Skip to main content
Top
Published in: BMC Oral Health 1/2023

Open Access 01-12-2023 | Artificial Intelligence | Research

An artificial intelligence study: automatic description of anatomic landmarks on panoramic radiographs in the pediatric population

Authors: İrem Bağ, Elif Bilgir, İbrahim Şevki Bayrakdar, Oğuzhan Baydar, Fatih Mehmet Atak, Özer Çelik, Kaan Orhan

Published in: BMC Oral Health | Issue 1/2023

Login to get access

Abstract

Background

Panoramic radiographs, in which anatomic landmarks can be observed, are used to detect cases closely related to pediatric dentistry. The purpose of the study is to investigate the success and reliability of the detection of maxillary and mandibular anatomic structures observed on panoramic radiographs in children using artificial intelligence.

Methods

A total of 981 mixed images of pediatric patients for 9 different pediatric anatomic landmarks including maxillary sinus, orbita, mandibular canal, mental foramen, foramen mandible, incisura mandible, articular eminence, condylar and coronoid processes were labelled, the training was carried out using 2D convolutional neural networks (CNN) architectures, by giving 500 training epochs and Pytorch-implemented YOLO-v5 models were produced. The success rate of the AI model prediction was tested on a 10% test data set.

Results

A total of 14,804 labels including maxillary sinus (1922), orbita (1944), mandibular canal (1879), mental foramen (884), foramen mandible (1885), incisura mandible (1922), articular eminence (1645), condylar (1733) and coronoid (990) processes were made. The most successful F1 Scores were obtained from orbita (1), incisura mandible (0.99), maxillary sinus (0.98), and mandibular canal (0.97). The best sensitivity values were obtained from orbita, maxillary sinus, mandibular canal, incisura mandible, and condylar process. The worst sensitivity values were obtained from mental foramen (0.92) and articular eminence (0.92).

Conclusions

The regular and standardized labelling, the relatively larger areas, and the success of the YOLO-v5 algorithm contributed to obtaining these successful results. Automatic segmentation of these structures will save time for physicians in clinical diagnosis and will increase the visibility of pathologies related to structures and the awareness of physicians.
Literature
1.
go back to reference Yüksel AE, Gültekin S, Simsar E, Gündoğar S, Tokgöz M, Hamamci S, et al. Dental enumeration and multiple treatment detection on panoramic X-rays using deep learning. Sci Rep. 2021;11:12342.PubMedPubMedCentral Yüksel AE, Gültekin S, Simsar E, Gündoğar S, Tokgöz M, Hamamci S, et al. Dental enumeration and multiple treatment detection on panoramic X-rays using deep learning. Sci Rep. 2021;11:12342.PubMedPubMedCentral
2.
go back to reference Cantekin K, Sekerci AE, Miloglu O, Buyuk SK. Identification of the mandibular landmarks in a pediatric population. Med Oral Patol Oral Cir Bucal. 2014;19(2):136–41. Cantekin K, Sekerci AE, Miloglu O, Buyuk SK. Identification of the mandibular landmarks in a pediatric population. Med Oral Patol Oral Cir Bucal. 2014;19(2):136–41.
3.
go back to reference Bekiroglu N, Mete S, Ozbay G, Yalcinkaya S, Kargul B. Evaluation of panoramic radiographs taken from 1,056 Turkish children. Niger J Clin Pract. 2015;18(1):8–12.PubMed Bekiroglu N, Mete S, Ozbay G, Yalcinkaya S, Kargul B. Evaluation of panoramic radiographs taken from 1,056 Turkish children. Niger J Clin Pract. 2015;18(1):8–12.PubMed
4.
go back to reference Kuru S, Açıkgöz MM, Erdem AP, Ak G. Evaluation of maxillary sinus expansion in children due to maxillary first molar extraction. Eur Oral Res. 2019;53(1):1–5.PubMedPubMedCentral Kuru S, Açıkgöz MM, Erdem AP, Ak G. Evaluation of maxillary sinus expansion in children due to maxillary first molar extraction. Eur Oral Res. 2019;53(1):1–5.PubMedPubMedCentral
5.
go back to reference Margot R, Maria CDLP, Ali A, Annouschka L, Anna V, Guy W. Prediction of maxillary canine impaction based on panoramic radiographs. Clin Exp Dent Res. 2020;6(1):44–50.PubMed Margot R, Maria CDLP, Ali A, Annouschka L, Anna V, Guy W. Prediction of maxillary canine impaction based on panoramic radiographs. Clin Exp Dent Res. 2020;6(1):44–50.PubMed
6.
go back to reference Ahn Y, Hwang J, Jung YH, Jeong T, Shin J. Automated mesiodens classification system using deep learning on panoramic radiographs of children. Diagnostics. 2021;11(8):1477.PubMedPubMedCentral Ahn Y, Hwang J, Jung YH, Jeong T, Shin J. Automated mesiodens classification system using deep learning on panoramic radiographs of children. Diagnostics. 2021;11(8):1477.PubMedPubMedCentral
7.
go back to reference Krishnamurthy NH, Unnikrishnan S, Ramachandra JA, Arali V. Evaluation of relative position of mandibular foramen in children as a reference for inferior alveolar nerve block using orthopantamograph. J Clin Diagn Res. 2017;11(3):ZC71–4.PubMedPubMedCentral Krishnamurthy NH, Unnikrishnan S, Ramachandra JA, Arali V. Evaluation of relative position of mandibular foramen in children as a reference for inferior alveolar nerve block using orthopantamograph. J Clin Diagn Res. 2017;11(3):ZC71–4.PubMedPubMedCentral
8.
go back to reference Movahhed T, Makarem A, Imanimoghaddam M, Anbiaee N, Sarrafshirazi AR, Shakeri MT. Locating the Mandibular Foramen relative to the Occlusal plane using panoramic radiography. J Appl Sci. 2011;11:573–8. Movahhed T, Makarem A, Imanimoghaddam M, Anbiaee N, Sarrafshirazi AR, Shakeri MT. Locating the Mandibular Foramen relative to the Occlusal plane using panoramic radiography. J Appl Sci. 2011;11:573–8.
9.
go back to reference Apaydın BK. Çocuklarda mandibular foramenlerin panoramik radyograflardaki konumu ve okluzal düzlemle ilişkisi. Selcuk Dent J. 2020;7(1):54–8. Apaydın BK. Çocuklarda mandibular foramenlerin panoramik radyograflardaki konumu ve okluzal düzlemle ilişkisi. Selcuk Dent J. 2020;7(1):54–8.
10.
go back to reference Ghasemzadeh A, Mundinger GS, Swanson EW, Utria AF, Dorafshar AH. Treatment of Pediatric Condylar fractures: a 20-Year experience. Plast Reconstr Surg. 2015;136(6):1279–88.PubMedPubMedCentral Ghasemzadeh A, Mundinger GS, Swanson EW, Utria AF, Dorafshar AH. Treatment of Pediatric Condylar fractures: a 20-Year experience. Plast Reconstr Surg. 2015;136(6):1279–88.PubMedPubMedCentral
11.
go back to reference Chen YW, Stanley K, Att W. Artificial intelligence in dentistry: current applications and future perspectives. Quintessence Int. 2020;51(3):248–57.PubMed Chen YW, Stanley K, Att W. Artificial intelligence in dentistry: current applications and future perspectives. Quintessence Int. 2020;51(3):248–57.PubMed
12.
go back to reference Lecun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.PubMed Lecun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.PubMed
13.
go back to reference Heo MS, Kim JE, Hwang JJ, Han SS, Kim JS, Yi WJ, et al. Artificial intelligence in oral and maxillofacial radiology: what is currently possible? Dentomaxillofac Radiol. 2020;50(3):20200375.PubMedPubMedCentral Heo MS, Kim JE, Hwang JJ, Han SS, Kim JS, Yi WJ, et al. Artificial intelligence in oral and maxillofacial radiology: what is currently possible? Dentomaxillofac Radiol. 2020;50(3):20200375.PubMedPubMedCentral
14.
go back to reference Kuwana R, Ariji Y, Fukuda M, Kise Y, Nozawa M, Kuwada C, et al. Performance of deep learning object detection technology in the detection and diagnosis of maxillary sinus lesions on panoramic radiographs. Dentomaxillofac Radiol. 2021;50(1):20200171.PubMed Kuwana R, Ariji Y, Fukuda M, Kise Y, Nozawa M, Kuwada C, et al. Performance of deep learning object detection technology in the detection and diagnosis of maxillary sinus lesions on panoramic radiographs. Dentomaxillofac Radiol. 2021;50(1):20200171.PubMed
15.
go back to reference Lee JS, Adhikari S, Liu L, Jeong HG, Kim H, Yoon SJ. Osteoporosis detection in panoramic radiographs using a deep convolutional neural network-based computer-assisted diagnosis system: a preliminary study. Dentomaxillofac Radiol. 2019;48(1):20170344.PubMed Lee JS, Adhikari S, Liu L, Jeong HG, Kim H, Yoon SJ. Osteoporosis detection in panoramic radiographs using a deep convolutional neural network-based computer-assisted diagnosis system: a preliminary study. Dentomaxillofac Radiol. 2019;48(1):20170344.PubMed
16.
go back to reference Murata M, Ariji Y, Ohashi Y, Kawai T, Fukuda M, Funakoshi T, et al. Deep-learning classification using convolutional neural network for evaluation of maxillary sinusitis on panoramic radiography. Oral Radiol. 2019;35(3):301–7.PubMed Murata M, Ariji Y, Ohashi Y, Kawai T, Fukuda M, Funakoshi T, et al. Deep-learning classification using convolutional neural network for evaluation of maxillary sinusitis on panoramic radiography. Oral Radiol. 2019;35(3):301–7.PubMed
17.
go back to reference Lee A, Kim MS, Han SS, Park PG, Lee C, Yun JP. Deep learning neural networks to differentiate Stafne’s bone cavity from pathological radiolucent lesions of the mandible in heterogeneous panoramic radiography. PLoS ONE. 2021;16(7 July). Lee A, Kim MS, Han SS, Park PG, Lee C, Yun JP. Deep learning neural networks to differentiate Stafne’s bone cavity from pathological radiolucent lesions of the mandible in heterogeneous panoramic radiography. PLoS ONE. 2021;16(7 July).
18.
go back to reference Corbella S, Srinivas S, Cabitza F. Applications of deep learning in dentistry. Oral Surg Oral Med Oral Pathol Oral Radiol. 2021;132(2):225–38.PubMed Corbella S, Srinivas S, Cabitza F. Applications of deep learning in dentistry. Oral Surg Oral Med Oral Pathol Oral Radiol. 2021;132(2):225–38.PubMed
19.
go back to reference Khanagar SB, Al-ehaideb A, Maganur PC, Vishwanathaiah S, Patil S, Baeshen HA, et al. Developments, application, and performance of artificial intelligence in dentistry – a systematic review. J Dent Sci. 2021;16(1):508–22.PubMed Khanagar SB, Al-ehaideb A, Maganur PC, Vishwanathaiah S, Patil S, Baeshen HA, et al. Developments, application, and performance of artificial intelligence in dentistry – a systematic review. J Dent Sci. 2021;16(1):508–22.PubMed
20.
go back to reference Perschbacher S. Interpretation of panoramic radiographs. Aust Dent J. 2012;57:40–5.PubMed Perschbacher S. Interpretation of panoramic radiographs. Aust Dent J. 2012;57:40–5.PubMed
21.
go back to reference Houston WJB, Maher RE, McElroy D, Sherriff M. Sources of error in measurements from cephalometric radiographs. Eur J Orthod. 1986;8(3):149–51.PubMed Houston WJB, Maher RE, McElroy D, Sherriff M. Sources of error in measurements from cephalometric radiographs. Eur J Orthod. 1986;8(3):149–51.PubMed
22.
go back to reference Park JH, Hwang HW, Moon JH, Yu Y, Kim H, Her SB, et al. Automated identification of cephalometric landmarks: part 1—Comparisons between the latest deep-learning methods YOLOV3 and SSD. Angle Orthod. 2019;89(6):903–9.PubMedPubMedCentral Park JH, Hwang HW, Moon JH, Yu Y, Kim H, Her SB, et al. Automated identification of cephalometric landmarks: part 1—Comparisons between the latest deep-learning methods YOLOV3 and SSD. Angle Orthod. 2019;89(6):903–9.PubMedPubMedCentral
23.
go back to reference Niño-Sandoval TC, Guevara Pérez Sv, González FA, Jaque RA, Infante-Contreras C. Use of automated learning techniques for predicting mandibular morphology in skeletal class I, II and III. Forensic Sci Int 2017;281:187.e1-187.e7. Niño-Sandoval TC, Guevara Pérez Sv, González FA, Jaque RA, Infante-Contreras C. Use of automated learning techniques for predicting mandibular morphology in skeletal class I, II and III. Forensic Sci Int 2017;281:187.e1-187.e7.
24.
go back to reference Hwang HW, Park JH, Moon JH, Yu Y, Kim H, Her SB, et al. Automated identification of cephalometric landmarks: part 2-Might it be better than human? Angle Orthod. 2020;90(1):69–76.PubMed Hwang HW, Park JH, Moon JH, Yu Y, Kim H, Her SB, et al. Automated identification of cephalometric landmarks: part 2-Might it be better than human? Angle Orthod. 2020;90(1):69–76.PubMed
25.
go back to reference Miki Y, Muramatsu C, Hayashi T, Zhou X, Hara T, Katsumata A, et al. Classification of teeth in cone-beam CT using deep convolutional neural network. Comput Biol Med. 2017;80:24–9.PubMed Miki Y, Muramatsu C, Hayashi T, Zhou X, Hara T, Katsumata A, et al. Classification of teeth in cone-beam CT using deep convolutional neural network. Comput Biol Med. 2017;80:24–9.PubMed
26.
go back to reference Chen H, Zhang K, Lyu P, Li H, Zhang L, Wu J, et al. A deep learning approach to automatic teeth detection and numbering based on object detection in dental periapical films. Sci Rep. 2019;9(1):3840.PubMedPubMedCentral Chen H, Zhang K, Lyu P, Li H, Zhang L, Wu J, et al. A deep learning approach to automatic teeth detection and numbering based on object detection in dental periapical films. Sci Rep. 2019;9(1):3840.PubMedPubMedCentral
27.
go back to reference Tuzoff Dv, Tuzova LN, Bornstein MM, Krasnov AS, Kharchenko MA, Nikolenko SI et al. Tooth detection and numbering in panoramic radiographs using convolutional neural networks. Dentomaxillofac Radiol. 2019;48(4). Tuzoff Dv, Tuzova LN, Bornstein MM, Krasnov AS, Kharchenko MA, Nikolenko SI et al. Tooth detection and numbering in panoramic radiographs using convolutional neural networks. Dentomaxillofac Radiol. 2019;48(4).
28.
go back to reference Xu X, Liu C, Zheng Y. 3D tooth segmentation and labeling using deep convolutional neural networks. IEEE Trans Vis Comput Graph. 2019;25(7):2336–48.PubMed Xu X, Liu C, Zheng Y. 3D tooth segmentation and labeling using deep convolutional neural networks. IEEE Trans Vis Comput Graph. 2019;25(7):2336–48.PubMed
29.
go back to reference Kurt Bayrakdar S, Uğurlu M, Yavuz MB, Sali N, Bayrakdar İŞ, Çelik Ö, et al. Detection of tooth numbering, frenulum attachment, gingival overgrowth, and gingival inflammation signs on dental photographs using convolutional neural network algorithms: a retrospective study. Quintessence Int. 2023;54(8):680–93.PubMed Kurt Bayrakdar S, Uğurlu M, Yavuz MB, Sali N, Bayrakdar İŞ, Çelik Ö, et al. Detection of tooth numbering, frenulum attachment, gingival overgrowth, and gingival inflammation signs on dental photographs using convolutional neural network algorithms: a retrospective study. Quintessence Int. 2023;54(8):680–93.PubMed
30.
go back to reference Thurzo A, Kosnáčová HS, Kurilová V, Kosmeľ S, Beňuš R, Moravanský N, et al. Use of Advanced Artificial Intelligence in Forensic Medicine, Forensic Anthropology and clinical anatomy. Healthcare. 2021;9(11):1545.PubMedPubMedCentral Thurzo A, Kosnáčová HS, Kurilová V, Kosmeľ S, Beňuš R, Moravanský N, et al. Use of Advanced Artificial Intelligence in Forensic Medicine, Forensic Anthropology and clinical anatomy. Healthcare. 2021;9(11):1545.PubMedPubMedCentral
31.
go back to reference Armanious K, Abdulatif S, Bhaktharaguttu AR, Küstner T, Hepp T, Gatidis S et al. Organ-Based Chronological Age Estimation Based on 3D MRI Scans. In Proceedings of the 28th European Signal Processing Conference, Amsterdam, The Netherlands, 24–28 August 2021; pp. 1225–1228. Armanious K, Abdulatif S, Bhaktharaguttu AR, Küstner T, Hepp T, Gatidis S et al. Organ-Based Chronological Age Estimation Based on 3D MRI Scans. In Proceedings of the 28th European Signal Processing Conference, Amsterdam, The Netherlands, 24–28 August 2021; pp. 1225–1228.
32.
go back to reference Sykes L, Bhayat A, Bernitz H. The effects of the Refugee Crisis on Age Estimation Analysis over the past 10 years: a 16-Country survey. Int J Environ Res Public Health. 2017;14(6):630.PubMedPubMedCentral Sykes L, Bhayat A, Bernitz H. The effects of the Refugee Crisis on Age Estimation Analysis over the past 10 years: a 16-Country survey. Int J Environ Res Public Health. 2017;14(6):630.PubMedPubMedCentral
33.
go back to reference Gu YC, Han M, Chi Y, Long H, Zhang D, Yang J, et al. Accurate age classification using Manual Method and deep convolutional neural network based on Orthopantomogram images. Int J Leg Med. 2021;135(4):1589–97. Gu YC, Han M, Chi Y, Long H, Zhang D, Yang J, et al. Accurate age classification using Manual Method and deep convolutional neural network based on Orthopantomogram images. Int J Leg Med. 2021;135(4):1589–97.
34.
go back to reference Farhadian M, Salemi F, Saati S, Nafisi N. Dental Age Estimation using the pulp-to-tooth ratio in canines by neural networks. Imaging Sci Dent. 2019;49(1):19–26.PubMedPubMedCentral Farhadian M, Salemi F, Saati S, Nafisi N. Dental Age Estimation using the pulp-to-tooth ratio in canines by neural networks. Imaging Sci Dent. 2019;49(1):19–26.PubMedPubMedCentral
35.
go back to reference Štepanovský M, Ibrová A, Buk Z, Velemínská J. Novel age estimation model based on development of Permanent Teeth compared with Classical Approach and other Modern Data Mining methods. Forensic Sci Int. 2017;279:72–82.PubMed Štepanovský M, Ibrová A, Buk Z, Velemínská J. Novel age estimation model based on development of Permanent Teeth compared with Classical Approach and other Modern Data Mining methods. Forensic Sci Int. 2017;279:72–82.PubMed
36.
go back to reference Vila-Blanco N, Varas-Quintana P, Aneiros-Ardao Á, Tomás I, Carreira MJ. Automated description of the Mandible shape by Deep Learning. Int J Comput Assist Radiol Surg. 2021;16(12):2215–24.PubMedPubMedCentral Vila-Blanco N, Varas-Quintana P, Aneiros-Ardao Á, Tomás I, Carreira MJ. Automated description of the Mandible shape by Deep Learning. Int J Comput Assist Radiol Surg. 2021;16(12):2215–24.PubMedPubMedCentral
37.
go back to reference Lascala CA, Panella J, Marques MM. Analysis of the Accuracy of Linear measurements obtained by Cone Beam Computed Tomography (CBCT-NewTom). Dentomaxillofacial Radiol. 2014;33(5):291–4. Lascala CA, Panella J, Marques MM. Analysis of the Accuracy of Linear measurements obtained by Cone Beam Computed Tomography (CBCT-NewTom). Dentomaxillofacial Radiol. 2014;33(5):291–4.
38.
go back to reference Thurzo A, Javorka V, Stanko P, Lysy J, Suchancova B, Lehotska V, et al. Digit Man Cephalometric Anal Bratisl Med J. 2010;111(2):97–100. Thurzo A, Javorka V, Stanko P, Lysy J, Suchancova B, Lehotska V, et al. Digit Man Cephalometric Anal Bratisl Med J. 2010;111(2):97–100.
39.
go back to reference Urban R, Haluzová S, Strunga M, Surovková J, Lifková M, Tomášik J, et al. AI-Assisted CBCT Data Management in Modern Dental Practice: benefits, limitations and innovations. Electronics. 2023;12(7):1710. Urban R, Haluzová S, Strunga M, Surovková J, Lifková M, Tomášik J, et al. AI-Assisted CBCT Data Management in Modern Dental Practice: benefits, limitations and innovations. Electronics. 2023;12(7):1710.
41.
go back to reference Gerhardt MDN, Fontenele RC, Willems H, Jacobs R. Accuracy of an Artificial Intelligence-Driven Tool for the detection of small edentulous regions on Cone-Beam Computed Tomography. J Dent. 2022;121:103989. Gerhardt MDN, Fontenele RC, Willems H, Jacobs R. Accuracy of an Artificial Intelligence-Driven Tool for the detection of small edentulous regions on Cone-Beam Computed Tomography. J Dent. 2022;121:103989.
42.
go back to reference Chung EJ, Yang BE, Byun SH, Yi S, Kim YH, Kang SH. Effectiveness of Cone-Beam Computed Tomography (CBCT)-Generated cephalograms using Artificial Intelligence (AI) Cephalometric Analysis. Sci Rep. 2022;12(1):20585.PubMedPubMedCentral Chung EJ, Yang BE, Byun SH, Yi S, Kim YH, Kang SH. Effectiveness of Cone-Beam Computed Tomography (CBCT)-Generated cephalograms using Artificial Intelligence (AI) Cephalometric Analysis. Sci Rep. 2022;12(1):20585.PubMedPubMedCentral
43.
go back to reference Muresanu S, Almasan O, Hedesiu M, Diosan L, Dinu C, Jacobs R. Artificial Intelligence models for clinical usage in Dentistry with a focus on Dentomaxillofacial CBCT: a systematic review. Oral Radiol. 2023;39(1):18–40.PubMed Muresanu S, Almasan O, Hedesiu M, Diosan L, Dinu C, Jacobs R. Artificial Intelligence models for clinical usage in Dentistry with a focus on Dentomaxillofacial CBCT: a systematic review. Oral Radiol. 2023;39(1):18–40.PubMed
44.
go back to reference Tsolakis IA, Kolokitha OE, Papadopoulou E, Tsolakis AI, Kilipiris EG, Palomo JM. Artificial Intelligence as an aid in CBCT Airway Analysis: a systematic review. Life. 2022;12(11):1894.PubMedPubMedCentral Tsolakis IA, Kolokitha OE, Papadopoulou E, Tsolakis AI, Kilipiris EG, Palomo JM. Artificial Intelligence as an aid in CBCT Airway Analysis: a systematic review. Life. 2022;12(11):1894.PubMedPubMedCentral
45.
go back to reference Albitar L, Zhao T, Huang C, Mahdian M. Artificial Intelligence (AI) for detection and localization of Unobturated Second Mesial Buccal (MB2) canals in Cone-Beam Computed Tomography (CBCT). Diagnostics. 2022;12(12):3214.PubMedPubMedCentral Albitar L, Zhao T, Huang C, Mahdian M. Artificial Intelligence (AI) for detection and localization of Unobturated Second Mesial Buccal (MB2) canals in Cone-Beam Computed Tomography (CBCT). Diagnostics. 2022;12(12):3214.PubMedPubMedCentral
47.
go back to reference Vinayahalingam S, Xi T, Bergé S, Maal T, de Jong G. Automated detection of third molars and mandibular nerve by deep learning. Sci Rep. 2019;9(1):9007.PubMedPubMedCentral Vinayahalingam S, Xi T, Bergé S, Maal T, de Jong G. Automated detection of third molars and mandibular nerve by deep learning. Sci Rep. 2019;9(1):9007.PubMedPubMedCentral
48.
go back to reference Maheswari PU, Banumathi A, Ulaganathan G, Yoganandha R. Inferior alveolar nerve canal segmentation by local features based neural network model. IET Image Process. 2022;16(3):703–16. Maheswari PU, Banumathi A, Ulaganathan G, Yoganandha R. Inferior alveolar nerve canal segmentation by local features based neural network model. IET Image Process. 2022;16(3):703–16.
49.
go back to reference Kwak GH, Kwak EJ, Song JM, Park HR, Jung YH, Cho BH, et al. Automatic mandibular canal detection using a deep convolutional neural network. Sci Rep. 2020;10(1):5711.PubMedPubMedCentral Kwak GH, Kwak EJ, Song JM, Park HR, Jung YH, Cho BH, et al. Automatic mandibular canal detection using a deep convolutional neural network. Sci Rep. 2020;10(1):5711.PubMedPubMedCentral
50.
go back to reference Dasanayaka C, Dharmasena B, Bandara WR, Dissanayake MB, Jayasinghe R. Segmentation of Mental Foramen in Dental Panoramic Tomography using Deep Learning. 2019:81 – 4. Dasanayaka C, Dharmasena B, Bandara WR, Dissanayake MB, Jayasinghe R. Segmentation of Mental Foramen in Dental Panoramic Tomography using Deep Learning. 2019:81 – 4.
51.
go back to reference Kats L, Vered M, Blumer S, Kats E. Neural Network Detection and Segmentation of Mental Foramen in panoramic imaging. J Clin Pediatr Dent. 2020;44(3):168–73.PubMed Kats L, Vered M, Blumer S, Kats E. Neural Network Detection and Segmentation of Mental Foramen in panoramic imaging. J Clin Pediatr Dent. 2020;44(3):168–73.PubMed
52.
go back to reference Nishiyama M, Ishibashi K, Ariji Y, Fukuda M, Nishiyama W, Umemura M, et al. Performance of deep learning models constructed using panoramic radiographs from two hospitals to diagnose fractures of the mandibular condyle. Dentomaxillofac Radiol. 2021;50:20200611.PubMedPubMedCentral Nishiyama M, Ishibashi K, Ariji Y, Fukuda M, Nishiyama W, Umemura M, et al. Performance of deep learning models constructed using panoramic radiographs from two hospitals to diagnose fractures of the mandibular condyle. Dentomaxillofac Radiol. 2021;50:20200611.PubMedPubMedCentral
53.
go back to reference Warin K, Limprasert W, Suebnukarn S, Inglam S, Jantana P, Vicharueang S. Assessment of deep convolutional neural network models for mandibular fracture detection in panoramic radiographs. Int J Oral Maxillofac Surg. 2022;51(11):1488–94.PubMed Warin K, Limprasert W, Suebnukarn S, Inglam S, Jantana P, Vicharueang S. Assessment of deep convolutional neural network models for mandibular fracture detection in panoramic radiographs. Int J Oral Maxillofac Surg. 2022;51(11):1488–94.PubMed
Metadata
Title
An artificial intelligence study: automatic description of anatomic landmarks on panoramic radiographs in the pediatric population
Authors
İrem Bağ
Elif Bilgir
İbrahim Şevki Bayrakdar
Oğuzhan Baydar
Fatih Mehmet Atak
Özer Çelik
Kaan Orhan
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Oral Health / Issue 1/2023
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-023-03532-8

Other articles of this Issue 1/2023

BMC Oral Health 1/2023 Go to the issue