Skip to main content
Top
Published in: Journal of Imaging Informatics in Medicine 2/2024

12-01-2024 | Artificial Intelligence

Diagnostic Performance of Artificial Intelligence in Detection of Primary Malignant Bone Tumors: a Meta-Analysis

Authors: Mohammad Amin Salehi, Soheil Mohammadi, Hamid Harandi, Seyed Sina Zakavi, Ali Jahanshahi, Mohammad Shahrabi Farahani, Jim S. Wu

Published in: Journal of Imaging Informatics in Medicine | Issue 2/2024

Login to get access

Abstract

We aim to conduct a meta-analysis on studies that evaluated the diagnostic performance of artificial intelligence (AI) algorithms in the detection of primary bone tumors, distinguishing them from other bone lesions, and comparing them with clinician assessment. A systematic search was conducted using a combination of keywords related to bone tumors and AI. After extracting contingency tables from all included studies, we performed a meta-analysis using random-effects model to determine the pooled sensitivity and specificity, accompanied by their respective 95% confidence intervals (CI). Quality assessment was evaluated using a modified version of Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) and Prediction Model Study Risk of Bias Assessment Tool (PROBAST). The pooled sensitivities for AI algorithms and clinicians on internal validation test sets for detecting bone neoplasms were 84% (95% CI: 79.88) and 76% (95% CI: 64.85), and pooled specificities were 86% (95% CI: 81.90) and 64% (95% CI: 55.72), respectively. At external validation, the pooled sensitivity and specificity for AI algorithms were 84% (95% CI: 75.90) and 91% (95% CI: 83.96), respectively. The same numbers for clinicians were 85% (95% CI: 73.92) and 94% (95% CI: 89.97), respectively. The sensitivity and specificity for clinicians with AI assistance were 95% (95% CI: 86.98) and 57% (95% CI: 48.66). Caution is needed when interpreting findings due to potential limitations. Further research is needed to bridge this gap in scientific understanding and promote effective implementation for medical practice advancement.
Appendix
Available only for authorised users
Literature
1.
go back to reference Li J, Li S, Li X, Miao S, Dong C, Gao C, et al. Primary bone tumor detection and classification in full-field bone radiographs via YOLO deep learning model. European Radiology. 2022. Li J, Li S, Li X, Miao S, Dong C, Gao C, et al. Primary bone tumor detection and classification in full-field bone radiographs via YOLO deep learning model. European Radiology. 2022.
2.
go back to reference Kerr DL, Dial BL, Lazarides AL, Catanzano AA, Lane WO, Blazer DG, 3rd, et al. Epidemiologic and survival trends in adult primary bone tumors of the spine. Spine J. 2019;19(12):1941-9.CrossRefPubMed Kerr DL, Dial BL, Lazarides AL, Catanzano AA, Lane WO, Blazer DG, 3rd, et al. Epidemiologic and survival trends in adult primary bone tumors of the spine. Spine J. 2019;19(12):1941-9.CrossRefPubMed
3.
go back to reference Georgeanu VA, Mămuleanu M, Ghiea S, Selișteanu D. Malignant Bone Tumors Diagnosis Using Magnetic Resonance Imaging Based on Deep Learning Algorithms. Medicina (Lithuania). 2022;58(5). Georgeanu VA, Mămuleanu M, Ghiea S, Selișteanu D. Malignant Bone Tumors Diagnosis Using Magnetic Resonance Imaging Based on Deep Learning Algorithms. Medicina (Lithuania). 2022;58(5).
4.
go back to reference Salazar C, Leite M, Sousa A, Torres J. Correlation between imagenological and histological diagnosis of bone tumors. A retrospective study. Acta Ortop Mex. 2019;33(6):386-90.PubMed Salazar C, Leite M, Sousa A, Torres J. Correlation between imagenological and histological diagnosis of bone tumors. A retrospective study. Acta Ortop Mex. 2019;33(6):386-90.PubMed
5.
go back to reference Goyal N, Kalra M, Soni A, Baweja P, Ghonghe NP. Multi-modality imaging approach to bone tumors - State-of-the art. J Clin Orthop Trauma. 2019;10(4):687-701.CrossRefPubMedPubMedCentral Goyal N, Kalra M, Soni A, Baweja P, Ghonghe NP. Multi-modality imaging approach to bone tumors - State-of-the art. J Clin Orthop Trauma. 2019;10(4):687-701.CrossRefPubMedPubMedCentral
7.
go back to reference Han SH, Kim KW, Kim S, Youn YC. Artificial Neural Network: Understanding the Basic Concepts without Mathematics. Dement Neurocogn Disord. 2018;17(3):83-9.CrossRefPubMedPubMedCentral Han SH, Kim KW, Kim S, Youn YC. Artificial Neural Network: Understanding the Basic Concepts without Mathematics. Dement Neurocogn Disord. 2018;17(3):83-9.CrossRefPubMedPubMedCentral
8.
go back to reference Driver CN, Bowles BS, Bartholmai BJ, Greenberg-Worisek AJ. Artificial Intelligence in Radiology: A Call for Thoughtful Application. Clin Transl Sci. 2020;13(2):216-8.CrossRefPubMed Driver CN, Bowles BS, Bartholmai BJ, Greenberg-Worisek AJ. Artificial Intelligence in Radiology: A Call for Thoughtful Application. Clin Transl Sci. 2020;13(2):216-8.CrossRefPubMed
9.
go back to reference Nair AV, Ramanathan S, Sathiadoss P, Jajodia A, Blair Macdonald D. Barriers to artificial intelligence implementation in radiology practice: What the radiologist needs to know. Radiologia (Engl Ed). 2022;64(4):324-32.CrossRefPubMed Nair AV, Ramanathan S, Sathiadoss P, Jajodia A, Blair Macdonald D. Barriers to artificial intelligence implementation in radiology practice: What the radiologist needs to know. Radiologia (Engl Ed). 2022;64(4):324-32.CrossRefPubMed
10.
go back to reference von Schacky CE, Wilhelm NJ, Schäfer VS, Leonhardt Y, Jung M, Jungmann PM, et al. Development and evaluation of machine learning models based on X-ray radiomics for the classification and differentiation of malignant and benign bone tumors. European Radiology. 2022;32(9):6247-57.CrossRef von Schacky CE, Wilhelm NJ, Schäfer VS, Leonhardt Y, Jung M, Jungmann PM, et al. Development and evaluation of machine learning models based on X-ray radiomics for the classification and differentiation of malignant and benign bone tumors. European Radiology. 2022;32(9):6247-57.CrossRef
11.
go back to reference Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. Annals of internal medicine. 2015;162(1):55-63.CrossRefPubMed Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. Annals of internal medicine. 2015;162(1):55-63.CrossRefPubMed
12.
go back to reference Wolff RF, Moons KG, Riley RD, Whiting PF, Westwood M, Collins GS, et al. PROBAST: a tool to assess the risk of bias and applicability of prediction model studies. Annals of internal medicine. 2019;170(1):51-8.CrossRefPubMed Wolff RF, Moons KG, Riley RD, Whiting PF, Westwood M, Collins GS, et al. PROBAST: a tool to assess the risk of bias and applicability of prediction model studies. Annals of internal medicine. 2019;170(1):51-8.CrossRefPubMed
13.
go back to reference Dwamena B. MIDAS: Stata module for meta-analytical integration of diagnostic test accuracy studies. 2009. Dwamena B. MIDAS: Stata module for meta-analytical integration of diagnostic test accuracy studies. 2009.
14.
go back to reference Harbord RM, Whiting P. Metandi: meta-analysis of diagnostic accuracy using hierarchical logistic regression. The Stata Journal. 2009;9(2):211-29.CrossRef Harbord RM, Whiting P. Metandi: meta-analysis of diagnostic accuracy using hierarchical logistic regression. The Stata Journal. 2009;9(2):211-29.CrossRef
15.
go back to reference Deeks JJ, Macaskill P, Irwig L. The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. Journal of clinical epidemiology. 2005;58(9):882-93.CrossRefPubMed Deeks JJ, Macaskill P, Irwig L. The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. Journal of clinical epidemiology. 2005;58(9):882-93.CrossRefPubMed
16.
go back to reference Altameem T. Fuzzy rank correlation-based segmentation method and deep neural network for bone cancer identification. Neural Computing and Applications. 2020;32(3):805-15.CrossRef Altameem T. Fuzzy rank correlation-based segmentation method and deep neural network for bone cancer identification. Neural Computing and Applications. 2020;32(3):805-15.CrossRef
17.
go back to reference Arana E, Marti-Bonmati L, Bautista D, Paredes R. Calvarial eosinophilic granuloma: Diagnostic models and image feature selection with a neural network. Academic Radiology. 1998;5(6):427-34.CrossRefPubMed Arana E, Marti-Bonmati L, Bautista D, Paredes R. Calvarial eosinophilic granuloma: Diagnostic models and image feature selection with a neural network. Academic Radiology. 1998;5(6):427-34.CrossRefPubMed
18.
go back to reference Chianca V, Cuocolo R, Gitto S, Albano D, Merli I, Badalyan J, et al. Radiomic Machine Learning Classifiers in Spine Bone Tumors: A Multi-Software, Multi-Scanner Study. Eur J Radiol. 2021;137:109586.CrossRefPubMed Chianca V, Cuocolo R, Gitto S, Albano D, Merli I, Badalyan J, et al. Radiomic Machine Learning Classifiers in Spine Bone Tumors: A Multi-Software, Multi-Scanner Study. Eur J Radiol. 2021;137:109586.CrossRefPubMed
19.
go back to reference Consalvo S, Hinterwimmer F, Neumann J, Steinborn M, Salzmann M, Seidl F, et al. Two-Phase Deep Learning Algorithm for Detection and Differentiation of Ewing Sarcoma and Acute Osteomyelitis in Paediatric Radiographs. Anticancer Research. 2022;42(9):4371-80.CrossRefPubMed Consalvo S, Hinterwimmer F, Neumann J, Steinborn M, Salzmann M, Seidl F, et al. Two-Phase Deep Learning Algorithm for Detection and Differentiation of Ewing Sarcoma and Acute Osteomyelitis in Paediatric Radiographs. Anticancer Research. 2022;42(9):4371-80.CrossRefPubMed
20.
go back to reference Do BH, Langlotz C, Beaulieu CF. Bone Tumor Diagnosis Using a Naïve Bayesian Model of Demographic and Radiographic Features. J Digit Imaging. 2017;30(5):640-7.CrossRefPubMedPubMedCentral Do BH, Langlotz C, Beaulieu CF. Bone Tumor Diagnosis Using a Naïve Bayesian Model of Demographic and Radiographic Features. J Digit Imaging. 2017;30(5):640-7.CrossRefPubMedPubMedCentral
21.
22.
go back to reference Gitto S, Cuocolo R, Albano D, Chianca V, Messina C, Gambino A, et al. MRI radiomics-based machine-learning classification of bone chondrosarcoma. Eur J Radiol. 2020;128:109043.CrossRefPubMed Gitto S, Cuocolo R, Albano D, Chianca V, Messina C, Gambino A, et al. MRI radiomics-based machine-learning classification of bone chondrosarcoma. Eur J Radiol. 2020;128:109043.CrossRefPubMed
23.
go back to reference Gitto S, Cuocolo R, van Langevelde K, van de Sande MAJ, Parafioriti A, Luzzati A, et al. MRI radiomics-based machine learning classification of atypical cartilaginous tumour and grade II chondrosarcoma of long bones. EBioMedicine. 2022;75. Gitto S, Cuocolo R, van Langevelde K, van de Sande MAJ, Parafioriti A, Luzzati A, et al. MRI radiomics-based machine learning classification of atypical cartilaginous tumour and grade II chondrosarcoma of long bones. EBioMedicine. 2022;75.
24.
go back to reference He Y, Pan I, Bao B, Halsey K, Chang M, Liu H, et al. Deep learning-based classification of primary bone tumors on radiographs: A preliminary study. EBioMedicine. 2020;62:103121.CrossRefPubMedPubMedCentral He Y, Pan I, Bao B, Halsey K, Chang M, Liu H, et al. Deep learning-based classification of primary bone tumors on radiographs: A preliminary study. EBioMedicine. 2020;62:103121.CrossRefPubMedPubMedCentral
25.
go back to reference Ho NH, Yang HJ, Kim SH, Jung ST, Joo SD. Regenerative semi-supervised bidirectional w-network-based knee bone tumor classification on radiographs guided by three-region bone segmentation. IEEE Access. 2019;7:154277-89.CrossRef Ho NH, Yang HJ, Kim SH, Jung ST, Joo SD. Regenerative semi-supervised bidirectional w-network-based knee bone tumor classification on radiographs guided by three-region bone segmentation. IEEE Access. 2019;7:154277-89.CrossRef
26.
go back to reference Lee A, Kim MS, Han SS, Park PG, Lee C, Yun JP. Deep learning neural networks to differentiate Stafne's bone cavity from pathological radiolucent lesions of the mandible in heterogeneous panoramic radiography. PLoS ONE. 2021;16(7 July). Lee A, Kim MS, Han SS, Park PG, Lee C, Yun JP. Deep learning neural networks to differentiate Stafne's bone cavity from pathological radiolucent lesions of the mandible in heterogeneous panoramic radiography. PLoS ONE. 2021;16(7 July).
27.
go back to reference Liu H, Jiao M, Yuan Y, Ouyang H, Liu J, Li Y, et al. Benign and malignant diagnosis of spinal tumors based on deep learning and weighted fusion framework on MRI. Insights Imaging. 2022;13(1):87.CrossRefPubMedPubMedCentral Liu H, Jiao M, Yuan Y, Ouyang H, Liu J, Li Y, et al. Benign and malignant diagnosis of spinal tumors based on deep learning and weighted fusion framework on MRI. Insights Imaging. 2022;13(1):87.CrossRefPubMedPubMedCentral
28.
go back to reference Liu H, Jiao ML, Xing XY, Ou-Yang HQ, Yuan Y, Liu JF, et al. BgNet: Classification of benign and malignant tumors with MRI multi-plane attention learning. Front Oncol. 2022;12:971871.CrossRefPubMedPubMedCentral Liu H, Jiao ML, Xing XY, Ou-Yang HQ, Yuan Y, Liu JF, et al. BgNet: Classification of benign and malignant tumors with MRI multi-plane attention learning. Front Oncol. 2022;12:971871.CrossRefPubMedPubMedCentral
29.
go back to reference Liu Y, Yang P, Pi Y, Jiang L, Zhong X, Cheng J, et al. Automatic identification of suspicious bone metastatic lesions in bone scintigraphy using convolutional neural network. BMC Med Imaging. 2021;21(1):131.CrossRefPubMedPubMedCentral Liu Y, Yang P, Pi Y, Jiang L, Zhong X, Cheng J, et al. Automatic identification of suspicious bone metastatic lesions in bone scintigraphy using convolutional neural network. BMC Med Imaging. 2021;21(1):131.CrossRefPubMedPubMedCentral
30.
go back to reference Pan D, Liu R, Zheng B, Yuan J, Zeng H, He Z, et al. Using Machine Learning to Unravel the Value of Radiographic Features for the Classification of Bone Tumors. Biomed Res Int. 2021;2021:8811056.CrossRefPubMedPubMedCentral Pan D, Liu R, Zheng B, Yuan J, Zeng H, He Z, et al. Using Machine Learning to Unravel the Value of Radiographic Features for the Classification of Bone Tumors. Biomed Res Int. 2021;2021:8811056.CrossRefPubMedPubMedCentral
31.
go back to reference Park CW, Oh SJ, Kim KS, Jang MC, Kim IS, Lee YK, et al. Artificial intelligence-based classification of bone tumors in the proximal femur on plain radiographs: System development and validation. PLoS One. 2022;17(2):e0264140.CrossRefPubMedPubMedCentral Park CW, Oh SJ, Kim KS, Jang MC, Kim IS, Lee YK, et al. Artificial intelligence-based classification of bone tumors in the proximal femur on plain radiographs: System development and validation. PLoS One. 2022;17(2):e0264140.CrossRefPubMedPubMedCentral
32.
go back to reference Reinus WR, Wilson AJ, Kalman B, Kwasny S. Diagnosis of focal bone lesions using neural networks. Investigative Radiology. 1994;29(6):606-11.CrossRefPubMed Reinus WR, Wilson AJ, Kalman B, Kwasny S. Diagnosis of focal bone lesions using neural networks. Investigative Radiology. 1994;29(6):606-11.CrossRefPubMed
33.
go back to reference Sharma A, Yadav DP, Garg H, Kumar M, Sharma B, Koundal D. Bone Cancer Detection Using Feature Extraction Based Machine Learning Model. Comput Math Methods Med. 2021;2021:7433186.CrossRefPubMedPubMedCentral Sharma A, Yadav DP, Garg H, Kumar M, Sharma B, Koundal D. Bone Cancer Detection Using Feature Extraction Based Machine Learning Model. Comput Math Methods Med. 2021;2021:7433186.CrossRefPubMedPubMedCentral
34.
go back to reference Zhao K, Zhang M, Xie Z, Yan X, Wu S, Liao P, et al. Deep Learning Assisted Diagnosis of Musculoskeletal Tumors Based on Contrast-Enhanced Magnetic Resonance Imaging. Journal of Magnetic Resonance Imaging. 2022;56(1):99-107.CrossRefPubMed Zhao K, Zhang M, Xie Z, Yan X, Wu S, Liao P, et al. Deep Learning Assisted Diagnosis of Musculoskeletal Tumors Based on Contrast-Enhanced Magnetic Resonance Imaging. Journal of Magnetic Resonance Imaging. 2022;56(1):99-107.CrossRefPubMed
35.
go back to reference Zhao S, Chen B, Chang H, Chen B, Li S. Reasoning discriminative dictionary-embedded network for fully automatic vertebrae tumor diagnosis. Med Image Anal. 2022;79:102456.CrossRefPubMed Zhao S, Chen B, Chang H, Chen B, Li S. Reasoning discriminative dictionary-embedded network for fully automatic vertebrae tumor diagnosis. Med Image Anal. 2022;79:102456.CrossRefPubMed
36.
go back to reference Do NT, Jung ST, Yang HJ, Kim SH. Multi-Level Seg-Unet Model with Global and Patch-Based X-ray Images for Knee Bone Tumor Detection. Diagnostics (Basel). 2021;11(4). Do NT, Jung ST, Yang HJ, Kim SH. Multi-Level Seg-Unet Model with Global and Patch-Based X-ray Images for Knee Bone Tumor Detection. Diagnostics (Basel). 2021;11(4).
37.
go back to reference Fouad H, Hassanein AS, Soliman AM, Al-Feel H. Internet of Medical Things (IoMT) Assisted Vertebral Tumor Prediction Using Heuristic Hock Transformation Based Gautschi Model–A Numerical Approach. IEEE Access. 2020;8:17299-309.CrossRef Fouad H, Hassanein AS, Soliman AM, Al-Feel H. Internet of Medical Things (IoMT) Assisted Vertebral Tumor Prediction Using Heuristic Hock Transformation Based Gautschi Model–A Numerical Approach. IEEE Access. 2020;8:17299-309.CrossRef
38.
go back to reference Gitto S, Bologna M, Corino VDA, Emili I, Albano D, Messina C, et al. Diffusion-weighted MRI radiomics of spine bone tumors: feature stability and machine learning-based classification performance. Radiol Med. 2022. Gitto S, Bologna M, Corino VDA, Emili I, Albano D, Messina C, et al. Diffusion-weighted MRI radiomics of spine bone tumors: feature stability and machine learning-based classification performance. Radiol Med. 2022.
39.
go back to reference Gitto S, Cuocolo R, Annovazzi A, Anelli V, Acquasanta M, Cincotta A, et al. CT radiomics-based machine learning classification of atypical cartilaginous tumours and appendicular chondrosarcomas. EBioMedicine. 2021;68:103407.CrossRefPubMedPubMedCentral Gitto S, Cuocolo R, Annovazzi A, Anelli V, Acquasanta M, Cincotta A, et al. CT radiomics-based machine learning classification of atypical cartilaginous tumours and appendicular chondrosarcomas. EBioMedicine. 2021;68:103407.CrossRefPubMedPubMedCentral
40.
go back to reference Ouyang H, Meng F, Liu J, Song X, Li Y, Yuan Y, et al. Evaluation of Deep Learning-Based Automated Detection of Primary Spine Tumors on MRI Using the Turing Test. Front Oncol. 2022;12:814667.CrossRefPubMedPubMedCentral Ouyang H, Meng F, Liu J, Song X, Li Y, Yuan Y, et al. Evaluation of Deep Learning-Based Automated Detection of Primary Spine Tumors on MRI Using the Turing Test. Front Oncol. 2022;12:814667.CrossRefPubMedPubMedCentral
41.
go back to reference Shung D, Simonov M, Gentry M, Au B, Laine L. Machine Learning to Predict Outcomes in Patients with Acute Gastrointestinal Bleeding: A Systematic Review. Dig Dis Sci. 2019;64(8):2078-87.CrossRefPubMed Shung D, Simonov M, Gentry M, Au B, Laine L. Machine Learning to Predict Outcomes in Patients with Acute Gastrointestinal Bleeding: A Systematic Review. Dig Dis Sci. 2019;64(8):2078-87.CrossRefPubMed
42.
go back to reference Montesinos-López O, Montesinos A, Crossa J. Overfitting, Model Tuning, and Evaluation of Prediction Performance. 2022. p. 109–39. Montesinos-López O, Montesinos A, Crossa J. Overfitting, Model Tuning, and Evaluation of Prediction Performance. 2022. p. 109–39.
43.
go back to reference Liu S, Feng M, Qiao T, Cai H, Xu K, Yu X, et al. Deep Learning for the Automatic Diagnosis and Analysis of Bone Metastasis on Bone Scintigrams. Cancer Manag Res. 2022;14:51-65.CrossRefPubMedPubMedCentral Liu S, Feng M, Qiao T, Cai H, Xu K, Yu X, et al. Deep Learning for the Automatic Diagnosis and Analysis of Bone Metastasis on Bone Scintigrams. Cancer Manag Res. 2022;14:51-65.CrossRefPubMedPubMedCentral
44.
go back to reference Zheng Q, Yang L, Zeng B, Li J, Guo K, Liang Y, et al. Artificial intelligence performance in detecting tumor metastasis from medical radiology imaging: A systematic review and meta-analysis. EClinicalMedicine. 2021;31:100669.CrossRefPubMed Zheng Q, Yang L, Zeng B, Li J, Guo K, Liang Y, et al. Artificial intelligence performance in detecting tumor metastasis from medical radiology imaging: A systematic review and meta-analysis. EClinicalMedicine. 2021;31:100669.CrossRefPubMed
45.
go back to reference Younis MH, Abu-Hijleh HA, Aldahamsheh OO, Abualruz A, Thalib L. Meta-Analysis of the Diagnostic Accuracy of Primary Bone and Soft Tissue Sarcomas by 18F-FDG-PET. Med Princ Pract. 2020;29(5):465-72.CrossRefPubMed Younis MH, Abu-Hijleh HA, Aldahamsheh OO, Abualruz A, Thalib L. Meta-Analysis of the Diagnostic Accuracy of Primary Bone and Soft Tissue Sarcomas by 18F-FDG-PET. Med Princ Pract. 2020;29(5):465-72.CrossRefPubMed
46.
go back to reference Seth N, Seth I, Bulloch G, Siu AHY, Guo A, Chatterjee R, et al. (18) F-FDG PET and PET/CT as a diagnostic method for Ewing sarcoma: A systematic review and meta-analysis. Pediatr Blood Cancer. 2022;69(3):e29415.CrossRefPubMed Seth N, Seth I, Bulloch G, Siu AHY, Guo A, Chatterjee R, et al. (18) F-FDG PET and PET/CT as a diagnostic method for Ewing sarcoma: A systematic review and meta-analysis. Pediatr Blood Cancer. 2022;69(3):e29415.CrossRefPubMed
47.
go back to reference Zimmer WD, Berquist TH, McLeod RA, Sim FH, Pritchard DJ, Shives TC, et al. Bone tumors: magnetic resonance imaging versus computed tomography. Radiology. 1985;155(3):709-18.CrossRefPubMed Zimmer WD, Berquist TH, McLeod RA, Sim FH, Pritchard DJ, Shives TC, et al. Bone tumors: magnetic resonance imaging versus computed tomography. Radiology. 1985;155(3):709-18.CrossRefPubMed
48.
go back to reference van Dyk DA, Meng X-L. The Art of Data Augmentation. Journal of Computational and Graphical Statistics. 2001;10(1):1-50.CrossRef van Dyk DA, Meng X-L. The Art of Data Augmentation. Journal of Computational and Graphical Statistics. 2001;10(1):1-50.CrossRef
49.
go back to reference Torrey L, Shavlik J. Transfer learning. Handbook of Research on Machine Learning Applications. 2009. Torrey L, Shavlik J. Transfer learning. Handbook of Research on Machine Learning Applications. 2009.
Metadata
Title
Diagnostic Performance of Artificial Intelligence in Detection of Primary Malignant Bone Tumors: a Meta-Analysis
Authors
Mohammad Amin Salehi
Soheil Mohammadi
Hamid Harandi
Seyed Sina Zakavi
Ali Jahanshahi
Mohammad Shahrabi Farahani
Jim S. Wu
Publication date
12-01-2024
Publisher
Springer International Publishing
Published in
Journal of Imaging Informatics in Medicine / Issue 2/2024
Print ISSN: 2948-2925
Electronic ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-023-00945-3

Other articles of this Issue 2/2024

Journal of Imaging Informatics in Medicine 2/2024 Go to the issue