total knee arthroplasty using long leg radiographs. Knee 23(2):203–208CrossRefPubMed Bowman A, Shunmugam M, Watts AR, Bramwell DC, Wilson C, Krishnan J (2016) Inter-observer and intra-observer reliability of mechanical axis alignment before and after total knee arthroplasty using long leg radiographs. Knee 23(2):203–208CrossRefPubMed
4.
go back to reference Braun S, Brenneis M, Holder J, Meurer A, Stief F (2023) Intra- and interobserver reliability analysis of pediatric lower limb parameters on digital long leg radiographs. J Orthop Surg Res 18(1):69CrossRefPubMedPubMedCentral Braun S, Brenneis M, Holder J, Meurer A, Stief F (2023) Intra- and interobserver reliability analysis of pediatric lower limb parameters on digital long leg radiographs. J Orthop Surg Res 18(1):69CrossRefPubMedPubMedCentral
5.
go back to reference Chen K, Stotter C, Klestil T, Nehrer S (2022) Artificial intelligence in orthopedic radiography analysis: a narrative review. Diagnostics (Basel). 12(9):2235CrossRefPubMedPubMedCentral Chen K, Stotter C, Klestil T, Nehrer S (2022) Artificial intelligence in orthopedic radiography analysis: a narrative review. Diagnostics (Basel). 12(9):2235CrossRefPubMedPubMedCentral
6.
go back to reference Choi Y, Yu W, Nagarajan MB, Teng P, Goldin JG, Raman SS, Enzmann DR, Kim GHJ, Brown MS (2023) Translating AI to clinical practice: overcoming data shift with explainability. Radiographics 43(5):e220105CrossRefPubMed Choi Y, Yu W, Nagarajan MB, Teng P, Goldin JG, Raman SS, Enzmann DR, Kim GHJ, Brown MS (2023) Translating AI to clinical practice: overcoming data shift with explainability. Radiographics 43(5):e220105CrossRefPubMed
7.
go back to reference Dawson MJ, Ollivier M, Menetrey J, Beaufils P (2023) Osteotomy around the painful degenerative varus knee: a 2022 ESSKA formal consensus. Knee Surg Sports Traumatol Arthrosc 31(8):3041–3043CrossRefPubMed Dawson MJ, Ollivier M, Menetrey J, Beaufils P (2023) Osteotomy around the painful degenerative varus knee: a 2022 ESSKA formal consensus. Knee Surg Sports Traumatol Arthrosc 31(8):3041–3043CrossRefPubMed
8.
go back to reference Eckhardt CM, Madjarova SJ, Williams RJ, Ollivier M, Karlsson J, Pareek A, Nwachukwu BU (2023) Unsupervised machine learning methods and emerging applications in healthcare. Knee Surg Sports Traumatol Arthrosc 31(2):376–381CrossRefPubMed Eckhardt CM, Madjarova SJ, Williams RJ, Ollivier M, Karlsson J, Pareek A, Nwachukwu BU (2023) Unsupervised machine learning methods and emerging applications in healthcare. Knee Surg Sports Traumatol Arthrosc 31(2):376–381CrossRefPubMed
9.
go back to reference Feucht MJ, Winkler PW, Mehl J, Bode G, Forkel P, Imhoff AB, Lutz PM (2021) Isolated high tibial osteotomy is appropriate in less than two-thirds of varus knees if excessive overcorrection of the medial proximal tibial angle should be avoided. Knee Surg Sports Traumatol Arthrosc 29(10):3299–3309CrossRefPubMed Feucht MJ, Winkler PW, Mehl J, Bode G, Forkel P, Imhoff AB, Lutz PM (2021) Isolated high tibial osteotomy is appropriate in less than two-thirds of varus knees if excessive overcorrection of the medial proximal tibial angle should be avoided. Knee Surg Sports Traumatol Arthrosc 29(10):3299–3309CrossRefPubMed
10.
go back to reference Hankemeier S, Gosling T, Richter M, Hufner T, Hochhausen C, Krettek C (2006) Computer-assisted analysis of lower limb geometry: higher intraobserver reliability compared to conventional method. Comput Aided Surg 11(2):81–86CrossRefPubMed Hankemeier S, Gosling T, Richter M, Hufner T, Hochhausen C, Krettek C (2006) Computer-assisted analysis of lower limb geometry: higher intraobserver reliability compared to conventional method. Comput Aided Surg 11(2):81–86CrossRefPubMed
11.
go back to reference Huber S, Mitterer JA, Vallant SM, Simon S, Hanak-Hammerl F, Schwarz GM, Klasan A, Hofstaetter JG (2023) Gender-specific distribution of knee morphology according to CPAK and functional phenotype classification: analysis of 8739 osteoarthritic knees prior to total knee arthroplasty using artificial intelligence. Knee Surg Sports Traumatol Arthrosc 31(4220):4230 Huber S, Mitterer JA, Vallant SM, Simon S, Hanak-Hammerl F, Schwarz GM, Klasan A, Hofstaetter JG (2023) Gender-specific distribution of knee morphology according to CPAK and functional phenotype classification: analysis of 8739 osteoarthritic knees prior to total knee arthroplasty using artificial intelligence. Knee Surg Sports Traumatol Arthrosc 31(4220):4230
12.
go back to reference Jo C, Hwang D, Ko S, Yang MH, Lee MC, Han HS, Ro DH (2023) Deep learning-based landmark recognition and angle measurement of full-leg plain radiographs can be adopted to assess lower extremity alignment. Knee Surg Sports Traumatol Arthrosc 31(4):1388–1397CrossRefPubMed Jo C, Hwang D, Ko S, Yang MH, Lee MC, Han HS, Ro DH (2023) Deep learning-based landmark recognition and angle measurement of full-leg plain radiographs can be adopted to assess lower extremity alignment. Knee Surg Sports Traumatol Arthrosc 31(4):1388–1397CrossRefPubMed
13.
go back to reference Larson N, Nguyen C, Do B, Kaul A, Larson A, Wang S, Wang E, Bultman E, Stevens K, Pai J, Ha A, Boutin R, Fredericson M, Do L, Fang C (2022) Artificial intelligence system for automatic quantitative analysis and radiology reporting of leg length radiographs. J Digit Imaging 35(6):1494–1505CrossRefPubMedPubMedCentral Larson N, Nguyen C, Do B, Kaul A, Larson A, Wang S, Wang E, Bultman E, Stevens K, Pai J, Ha A, Boutin R, Fredericson M, Do L, Fang C (2022) Artificial intelligence system for automatic quantitative analysis and radiology reporting of leg length radiographs. J Digit Imaging 35(6):1494–1505CrossRefPubMedPubMedCentral
14.
go back to reference Minas T, Von Keudell A, Bryant T, Gomoll AH (2014) The John Insall Award: a minimum 10-year outcome study of autologous chondrocyte implantation. Clin Orthop Relat Res 472(1):41–51CrossRefPubMed Minas T, Von Keudell A, Bryant T, Gomoll AH (2014) The John Insall Award: a minimum 10-year outcome study of autologous chondrocyte implantation. Clin Orthop Relat Res 472(1):41–51CrossRefPubMed
15.
go back to reference Nehrer S, Meier P, DiFranco MD, Bertalan Z, Ljuhar R (2021) AI in musculoskeletal radiology. In: Lidströmer N, Ashrafian H (eds) Artificial intelligence in medicine. Springer, Cham Nehrer S, Meier P, DiFranco MD, Bertalan Z, Ljuhar R (2021) AI in musculoskeletal radiology. In: Lidströmer N, Ashrafian H (eds) Artificial intelligence in medicine. Springer, Cham
16.
go back to reference Paley D, Pfeil J (2000) Prinzipien der kniegelenknahen Deformitätenkorrektur [Principles of deformity correction around the knee]. Orthopade 29(1):18–38PubMed Paley D, Pfeil J (2000) Prinzipien der kniegelenknahen Deformitätenkorrektur [Principles of deformity correction around the knee]. Orthopade 29(1):18–38PubMed
17.
go back to reference Pruneski JA, Pareek A, Kunze KN, Martin RK, Karlsson J, Oeding JF, Kiapour AM, Nwachukwu BU, Williams RJ 3rd (2023) Supervised machine learning and associated algorithms: applications in orthopedic surgery. Knee Surg Sports Traumatol Arthrosc 31(4):1196–1202CrossRefPubMed Pruneski JA, Pareek A, Kunze KN, Martin RK, Karlsson J, Oeding JF, Kiapour AM, Nwachukwu BU, Williams RJ 3rd (2023) Supervised machine learning and associated algorithms: applications in orthopedic surgery. Knee Surg Sports Traumatol Arthrosc 31(4):1196–1202CrossRefPubMed
18.
go back to reference Pruneski JA, Williams RJ 3rd, Nwachukwu BU, Ramkumar PN, Kiapour AM, Martin RK, Karlsson J, Pareek A (2022) The development and deployment of machine learning models. Knee Surg Sports Traumatol Arthrosc 30(12):3917–3923CrossRefPubMed Pruneski JA, Williams RJ 3rd, Nwachukwu BU, Ramkumar PN, Kiapour AM, Martin RK, Karlsson J, Pareek A (2022) The development and deployment of machine learning models. Knee Surg Sports Traumatol Arthrosc 30(12):3917–3923CrossRefPubMed
19.
go back to reference Schock J, Truhn D, Abrar DB, Merhof D, Conrad S, Post M, Mittelstrass F, Kuhl C, Nebelung S (2020) Automated analysis of alignment in long-leg radiographs by using a fully automated support system based on artificial intelligence. Radiol Artif Intell. 3(2):e200198CrossRefPubMedPubMedCentral Schock J, Truhn D, Abrar DB, Merhof D, Conrad S, Post M, Mittelstrass F, Kuhl C, Nebelung S (2020) Automated analysis of alignment in long-leg radiographs by using a fully automated support system based on artificial intelligence. Radiol Artif Intell. 3(2):e200198CrossRefPubMedPubMedCentral
20.
go back to reference Schröter S, Ihle C, Mueller J, Lobenhoffer P, Stöckle U, van Heerwaarden R (2013) Digital planning of high tibial osteotomy. Interrater reliability by using two different software. Knee Surg Sports Traumatol Arthrosc 21(1):189–196CrossRefPubMed Schröter S, Ihle C, Mueller J, Lobenhoffer P, Stöckle U, van Heerwaarden R (2013) Digital planning of high tibial osteotomy. Interrater reliability by using two different software. Knee Surg Sports Traumatol Arthrosc 21(1):189–196CrossRefPubMed
21.
go back to reference Schwarz GM, Simon S, Mitterer JA, Frank BJH, Aichmair A, Dominkus M, Hofstaetter JG (2022) Artificial intelligence enables reliable and standardized measurements of implant alignment in long leg radiographs with total knee arthroplasties. Knee Surg Sports Traumatol Arthrosc 30(8):2538–2547CrossRefPubMed Schwarz GM, Simon S, Mitterer JA, Frank BJH, Aichmair A, Dominkus M, Hofstaetter JG (2022) Artificial intelligence enables reliable and standardized measurements of implant alignment in long leg radiographs with total knee arthroplasties. Knee Surg Sports Traumatol Arthrosc 30(8):2538–2547CrossRefPubMed
22.
go back to reference Shin HJ, Han K, Ryu L et al (2023) The impact of artificial intelligence on the reading times of radiologists for chest radiographs. Npj Digit Med. 6:82CrossRefPubMedPubMedCentral Shin HJ, Han K, Ryu L et al (2023) The impact of artificial intelligence on the reading times of radiologists for chest radiographs. Npj Digit Med. 6:82CrossRefPubMedPubMedCentral
23.
go back to reference Simon S, Schwarz GM, Aichmair A, Frank BJH, Hummer A, DiFranco MD, Dominkus M, Hofstaetter JG (2022) Fully automated deep learning for knee alignment assessment in lower extremity radiographs: a cross-sectional diagnostic study. Skeletal Radiol 51(6):1249–1259CrossRefPubMed Simon S, Schwarz GM, Aichmair A, Frank BJH, Hummer A, DiFranco MD, Dominkus M, Hofstaetter JG (2022) Fully automated deep learning for knee alignment assessment in lower extremity radiographs: a cross-sectional diagnostic study. Skeletal Radiol 51(6):1249–1259CrossRefPubMed
24.
go back to reference Tsai A (2022) A deep learning approach to automatically quantify lower extremity alignment in children. Skeletal Radiol 51(2):381–390CrossRefPubMed Tsai A (2022) A deep learning approach to automatically quantify lower extremity alignment in children. Skeletal Radiol 51(2):381–390CrossRefPubMed
25.
go back to reference Vaishya R, Vijay V, Birla VP, Agarwal AK (2016) Inter-observer variability and its correlation to experience in measurement of lower limb mechanical axis on long leg radiographs. J Clin Orthop Trauma 7(4):260–264CrossRefPubMedPubMedCentral Vaishya R, Vijay V, Birla VP, Agarwal AK (2016) Inter-observer variability and its correlation to experience in measurement of lower limb mechanical axis on long leg radiographs. J Clin Orthop Trauma 7(4):260–264CrossRefPubMedPubMedCentral
Metadata
Title
Artificial intelligence-based analyses of varus leg alignment and after high tibial osteotomy show high accuracy and reproducibility
Authors
Christoph Stotter
Thomas Klestil
Kenneth Chen
Allan Hummer
Christoph Salzlechner
Peter Angele
Stefan Nehrer
Publication date
17-11-2023
Publisher
Springer Berlin Heidelberg
Published in
Knee Surgery, Sports Traumatology, Arthroscopy / Issue 12/2023
Print ISSN: 0942-2056
Electronic ISSN: 1433-7347
DOI
https://doi.org/10.1007/s00167-023-07644-0

Other articles of this Issue 12/2023

Knee Surgery, Sports Traumatology, Arthroscopy 12/2023 Go to the issue