Skip to main content
Top
Published in: BMC Medical Imaging 1/2021

Open Access 01-12-2021 | Artificial Intelligence | Research

Efficiency of a deep learning-based artificial intelligence diagnostic system in spontaneous intracerebral hemorrhage volume measurement

Authors: Tao Wang, Na Song, Lingling Liu, Zichao Zhu, Bing Chen, Wenjun Yang, Zhiqiang Chen

Published in: BMC Medical Imaging | Issue 1/2021

Login to get access

Abstract

Background

Accurate measurement of hemorrhage volume is critical for both the prediction of prognosis and the selection of appropriate clinical treatment after spontaneous intracerebral hemorrhage (ICH). This study aimed to evaluate the performance and accuracy of a deep learning-based automated segmentation algorithm in segmenting spontaneous intracerebral hemorrhage (ICH) volume either with or without intraventricular hemorrhage (IVH) extension. We compared this automated pipeline with two manual segmentation techniques.

Methods

We retrospectively reviewed 105 patients with acute spontaneous ICH. Depending on the presence of IVH extension, patients were divided into two groups: ICH without (n = 56) and with IVH (n = 49). ICH volume of the two groups were segmented and measured using a deep learning-based artificial intelligence (AI) diagnostic system and computed tomography-based planimetry (CTP), and the ABC/2 score were used to measure hemorrhage volume in the ICH without IVH group. Correlations and agreement analyses were used to analyze the differences in volume and length of processing time among the three segmentation approaches.

Results

In the ICH without IVH group, the ICH volumes measured using AI and the ABC/2 score were comparable to CTP segmentation. Strong correlations were observed among the three segmentation methods (r = 0.994, 0.976, 0.974; P < 0.001; concordance correlation coefficient [CCC] = 0.993, 0.968, 0.967). But the absolute error of the ICH volume measured by the ABC/2 score was greater than that of the algorithm (P < 0.05). In the ICH with IVH group, there is no significant differences were found between algorithm and CTP(P = 0.614). The correlation and agreement between CTP and AI were strong (r = 0.996, P < 0.001; CCC = 0.996). The AI segmentation took a significantly shorter amount of time than CTP (P < 0.001), but was slightly longer than ABC/2 score technique (P = 0.002).

Conclusions

The deep learning-based AI diagnostic system accurately quantified volumes of acute spontaneous ICH with high fidelity and greater efficiency compared to the CTP measurement and more accurately than the ABC/2 scores. We believe this is a promising tool to help physicians achieve precise ICH quantification in practice.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hemphill JC 3rd, Greenberg SM, Anderson CS, Becker K, Bendok BR, Cushman M, Fung GL, Goldstein JN, Macdonald RL, Mitchell PH, et al. Guidelines for the Management of Spontaneous Intracerebral Hemorrhage: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2015;46(7):2032–60.CrossRef Hemphill JC 3rd, Greenberg SM, Anderson CS, Becker K, Bendok BR, Cushman M, Fung GL, Goldstein JN, Macdonald RL, Mitchell PH, et al. Guidelines for the Management of Spontaneous Intracerebral Hemorrhage: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2015;46(7):2032–60.CrossRef
2.
go back to reference Fallenius M, Skrifvars MB, Reinikainen M, Bendel S, Curtze S, Sibolt G, Martinez-Majander N, Raj R. Spontaneous intracerebral hemorrhage. Stroke. 2019;50(9):2336–43.CrossRef Fallenius M, Skrifvars MB, Reinikainen M, Bendel S, Curtze S, Sibolt G, Martinez-Majander N, Raj R. Spontaneous intracerebral hemorrhage. Stroke. 2019;50(9):2336–43.CrossRef
3.
go back to reference van Asch CJJ, Luitse MJA, Rinkel GJE, van der Tweel I, Algra A, Klijn CJM. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol. 2010;9(2):167–76.CrossRef van Asch CJJ, Luitse MJA, Rinkel GJE, van der Tweel I, Algra A, Klijn CJM. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurol. 2010;9(2):167–76.CrossRef
4.
go back to reference Kothari RU, Brott T, Broderick JP, Barsan WG, Sauerbeck LR, Zuccarello M, Khoury J. The ABCs of measuring intracerebral hemorrhage volumes. Stroke. 1996;27(8):1304–5.CrossRef Kothari RU, Brott T, Broderick JP, Barsan WG, Sauerbeck LR, Zuccarello M, Khoury J. The ABCs of measuring intracerebral hemorrhage volumes. Stroke. 1996;27(8):1304–5.CrossRef
5.
go back to reference Fogelholm R, Murros K, Rissanen A, Avikainen S. Long term survival after primary intracerebral haemorrhage: a retrospective population based study. J Neurol Neurosurg Psychiatry. 2005;76(11):1534–8.CrossRef Fogelholm R, Murros K, Rissanen A, Avikainen S. Long term survival after primary intracerebral haemorrhage: a retrospective population based study. J Neurol Neurosurg Psychiatry. 2005;76(11):1534–8.CrossRef
6.
go back to reference Li Q, Li R, Zhao LB, Yang XM, Yang WS, Deng L, Lv XN, Wu GF, Tang ZP, Wei M, et al. Intraventricular Hemorrhage Growth: Definition, Prevalence and Association with Hematoma Expansion and Prognosis. Neurocrit Care. 2020 Dec;33(3):732–9.CrossRef Li Q, Li R, Zhao LB, Yang XM, Yang WS, Deng L, Lv XN, Wu GF, Tang ZP, Wei M, et al. Intraventricular Hemorrhage Growth: Definition, Prevalence and Association with Hematoma Expansion and Prognosis. Neurocrit Care. 2020 Dec;33(3):732–9.CrossRef
7.
go back to reference Sembolini A, Romoli M, Pannacci U, Gambaracci G, Floridi P, Acciarresi M, Agnelli G, Alberti A, Venti M, Paciaroni M, et al. Acute hematoma expansion after spontaneous intracerebral hemorrhage: risk factors and impact on long-term prognosis. Neurol Sci. 2020;41(9):2503–9.CrossRef Sembolini A, Romoli M, Pannacci U, Gambaracci G, Floridi P, Acciarresi M, Agnelli G, Alberti A, Venti M, Paciaroni M, et al. Acute hematoma expansion after spontaneous intracerebral hemorrhage: risk factors and impact on long-term prognosis. Neurol Sci. 2020;41(9):2503–9.CrossRef
8.
go back to reference Mendelow AD, Gregson BA, Rowan EN, Murray GD, Gholkar A, Mitchell PM. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): a randomised trial. Lancet. 2013;382(9890):397–408.CrossRef Mendelow AD, Gregson BA, Rowan EN, Murray GD, Gholkar A, Mitchell PM. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): a randomised trial. Lancet. 2013;382(9890):397–408.CrossRef
9.
go back to reference Hanley DF, Thompson RE, Rosenblum M, Yenokyan G, Lane K, McBee N, Mayo SW, Bistran-Hall AJ, Gandhi D, Mould WA, et al. Efficacy and safety of minimally invasive surgery with thrombolysis in intracerebral haemorrhage evacuation (MISTIE III): a randomised, controlled, open-label, blinded endpoint phase 3 trial. Lancet. 2019;393(10175):1021–32.CrossRef Hanley DF, Thompson RE, Rosenblum M, Yenokyan G, Lane K, McBee N, Mayo SW, Bistran-Hall AJ, Gandhi D, Mould WA, et al. Efficacy and safety of minimally invasive surgery with thrombolysis in intracerebral haemorrhage evacuation (MISTIE III): a randomised, controlled, open-label, blinded endpoint phase 3 trial. Lancet. 2019;393(10175):1021–32.CrossRef
10.
go back to reference Broderick JP, Brott TG, Duldner JE, Tomsick T, Huster G. Volume of intracerebral haemorrhage. A powerful and easy-to-use predictor of 30-day mortality. Stroke. 1993;24(7):987–93.CrossRef Broderick JP, Brott TG, Duldner JE, Tomsick T, Huster G. Volume of intracerebral haemorrhage. A powerful and easy-to-use predictor of 30-day mortality. Stroke. 1993;24(7):987–93.CrossRef
11.
go back to reference Divani AA, Majidi S, Luo X, Souslian FG, Zhang J, Abosch A, Tummala RP. The ABCs of accurate volumetric measurement of cerebral hematoma. Stroke. 2011;42(6):1569–74.CrossRef Divani AA, Majidi S, Luo X, Souslian FG, Zhang J, Abosch A, Tummala RP. The ABCs of accurate volumetric measurement of cerebral hematoma. Stroke. 2011;42(6):1569–74.CrossRef
12.
go back to reference Webb AJ, Ullman NL, Morgan TC, Muschelli J, Kornbluth J, Awad IA, Mayo S, Rosenblum M, Ziai W, Zuccarrello M, et al. Accuracy of the ABC/2 Score for Intracerebral Hemorrhage: Systematic Review and Analysis of MISTIE, CLEAR-IVH, and CLEAR III. Stroke. 2015;46(9):2470–6.CrossRef Webb AJ, Ullman NL, Morgan TC, Muschelli J, Kornbluth J, Awad IA, Mayo S, Rosenblum M, Ziai W, Zuccarrello M, et al. Accuracy of the ABC/2 Score for Intracerebral Hemorrhage: Systematic Review and Analysis of MISTIE, CLEAR-IVH, and CLEAR III. Stroke. 2015;46(9):2470–6.CrossRef
13.
go back to reference Scherer M, Cordes J, Younsi A, Sahin YA, Gotz M, Mohlenbruch M, Stock C, Bosel J, Unterberg A, Maier-Hein K, et al. Development and validation of an automatic segmentation algorithm for quantification of intracerebral hemorrhage. Stroke. 2016;47(11):2776–82.CrossRef Scherer M, Cordes J, Younsi A, Sahin YA, Gotz M, Mohlenbruch M, Stock C, Bosel J, Unterberg A, Maier-Hein K, et al. Development and validation of an automatic segmentation algorithm for quantification of intracerebral hemorrhage. Stroke. 2016;47(11):2776–82.CrossRef
14.
go back to reference Lee EJ, Kim YH, Kim N, Kang DW. Deep into the brain: artificial intelligence in stroke imaging. J Stroke. 2017;19(3):277–85.CrossRef Lee EJ, Kim YH, Kim N, Kang DW. Deep into the brain: artificial intelligence in stroke imaging. J Stroke. 2017;19(3):277–85.CrossRef
15.
go back to reference Lee JG, Jun S, Cho YW, Lee H, Kim GB, Seo JB, Kim N. Deep learning in medical imaging: general overview. Korean J Radiol. 2017;18(4):570–84.CrossRef Lee JG, Jun S, Cho YW, Lee H, Kim GB, Seo JB, Kim N. Deep learning in medical imaging: general overview. Korean J Radiol. 2017;18(4):570–84.CrossRef
16.
go back to reference Petrick N, Mori K, Patel AA, Rao N, Arbabshirani MR, Jnawali K. Deep 3D convolution neural network for CT brain hemorrhage classification. In: Medical Imaging 2018: Computer-Aided Diagnosis. Proceedings of SPIE. 2018;10575;UNSP 105751C. Petrick N, Mori K, Patel AA, Rao N, Arbabshirani MR, Jnawali K. Deep 3D convolution neural network for CT brain hemorrhage classification. In: Medical Imaging 2018: Computer-Aided Diagnosis. Proceedings of SPIE. 2018;10575;UNSP 105751C.
17.
go back to reference LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.CrossRef LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.CrossRef
18.
go back to reference Dhar R, Falcone GJ, Chen Y, Hamzehloo A, Kirsch EP, Noche RB, Roth K, Acosta J, Ruiz A, Phuah CL, et al. Deep learning for automated measurement of hemorrhage and perihematomal edema in supratentorial intracerebral hemorrhage. Stroke. 2020;51(2):648–51.CrossRef Dhar R, Falcone GJ, Chen Y, Hamzehloo A, Kirsch EP, Noche RB, Roth K, Acosta J, Ruiz A, Phuah CL, et al. Deep learning for automated measurement of hemorrhage and perihematomal edema in supratentorial intracerebral hemorrhage. Stroke. 2020;51(2):648–51.CrossRef
19.
go back to reference Xu J, Zhang R, Zhou Z, Wu C, Gong Q, Zhang H, Wu S, Wu G, Deng Y, Xia C, et al. Deep network for the automatic segmentation and quantification of intracranial hemorrhage on CT. Front Neurosci. 2020;14:541817.CrossRef Xu J, Zhang R, Zhou Z, Wu C, Gong Q, Zhang H, Wu S, Wu G, Deng Y, Xia C, et al. Deep network for the automatic segmentation and quantification of intracranial hemorrhage on CT. Front Neurosci. 2020;14:541817.CrossRef
20.
go back to reference Hanley DF. Intraventricular hemorrhage: severity factor and treatment target in spontaneous intracerebral hemorrhage. Stroke. 2009;40(4):1533–8.CrossRef Hanley DF. Intraventricular hemorrhage: severity factor and treatment target in spontaneous intracerebral hemorrhage. Stroke. 2009;40(4):1533–8.CrossRef
21.
go back to reference Balami JS, Buchan AM. Complications of intracerebral haemorrhage. Lancet Neurol. 2012;11(1):101–18.CrossRef Balami JS, Buchan AM. Complications of intracerebral haemorrhage. Lancet Neurol. 2012;11(1):101–18.CrossRef
22.
go back to reference Yogendrakumar V, Ramsay T, Fergusson DA, Demchuk AM, Aviv RI, Rodriguez-Luna D, Molina CA, Silva Y, Dzialowski I, Kobayashi A, et al. Redefining hematoma expansion with the inclusion of intraventricular hemorrhage growth. Stroke. 2020;51(4):1120–7.CrossRef Yogendrakumar V, Ramsay T, Fergusson DA, Demchuk AM, Aviv RI, Rodriguez-Luna D, Molina CA, Silva Y, Dzialowski I, Kobayashi A, et al. Redefining hematoma expansion with the inclusion of intraventricular hemorrhage growth. Stroke. 2020;51(4):1120–7.CrossRef
23.
go back to reference Yogendrakumar V, Ramsay T, Fergusson D, Demchuk AM, Aviv RI, Rodriguez-Luna D, Molina CA, Silva Y, Dzialowski I, Kobayashi A, et al. New and expanding ventricular hemorrhage predicts poor outcome in acute intracerebral hemorrhage. Neurology. 2019;93(9):e879–88.CrossRef Yogendrakumar V, Ramsay T, Fergusson D, Demchuk AM, Aviv RI, Rodriguez-Luna D, Molina CA, Silva Y, Dzialowski I, Kobayashi A, et al. New and expanding ventricular hemorrhage predicts poor outcome in acute intracerebral hemorrhage. Neurology. 2019;93(9):e879–88.CrossRef
24.
go back to reference Dowlatshahi D, Kosior JC, Idris S, Eesa M, Dickhoff P, Joshi M, Subramaniam S, Tymchuk S, Hill MD, Aviv RI, et al. Planimetric hematoma measurement in patients with intraventricular hemorrhage: is total volume a preferred target for reliable analysis? Stroke. 2012;43(7):1961–3.CrossRef Dowlatshahi D, Kosior JC, Idris S, Eesa M, Dickhoff P, Joshi M, Subramaniam S, Tymchuk S, Hill MD, Aviv RI, et al. Planimetric hematoma measurement in patients with intraventricular hemorrhage: is total volume a preferred target for reliable analysis? Stroke. 2012;43(7):1961–3.CrossRef
25.
go back to reference Rodriguez-Luna D, Boyko M, Subramaniam S, Klourfeld E, Jo P, Diederichs BJ, Kosior JC, Dowlatshahi D, Aviv RI, Molina CA, et al. Magnitude of hematoma volume measurement error in intracerebral hemorrhage. Stroke. 2016;47(4):1124–6.CrossRef Rodriguez-Luna D, Boyko M, Subramaniam S, Klourfeld E, Jo P, Diederichs BJ, Kosior JC, Dowlatshahi D, Aviv RI, Molina CA, et al. Magnitude of hematoma volume measurement error in intracerebral hemorrhage. Stroke. 2016;47(4):1124–6.CrossRef
26.
go back to reference Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999;8(2):135–60.CrossRef Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999;8(2):135–60.CrossRef
27.
go back to reference Kaka H, Zhang E, Khan N. Artificial intelligence and deep learning in neuroradiology: exploring the new frontier. Can Assoc Radiol J. 2020;72(1):35–44.CrossRef Kaka H, Zhang E, Khan N. Artificial intelligence and deep learning in neuroradiology: exploring the new frontier. Can Assoc Radiol J. 2020;72(1):35–44.CrossRef
28.
go back to reference Ironside N, Chen CJ, Mutasa S, Sim JL, Ding D, Marfatiah S, Roh D, Mukherjee S, Johnston KC, Southerland AM, et al. Fully automated segmentation algorithm for perihematomal edema volumetry after spontaneous intracerebral hemorrhage. Stroke. 2020;51(3):815–23.CrossRef Ironside N, Chen CJ, Mutasa S, Sim JL, Ding D, Marfatiah S, Roh D, Mukherjee S, Johnston KC, Southerland AM, et al. Fully automated segmentation algorithm for perihematomal edema volumetry after spontaneous intracerebral hemorrhage. Stroke. 2020;51(3):815–23.CrossRef
29.
go back to reference Zhao X, Chen K, Wu G, Zhang G, Zhou X, Lv C, Wu S, Chen Y, Xie G, Yao ZJEr. Deep learning shows good reliability for automatic segmentation and volume measurement of brain hemorrhage, intraventricular extension, and peripheral edema. Eur Radiol. 2021;31(7):5012–20. Zhao X, Chen K, Wu G, Zhang G, Zhou X, Lv C, Wu S, Chen Y, Xie G, Yao ZJEr. Deep learning shows good reliability for automatic segmentation and volume measurement of brain hemorrhage, intraventricular extension, and peripheral edema. Eur Radiol. 2021;31(7):5012–20.
30.
go back to reference Ironside N, Chen CJ, Mutasa S, Sim JL, Marfatia S, Roh D, Ding D, Mayer SA, Lignelli A, Connolly ES. Fully automated segmentation algorithm for hematoma volumetric analysis in spontaneous intracerebral hemorrhage. Stroke. 2019;50(12):3416–23.CrossRef Ironside N, Chen CJ, Mutasa S, Sim JL, Marfatia S, Roh D, Ding D, Mayer SA, Lignelli A, Connolly ES. Fully automated segmentation algorithm for hematoma volumetric analysis in spontaneous intracerebral hemorrhage. Stroke. 2019;50(12):3416–23.CrossRef
31.
go back to reference Kleinman JT, Hillis AE, Jordan LC. ABC/2: estimating intracerebral haemorrhage volume and total brain volume, and predicting outcome in children. Dev Med Child Neurol. 2011;53(3):281–4.CrossRef Kleinman JT, Hillis AE, Jordan LC. ABC/2: estimating intracerebral haemorrhage volume and total brain volume, and predicting outcome in children. Dev Med Child Neurol. 2011;53(3):281–4.CrossRef
32.
go back to reference Wang CW, Juan CJ, Liu YJ, Hsu HH, Liu HS, Chen CY, Hsueh CJ, Lo CP, Kao HW, Huang GS. Volume-dependent overestimation of spontaneous intracerebral hematoma volume by the ABC/2 formula. Acta Radiol. 2009;50(3):306–11.CrossRef Wang CW, Juan CJ, Liu YJ, Hsu HH, Liu HS, Chen CY, Hsueh CJ, Lo CP, Kao HW, Huang GS. Volume-dependent overestimation of spontaneous intracerebral hematoma volume by the ABC/2 formula. Acta Radiol. 2009;50(3):306–11.CrossRef
33.
go back to reference Kosior JC, Idris S, Dowlatshahi D, Alzawahmah M, Eesa M, Sharma P, Tymchuk S, Hill MD, Aviv RI, Frayne R, et al. Quantomo: validation of a computer-assisted methodology for the volumetric analysis of intracerebral haemorrhage. Int J Stroke. 2011;6(4):302–5.CrossRef Kosior JC, Idris S, Dowlatshahi D, Alzawahmah M, Eesa M, Sharma P, Tymchuk S, Hill MD, Aviv RI, Frayne R, et al. Quantomo: validation of a computer-assisted methodology for the volumetric analysis of intracerebral haemorrhage. Int J Stroke. 2011;6(4):302–5.CrossRef
34.
go back to reference Freeman WD, Barrett KM, Bestic JM, Meschia JF, Broderick DF, Brott TG. Computer-assisted volumetric analysis compared with ABC/2 method for assessing warfarin-related intracranial hemorrhage volumes. Neurocrit Care. 2008;9(3):307–12.CrossRef Freeman WD, Barrett KM, Bestic JM, Meschia JF, Broderick DF, Brott TG. Computer-assisted volumetric analysis compared with ABC/2 method for assessing warfarin-related intracranial hemorrhage volumes. Neurocrit Care. 2008;9(3):307–12.CrossRef
35.
go back to reference Jain S, Vyvere TV, Terzopoulos V, Sima DM, Roura E, Maas A, Wilms G, Verheyden J. Automatic quantification of computed tomography features in acute traumatic brain injury. J Neurotrauma. 2019;36(11):1794–803.CrossRef Jain S, Vyvere TV, Terzopoulos V, Sima DM, Roura E, Maas A, Wilms G, Verheyden J. Automatic quantification of computed tomography features in acute traumatic brain injury. J Neurotrauma. 2019;36(11):1794–803.CrossRef
36.
go back to reference Nag MK, Gupta A, Hariharasudhan AS, Sadhu AK, Das A, Ghosh N. Quantitative analysis of brain herniation from non-contrast CT images using deep learning. J Neurosci Methods. 2021;349:109033.CrossRef Nag MK, Gupta A, Hariharasudhan AS, Sadhu AK, Das A, Ghosh N. Quantitative analysis of brain herniation from non-contrast CT images using deep learning. J Neurosci Methods. 2021;349:109033.CrossRef
37.
go back to reference Chilamkurthy S, Ghosh R, Tanamala S, Biviji M, Campeau NG, Venugopal VK, Mahajan V, Rao P, Warier P. Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet. 2018;392(10162):2388–96.CrossRef Chilamkurthy S, Ghosh R, Tanamala S, Biviji M, Campeau NG, Venugopal VK, Mahajan V, Rao P, Warier P. Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet. 2018;392(10162):2388–96.CrossRef
38.
go back to reference Seiffge DJ, Curtze S, Dequatre-Ponchelle N, Pezzini A, Tatlisumak T, Cordonnier C, Werring D. Hematoma location and morphology of anticoagulation-associated intracerebral hemorrhage. Neurology. 2019;92(8):e782–91.CrossRef Seiffge DJ, Curtze S, Dequatre-Ponchelle N, Pezzini A, Tatlisumak T, Cordonnier C, Werring D. Hematoma location and morphology of anticoagulation-associated intracerebral hemorrhage. Neurology. 2019;92(8):e782–91.CrossRef
Metadata
Title
Efficiency of a deep learning-based artificial intelligence diagnostic system in spontaneous intracerebral hemorrhage volume measurement
Authors
Tao Wang
Na Song
Lingling Liu
Zichao Zhu
Bing Chen
Wenjun Yang
Zhiqiang Chen
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Medical Imaging / Issue 1/2021
Electronic ISSN: 1471-2342
DOI
https://doi.org/10.1186/s12880-021-00657-6

Other articles of this Issue 1/2021

BMC Medical Imaging 1/2021 Go to the issue