Skip to main content
Top
Published in: European Radiology 10/2022

27-06-2022 | Artificial Intelligence | Imaging Informatics and Artificial Intelligence

Diagnostic accuracy and potential covariates of artificial intelligence for diagnosing orthopedic fractures: a systematic literature review and meta-analysis

Authors: Xiang Zhang, Yi Yang, Yi-Wei Shen, Ke-Rui Zhang, Ze-kun Jiang, Li-Tai Ma, Chen Ding, Bei-Yu Wang, Yang Meng, Hao Liu

Published in: European Radiology | Issue 10/2022

Login to get access

Abstract

Objectives

To systematically quantify the diagnostic accuracy and identify potential covariates affecting the performance of artificial intelligence (AI) in diagnosing orthopedic fractures.

Methods

PubMed, Embase, Web of Science, and Cochrane Library were systematically searched for studies on AI applications in diagnosing orthopedic fractures from inception to September 29, 2021. Pooled sensitivity and specificity and the area under the receiver operating characteristic curves (AUC) were obtained. This study was registered in the PROSPERO database prior to initiation (CRD 42021254618).

Results

Thirty-nine were eligible for quantitative analysis. The overall pooled AUC, sensitivity, and specificity were 0.96 (95% CI 0.94–0.98), 90% (95% CI 87–92%), and 92% (95% CI 90–94%), respectively. In subgroup analyses, multicenter designed studies yielded higher sensitivity (92% vs. 88%) and specificity (94% vs. 91%) than single-center studies. AI demonstrated higher sensitivity with transfer learning (with vs. without: 92% vs. 87%) or data augmentation (with vs. without: 92% vs. 87%), compared to those without. Utilizing plain X-rays as input images for AI achieved results comparable to CT (AUC 0.96 vs. 0.96). Moreover, AI achieved comparable results to humans (AUC 0.97 vs. 0.97) and better results than non-expert human readers (AUC 0.98 vs. 0.96; sensitivity 95% vs. 88%).

Conclusions

AI demonstrated high accuracy in diagnosing orthopedic fractures from medical images. Larger-scale studies with higher design quality are needed to validate our findings.

Key Points

• Multicenter study design, application of transfer learning, and data augmentation are closely related to improving the performance of artificial intelligence models in diagnosing orthopedic fractures.
• Utilizing plain X-rays as input images for AI to diagnose fractures achieved results comparable to CT (AUC 0.96 vs. 0.96).
• AI achieved comparable results to humans (AUC 0.97 vs. 0.97) but was superior to non-expert human readers (AUC 0.98 vs. 0.96, sensitivity 95% vs. 88%) in diagnosing fractures.
Appendix
Available only for authorised users
Literature
2.
3.
go back to reference Sahlin Y (1990) Occurrence of fractures in a defined population: a 1-year study. Injury 21:158–160PubMedCrossRef Sahlin Y (1990) Occurrence of fractures in a defined population: a 1-year study. Injury 21:158–160PubMedCrossRef
4.
go back to reference Çolak I, Bekler HI, Bulut G, Eceviz E, Gülabi D, Çeçen GS (2018) Lack of experience is a significant factor in the missed diagnosis of perilunate fracture dislocation or isolated dislocation. Acta Orthop Traumatol Turc 52:32–36 Çolak I, Bekler HI, Bulut G, Eceviz E, Gülabi D, Çeçen GS (2018) Lack of experience is a significant factor in the missed diagnosis of perilunate fracture dislocation or isolated dislocation. Acta Orthop Traumatol Turc 52:32–36
5.
go back to reference Moonen PJ, Mercelina L, Boer W, T Fret (2017) Diagnostic error in the Emergency Department: follow up of patients with minor trauma in the outpatient clinic. Scand J Trauma Resusc Emerg Med 25:13 Moonen PJ, Mercelina L, Boer W, T Fret (2017) Diagnostic error in the Emergency Department: follow up of patients with minor trauma in the outpatient clinic. Scand J Trauma Resusc Emerg Med 25:13
6.
go back to reference Wei CJ, Tsai WC, Tiu CM, Wu HT, Chiou HJ, Chang CY (2006) Systematic analysis of missed extremity fractures in emergency radiology. Acta Radiol 47:710–717 Wei CJ, Tsai WC, Tiu CM, Wu HT, Chiou HJ, Chang CY (2006) Systematic analysis of missed extremity fractures in emergency radiology. Acta Radiol 47:710–717
7.
go back to reference Bottle A, Aylin P (2006) Mortality associated with delay in operation after hip fracture: observational study. BMJ 332:947–951 Bottle A, Aylin P (2006) Mortality associated with delay in operation after hip fracture: observational study. BMJ 332:947–951
8.
go back to reference Leer-Salvesen S, Engesæter LB, Dybvik E, Furnes O, Kristensen TB, Gjertsen JE (2019) Does time from fracture to surgery affect mortality and intraoperative medical complications for hip fracture patients? An observational study of 73 557 patients reported to the Norwegian Hip Fracture Register. Bone Joint J 101-b:1129-1137 Leer-Salvesen S, Engesæter LB, Dybvik E, Furnes O, Kristensen TB, Gjertsen JE (2019) Does time from fracture to surgery affect mortality and intraoperative medical complications for hip fracture patients? An observational study of 73 557 patients reported to the Norwegian Hip Fracture Register. Bone Joint J 101-b:1129-1137
9.
go back to reference McKinney SM, Sieniek M, Godbole V et al (2020) International evaluation of an AI system for breast cancer screening. Nature 577:89–94PubMedCrossRef McKinney SM, Sieniek M, Godbole V et al (2020) International evaluation of an AI system for breast cancer screening. Nature 577:89–94PubMedCrossRef
10.
go back to reference Rodríguez-Ruiz A, Krupinski E, Mordang JJ et al (2019) Detection of breast cancer with mammography: effect of an artificial intelligence support system. Radiology 290:305–314PubMedCrossRef Rodríguez-Ruiz A, Krupinski E, Mordang JJ et al (2019) Detection of breast cancer with mammography: effect of an artificial intelligence support system. Radiology 290:305–314PubMedCrossRef
11.
go back to reference Rodriguez-Ruiz A, Lång K, Gubern-Merida A et al (2019) Stand-alone artificial intelligence for breast cancer detection in mammography: comparison with 101 radiologists. J Natl Cancer Inst 111:916–922PubMedPubMedCentralCrossRef Rodriguez-Ruiz A, Lång K, Gubern-Merida A et al (2019) Stand-alone artificial intelligence for breast cancer detection in mammography: comparison with 101 radiologists. J Natl Cancer Inst 111:916–922PubMedPubMedCentralCrossRef
12.
go back to reference Schmidt-Erfurth U, Sadeghipour A, Gerendas BS, Waldstein SM, Bogunović H (2018) Artificial intelligence in retina. Prog Retin Eye Res 67:1–29 Schmidt-Erfurth U, Sadeghipour A, Gerendas BS, Waldstein SM, Bogunović H (2018) Artificial intelligence in retina. Prog Retin Eye Res 67:1–29
13.
go back to reference Vujosevic S, Aldington SJ, Silva P et al (2020) Screening for diabetic retinopathy: new perspectives and challenges. Lancet Diabetes Endocrinol 8:337–347PubMedCrossRef Vujosevic S, Aldington SJ, Silva P et al (2020) Screening for diabetic retinopathy: new perspectives and challenges. Lancet Diabetes Endocrinol 8:337–347PubMedCrossRef
14.
go back to reference Kikinis R, Wells WM 3rd (2020) Detection of brain metastases with deep learning single-shot detector algorithms. Radiology 295:416–417PubMedCrossRef Kikinis R, Wells WM 3rd (2020) Detection of brain metastases with deep learning single-shot detector algorithms. Radiology 295:416–417PubMedCrossRef
15.
go back to reference Xue J, Wang B, Ming Y et al (2020) Deep learning-based detection and segmentation-assisted management of brain metastases. Neuro Oncol 22:505–514PubMedCrossRef Xue J, Wang B, Ming Y et al (2020) Deep learning-based detection and segmentation-assisted management of brain metastases. Neuro Oncol 22:505–514PubMedCrossRef
16.
go back to reference Abbasi J (2020) Artificial intelligence-based skin cancer phone apps unreliable. JAMA 323:1336PubMed Abbasi J (2020) Artificial intelligence-based skin cancer phone apps unreliable. JAMA 323:1336PubMed
17.
18.
go back to reference Gregory J, Welliver S, Chong J (2020) Top 10 reviewer critiques of radiology artificial intelligence (AI) articles: qualitative thematic analysis of reviewer critiques of machine learning/deep learning manuscripts submitted to JMRI. J Magn Reson Imaging 52:248–254PubMedCrossRef Gregory J, Welliver S, Chong J (2020) Top 10 reviewer critiques of radiology artificial intelligence (AI) articles: qualitative thematic analysis of reviewer critiques of machine learning/deep learning manuscripts submitted to JMRI. J Magn Reson Imaging 52:248–254PubMedCrossRef
19.
go back to reference Park SH, Han K (2018) Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction. Radiology 286:800–809PubMedCrossRef Park SH, Han K (2018) Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction. Radiology 286:800–809PubMedCrossRef
20.
go back to reference Park SH, Kressel HY (2018) Connecting technological innovation in artificial intelligence to real-world medical practice through rigorous clinical validation: what peer-reviewed medical journals could do. J Korean Med Sci 33:e152PubMedPubMedCentralCrossRef Park SH, Kressel HY (2018) Connecting technological innovation in artificial intelligence to real-world medical practice through rigorous clinical validation: what peer-reviewed medical journals could do. J Korean Med Sci 33:e152PubMedPubMedCentralCrossRef
21.
go back to reference Duron L, Ducarouge A, Gillibert A et al (2021) Assessment of an AI aid in detection of adult appendicular skeletal fractures by emergency physicians and radiologists: a multicenter cross-sectional diagnostic study. Radiology 300:120–129PubMedCrossRef Duron L, Ducarouge A, Gillibert A et al (2021) Assessment of an AI aid in detection of adult appendicular skeletal fractures by emergency physicians and radiologists: a multicenter cross-sectional diagnostic study. Radiology 300:120–129PubMedCrossRef
22.
go back to reference Kirienko M, Sollini M, Ninatti G et al (2021) Distributed learning: a reliable privacy-preserving strategy to change multicenter collaborations using AI. Eur J Nucl Med Mol Imaging 48:3791–3804PubMedPubMedCentralCrossRef Kirienko M, Sollini M, Ninatti G et al (2021) Distributed learning: a reliable privacy-preserving strategy to change multicenter collaborations using AI. Eur J Nucl Med Mol Imaging 48:3791–3804PubMedPubMedCentralCrossRef
23.
go back to reference Lee AY, Yanagihara RT, Lee CS et al (2021) Multicenter, head-to-head, real-world validation study of seven automated artificial intelligence diabetic retinopathy screening systems. Diabetes Care 44:1168–1175PubMedPubMedCentralCrossRef Lee AY, Yanagihara RT, Lee CS et al (2021) Multicenter, head-to-head, real-world validation study of seven automated artificial intelligence diabetic retinopathy screening systems. Diabetes Care 44:1168–1175PubMedPubMedCentralCrossRef
24.
go back to reference Novakovsky G, Saraswat M, Fornes O, Mostafavi S, Wasserman WW (2021) Biologically relevant transfer learning improves transcription factor binding prediction. Genome Biol 22:280 Novakovsky G, Saraswat M, Fornes O, Mostafavi S, Wasserman WW (2021) Biologically relevant transfer learning improves transcription factor binding prediction. Genome Biol 22:280
25.
go back to reference Shi H, Li J, Mao, Hwang KS (2021) Lateral transfer learning for multiagent reinforcement learning. IEEE Trans Cybern 1–13 Shi H, Li J, Mao, Hwang KS (2021) Lateral transfer learning for multiagent reinforcement learning. IEEE Trans Cybern 1–13
26.
go back to reference Xiao Y, Liang F, Liu B (2022) A transfer learning-based multi-instance learning method with weak labels. IEEE Trans Cybern 52:287–300PubMedCrossRef Xiao Y, Liang F, Liu B (2022) A transfer learning-based multi-instance learning method with weak labels. IEEE Trans Cybern 52:287–300PubMedCrossRef
27.
go back to reference Zhen L, Hu P, Peng X, Goh RSM, Zhou JT (2022) Deep multimodal transfer learning for cross-modal retrieval. IEEE Trans Neural Netw Learn Syst 33:798–810 Zhen L, Hu P, Peng X, Goh RSM, Zhou JT (2022) Deep multimodal transfer learning for cross-modal retrieval. IEEE Trans Neural Netw Learn Syst 33:798–810
28.
go back to reference Chaitanya K, Karani N, Baumgartner CF et al (2021) Semi-supervised task-driven data augmentation for medical image segmentation. Med Image Anal 68:101934PubMedCrossRef Chaitanya K, Karani N, Baumgartner CF et al (2021) Semi-supervised task-driven data augmentation for medical image segmentation. Med Image Anal 68:101934PubMedCrossRef
29.
go back to reference Gao J, Hua Y, Hu G, Wang C, Robertson NM (2021) Discrepancy-guided domain-adaptive data augmentation. IEEE Trans Neural Netw Learn Syst 1–12 Gao J, Hua Y, Hu G, Wang C, Robertson NM (2021) Discrepancy-guided domain-adaptive data augmentation. IEEE Trans Neural Netw Learn Syst 1–12
30.
go back to reference Tran NT, Tran VH, Nguyen NB, Nguyen TK, Cheung NM (2021) On data augmentation for GAN training. IEEE Trans Image Process 30:1882–1897 Tran NT, Tran VH, Nguyen NB, Nguyen TK, Cheung NM (2021) On data augmentation for GAN training. IEEE Trans Image Process 30:1882–1897
31.
go back to reference Jonsdottir KY, Østergaard L, Mouridsen K (2009) Predicting tissue outcome from acute stroke magnetic resonance imaging: improving model performance by optimal sampling of training data. Stroke 40:3006–3011PubMedCrossRef Jonsdottir KY, Østergaard L, Mouridsen K (2009) Predicting tissue outcome from acute stroke magnetic resonance imaging: improving model performance by optimal sampling of training data. Stroke 40:3006–3011PubMedCrossRef
32.
go back to reference Rank N, Pfahringer B, Kempfert J et al (2020) Deep-learning-based real-time prediction of acute kidney injury outperforms human predictive performance. NPJ Digit Med 3:139PubMedPubMedCentralCrossRef Rank N, Pfahringer B, Kempfert J et al (2020) Deep-learning-based real-time prediction of acute kidney injury outperforms human predictive performance. NPJ Digit Med 3:139PubMedPubMedCentralCrossRef
33.
go back to reference Sanders WS, Johnston CI, Bridges SM, Burgess SC, Willeford KO (2011) Prediction of cell penetrating peptides by support vector machines. PLoS Comput Biol 7:e1002101 Sanders WS, Johnston CI, Bridges SM, Burgess SC, Willeford KO (2011) Prediction of cell penetrating peptides by support vector machines. PLoS Comput Biol 7:e1002101
34.
go back to reference Hashimoto DA, Witkowski E, Gao L, Meireles O, Rosman G (2020) Artificial intelligence in anesthesiology: current techniques, clinical applications, and limitations. Anesthesiology 132:379–394 Hashimoto DA, Witkowski E, Gao L, Meireles O, Rosman G (2020) Artificial intelligence in anesthesiology: current techniques, clinical applications, and limitations. Anesthesiology 132:379–394
35.
go back to reference Kumar A, Pirogova E, Mahmoud SS, Fang Q (2021) Classification of error-related potentials evoked during stroke rehabilitation training. J Neural Eng 18 Kumar A, Pirogova E, Mahmoud SS, Fang Q (2021) Classification of error-related potentials evoked during stroke rehabilitation training. J Neural Eng 18
36.
go back to reference Reichstein M, Camps-Valls G, Stevens B et al (2019) Deep learning and process understanding for data-driven Earth system science. Nature 566:195–204PubMedCrossRef Reichstein M, Camps-Valls G, Stevens B et al (2019) Deep learning and process understanding for data-driven Earth system science. Nature 566:195–204PubMedCrossRef
37.
go back to reference Schwendicke F, Golla T, Dreher M, Krois J (2019) Convolutional neural networks for dental image diagnostics: A scoping review. J Dent 91:103226 Schwendicke F, Golla T, Dreher M, Krois J (2019) Convolutional neural networks for dental image diagnostics: A scoping review. J Dent 91:103226
38.
40.
go back to reference Liberati A, Altman DG, Tetzlaff J et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 6:e1000100PubMedPubMedCentralCrossRef Liberati A, Altman DG, Tetzlaff J et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 6:e1000100PubMedPubMedCentralCrossRef
41.
go back to reference Whiting PF, Rutjes AW, Westwood ME et al (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155:529–536PubMedCrossRef Whiting PF, Rutjes AW, Westwood ME et al (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155:529–536PubMedCrossRef
42.
go back to reference Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560 Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560
43.
go back to reference Bae J, Yu S, Oh J et al (2021) External validation of deep learning algorithm for detecting and visualizing femoral neck fracture including displaced and non-displaced fracture on plain X-ray. J Digit Imaging 34:1099–1109PubMedCrossRef Bae J, Yu S, Oh J et al (2021) External validation of deep learning algorithm for detecting and visualizing femoral neck fracture including displaced and non-displaced fracture on plain X-ray. J Digit Imaging 34:1099–1109PubMedCrossRef
44.
go back to reference Beyaz S, Açıcı K, Sümer E (2020) Femoral neck fracture detection in X-ray images using deep learning and genetic algorithm approaches. Jt Dis Relat Surg 31:175–183PubMedPubMedCentral Beyaz S, Açıcı K, Sümer E (2020) Femoral neck fracture detection in X-ray images using deep learning and genetic algorithm approaches. Jt Dis Relat Surg 31:175–183PubMedPubMedCentral
45.
go back to reference Blüthgen C, Becker AS, Vittoria DMI, Meier A, Martini K, Frauenfelder T (2020) Detection and localization of distal radius fractures: deep learning system versus radiologists. Eur J Radiol 126:108925 Blüthgen C, Becker AS, Vittoria DMI, Meier A, Martini K, Frauenfelder T (2020) Detection and localization of distal radius fractures: deep learning system versus radiologists. Eur J Radiol 126:108925
46.
go back to reference Cheng CT, Chen CC, Cheng FJ et al (2020) A human-algorithm integration system for hip fracture detection on plain radiography: system development and validation study. JMIR Med Inform 8:e19416PubMedPubMedCentralCrossRef Cheng CT, Chen CC, Cheng FJ et al (2020) A human-algorithm integration system for hip fracture detection on plain radiography: system development and validation study. JMIR Med Inform 8:e19416PubMedPubMedCentralCrossRef
47.
go back to reference Cheng CT, Ho TY, Lee TY et al (2019) Application of a deep learning algorithm for detection and visualization of hip fractures on plain pelvic radiographs. Eur Radiol 29:5469–5477PubMedPubMedCentralCrossRef Cheng CT, Ho TY, Lee TY et al (2019) Application of a deep learning algorithm for detection and visualization of hip fractures on plain pelvic radiographs. Eur Radiol 29:5469–5477PubMedPubMedCentralCrossRef
48.
go back to reference Choi J, Hui JZ, Spain D, Su YS, Cheng CT, Liao CH(2021) Practical computer vision application to detect hip fractures on pelvic X-rays: a bi-institutional study. Trauma Surg Acute Care Open 6:e000705 Choi J, Hui JZ, Spain D, Su YS, Cheng CT, Liao CH(2021) Practical computer vision application to detect hip fractures on pelvic X-rays: a bi-institutional study. Trauma Surg Acute Care Open 6:e000705
49.
go back to reference Choi JW, Cho YJ, Lee S et al (2020) Using a dual-input convolutional neural network for automated detection of pediatric supracondylar fracture on conventional radiography. Invest Radiol 55:101–110PubMedCrossRef Choi JW, Cho YJ, Lee S et al (2020) Using a dual-input convolutional neural network for automated detection of pediatric supracondylar fracture on conventional radiography. Invest Radiol 55:101–110PubMedCrossRef
50.
go back to reference Chung SW, Han SS, Lee JW et al (2018) Automated detection and classification of the proximal humerus fracture by using deep learning algorithm. Acta Orthop 89:468–473PubMedPubMedCentralCrossRef Chung SW, Han SS, Lee JW et al (2018) Automated detection and classification of the proximal humerus fracture by using deep learning algorithm. Acta Orthop 89:468–473PubMedPubMedCentralCrossRef
51.
go back to reference Derkatch S, Kirby C, Kimelman D, Jozani MJ, Davidson JM, Leslie WD (2019) Identification of vertebral fractures by convolutional neural networks to predict nonvertebral and hip fractures: a registry-based cohort study of dual X-ray absorptiometry. Radiology 293:405–411 Derkatch S, Kirby C, Kimelman D, Jozani MJ, Davidson JM, Leslie WD (2019) Identification of vertebral fractures by convolutional neural networks to predict nonvertebral and hip fractures: a registry-based cohort study of dual X-ray absorptiometry. Radiology 293:405–411
52.
go back to reference Gan K, Xu D, Lin Y et al (2019) Artificial intelligence detection of distal radius fractures: a comparison between the convolutional neural network and professional assessments. Acta Orthop 90:394–400PubMedPubMedCentralCrossRef Gan K, Xu D, Lin Y et al (2019) Artificial intelligence detection of distal radius fractures: a comparison between the convolutional neural network and professional assessments. Acta Orthop 90:394–400PubMedPubMedCentralCrossRef
53.
go back to reference Guy S, Jacquet C, Tsenkoff D, Argenson JN, Ollivier M (2021) Deep learning for the radiographic diagnosis of proximal femur fractures: limitations and programming issues. Orthop Traumatol Surg Res 107:102837 Guy S, Jacquet C, Tsenkoff D, Argenson JN, Ollivier M (2021) Deep learning for the radiographic diagnosis of proximal femur fractures: limitations and programming issues. Orthop Traumatol Surg Res 107:102837
54.
go back to reference Hendrix N, Scholten E, Vernhout B et al (2021) Development and validation of a convolutional neural network for automated detection of scaphoid fractures on conventional radiographs. Radiol Artif Intell 3:e200260PubMedPubMedCentralCrossRef Hendrix N, Scholten E, Vernhout B et al (2021) Development and validation of a convolutional neural network for automated detection of scaphoid fractures on conventional radiographs. Radiol Artif Intell 3:e200260PubMedPubMedCentralCrossRef
55.
go back to reference Jiménez-Sánchez A, Kazi A, Albarqouni S et al (2020) Precise proximal femur fracture classification for interactive training and surgical planning. Int J Comput Assist Radiol Surg 15:847–857PubMedCrossRef Jiménez-Sánchez A, Kazi A, Albarqouni S et al (2020) Precise proximal femur fracture classification for interactive training and surgical planning. Int J Comput Assist Radiol Surg 15:847–857PubMedCrossRef
56.
go back to reference Jones RM, Sharma A, Hotchkiss R et al (2020) Assessment of a deep-learning system for fracture detection in musculoskeletal radiographs. NPJ Digit Med 3:144PubMedPubMedCentralCrossRef Jones RM, Sharma A, Hotchkiss R et al (2020) Assessment of a deep-learning system for fracture detection in musculoskeletal radiographs. NPJ Digit Med 3:144PubMedPubMedCentralCrossRef
57.
go back to reference Kim MW, Jung J, Park SJ et al (2021) Application of convolutional neural networks for distal radio-ulnar fracture detection on plain radiographs in the emergency room. Clin Exp Emerg Med 8:120–127PubMedPubMedCentralCrossRef Kim MW, Jung J, Park SJ et al (2021) Application of convolutional neural networks for distal radio-ulnar fracture detection on plain radiographs in the emergency room. Clin Exp Emerg Med 8:120–127PubMedPubMedCentralCrossRef
58.
go back to reference Kitamura G, Chung CY, Moore BEN (2019) Ankle fracture detection utilizing a convolutional neural network ensemble implemented with a small sample, de novo training, and multiview incorporation. J Digit Imaging 32:672–677PubMedPubMedCentralCrossRef Kitamura G, Chung CY, Moore BEN (2019) Ankle fracture detection utilizing a convolutional neural network ensemble implemented with a small sample, de novo training, and multiview incorporation. J Digit Imaging 32:672–677PubMedPubMedCentralCrossRef
59.
go back to reference Krogue JD, Cheng KV, Hwang KM et al (2020) Automatic hip fracture identification and functional subclassification with deep learning. Radiol Artif Intell 2:e190023PubMedPubMedCentralCrossRef Krogue JD, Cheng KV, Hwang KM et al (2020) Automatic hip fracture identification and functional subclassification with deep learning. Radiol Artif Intell 2:e190023PubMedPubMedCentralCrossRef
60.
go back to reference Langerhuizen DWG, Bulstra AEJ, Janssen SJ et al (2020) Is deep learning on par with human observers for detection of radiographically visible and occult fractures of the scaphoid? Clin Orthop Relat Res 478:2653–2659PubMedPubMedCentralCrossRef Langerhuizen DWG, Bulstra AEJ, Janssen SJ et al (2020) Is deep learning on par with human observers for detection of radiographically visible and occult fractures of the scaphoid? Clin Orthop Relat Res 478:2653–2659PubMedPubMedCentralCrossRef
61.
go back to reference Li YC, Chen HH, Horng-Shing LH, Wu HTH, Chang MC, Chou PH (2021) Can a deep-learning model for the automated detection of vertebral fractures approach the performance level of human subspecialists? Clin Orthop Relat Res 479:1598–1612 Li YC, Chen HH, Horng-Shing LH, Wu HTH, Chang MC, Chou PH (2021) Can a deep-learning model for the automated detection of vertebral fractures approach the performance level of human subspecialists? Clin Orthop Relat Res 479:1598–1612
62.
go back to reference Ma Y, Luo Y (2021) Bone fracture detection through the two-stage system of Crack-Sensitive Convolutional Neural Network. Inform Med Unlocked 22 Ma Y, Luo Y (2021) Bone fracture detection through the two-stage system of Crack-Sensitive Convolutional Neural Network. Inform Med Unlocked 22
63.
go back to reference MacKinnon T (2018) Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks. Clin Radiol 73:439–445PubMedCrossRef MacKinnon T (2018) Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks. Clin Radiol 73:439–445PubMedCrossRef
64.
go back to reference Mawatari T, Hayashida Y, Katsuragawa S et al (2020) The effect of deep convolutional neural networks on radiologists' performance in the detection of hip fractures on digital pelvic radiographs. Eur J Radiol 130:109188PubMedCrossRef Mawatari T, Hayashida Y, Katsuragawa S et al (2020) The effect of deep convolutional neural networks on radiologists' performance in the detection of hip fractures on digital pelvic radiographs. Eur J Radiol 130:109188PubMedCrossRef
65.
go back to reference Mehta SD, Sebro R (2020) Computer-aided detection of incidental lumbar spine fractures from routine dual-energy X-ray absorptiometry (DEXA) studies using a support vector machine (SVM) classifier. J Digit Imaging 33:204–210PubMedCrossRef Mehta SD, Sebro R (2020) Computer-aided detection of incidental lumbar spine fractures from routine dual-energy X-ray absorptiometry (DEXA) studies using a support vector machine (SVM) classifier. J Digit Imaging 33:204–210PubMedCrossRef
66.
go back to reference Monchka BA, Kimelman D, Lix LM, Leslie WD (2021) Feasibility of a generalized convolutional neural network for automated identification of vertebral compression fractures: the Manitoba Bone Mineral Density Registry. Bone 150:116017 Monchka BA, Kimelman D, Lix LM, Leslie WD (2021) Feasibility of a generalized convolutional neural network for automated identification of vertebral compression fractures: the Manitoba Bone Mineral Density Registry. Bone 150:116017
67.
go back to reference Mutasa S, Varada S, Goel A, Wong TT, Rasiej MJ (2020) Advanced deep learning techniques applied to automated femoral neck fracture detection and classification. J Digit Imaging 33:1209–1217 Mutasa S, Varada S, Goel A, Wong TT, Rasiej MJ (2020) Advanced deep learning techniques applied to automated femoral neck fracture detection and classification. J Digit Imaging 33:1209–1217
68.
go back to reference Ozkaya E, Topal FE, Bulut T, Gursoy M, Ozuysal M, Karakaya Z (2022) Evaluation of an artificial intelligence system for diagnosing scaphoid fracture on direct radiography. Eur J Trauma Emerg Surg 48:585–592 Ozkaya E, Topal FE, Bulut T, Gursoy M, Ozuysal M, Karakaya Z (2022) Evaluation of an artificial intelligence system for diagnosing scaphoid fracture on direct radiography. Eur J Trauma Emerg Surg 48:585–592
69.
go back to reference Rayan JC, Reddy N, Kan JH, Zhang W, Annapragada A (2019) Binomial classification of pediatric elbow fractures using a deep learning multiview approach emulating radiologist decision making. Radiol Artif Intell 1:e180015 Rayan JC, Reddy N, Kan JH, Zhang W, Annapragada A (2019) Binomial classification of pediatric elbow fractures using a deep learning multiview approach emulating radiologist decision making. Radiol Artif Intell 1:e180015
70.
go back to reference Reichert G, Bellamine A, Fontaine M et al (2021) How can a deep learning algorithm improve fracture detection on X-rays in the emergency room? J Imaging 7 Reichert G, Bellamine A, Fontaine M et al (2021) How can a deep learning algorithm improve fracture detection on X-rays in the emergency room? J Imaging 7
71.
go back to reference Ren M, Yi PH (2022) Deep learning detection of subtle fractures using staged algorithms to mimic radiologist search pattern. Skeletal Radiol 51:345–353PubMedCrossRef Ren M, Yi PH (2022) Deep learning detection of subtle fractures using staged algorithms to mimic radiologist search pattern. Skeletal Radiol 51:345–353PubMedCrossRef
72.
go back to reference Sato Y, Takegami Y, Asamoto T et al (2021) Artificial intelligence improves the accuracy of residents in the diagnosis of hip fractures: a multicenter study. BMC Musculoskelet Disord 22:407PubMedPubMedCentralCrossRef Sato Y, Takegami Y, Asamoto T et al (2021) Artificial intelligence improves the accuracy of residents in the diagnosis of hip fractures: a multicenter study. BMC Musculoskelet Disord 22:407PubMedPubMedCentralCrossRef
73.
go back to reference Urakawa T, Tanaka Y, Goto S, Matsuzawa H, Watanabe K, Endo N (2019) Detecting intertrochanteric hip fractures with orthopedist-level accuracy using a deep convolutional neural network. Skeletal Radiol 48:239–244 Urakawa T, Tanaka Y, Goto S, Matsuzawa H, Watanabe K, Endo N (2019) Detecting intertrochanteric hip fractures with orthopedist-level accuracy using a deep convolutional neural network. Skeletal Radiol 48:239–244
74.
go back to reference Yoon AP, Lee YL, Kane RL, Kuo CF, Lin C, Chung KC (2021) Development and validation of a deep learning model using convolutional neural networks to identify scaphoid fractures in radiographs. JAMA Netw Open 4:e216096 Yoon AP, Lee YL, Kane RL, Kuo CF, Lin C, Chung KC (2021) Development and validation of a deep learning model using convolutional neural networks to identify scaphoid fractures in radiographs. JAMA Netw Open 4:e216096
75.
go back to reference Yu JS, Yu SM, Erdal BS et al (2020) Detection and localisation of hip fractures on anteroposterior radiographs with artificial intelligence: proof of concept. Clin Radiol 75:237.e231-237.e239 Yu JS, Yu SM, Erdal BS et al (2020) Detection and localisation of hip fractures on anteroposterior radiographs with artificial intelligence: proof of concept. Clin Radiol 75:237.e231-237.e239
76.
go back to reference Al-Helo S, Alomari RS, Ghosh S et al (2013) Compression fracture diagnosis in lumbar: a clinical CAD system. Int J Comput Assist Radiol Surg 8:461–469PubMedCrossRef Al-Helo S, Alomari RS, Ghosh S et al (2013) Compression fracture diagnosis in lumbar: a clinical CAD system. Int J Comput Assist Radiol Surg 8:461–469PubMedCrossRef
77.
go back to reference Burns JE, Yao J, Summers RM (2017) Vertebral body compression fractures and bone density: automated detection and classification on CT images. Radiology 284:788–797PubMedCrossRef Burns JE, Yao J, Summers RM (2017) Vertebral body compression fractures and bone density: automated detection and classification on CT images. Radiology 284:788–797PubMedCrossRef
78.
go back to reference Hu Y, He X, Zhang R, Guo L, Gao L, Wang J (2021) Slice grouping and aggregation network for auxiliary diagnosis of rib fractures. Biomed Signal Process Control 67 Hu Y, He X, Zhang R, Guo L, Gao L, Wang J (2021) Slice grouping and aggregation network for auxiliary diagnosis of rib fractures. Biomed Signal Process Control 67
79.
go back to reference Small JE, Osler P, Paul AB, Kunst M (2021) CT cervical spine fracture detection using a convolutional neural network. AJNR Am J Neuroradiol 42:1341–1347 Small JE, Osler P, Paul AB, Kunst M (2021) CT cervical spine fracture detection using a convolutional neural network. AJNR Am J Neuroradiol 42:1341–1347
80.
go back to reference Voter AF, Larson ME, Garrett JW, Yu JPJ (2021) Diagnostic accuracy and failure mode analysis of a deep learning algorithm for the detection of cervical spine fractures. AJNR Am J Neuroradiol 42:1550–1556 Voter AF, Larson ME, Garrett JW, Yu JPJ (2021) Diagnostic accuracy and failure mode analysis of a deep learning algorithm for the detection of cervical spine fractures. AJNR Am J Neuroradiol 42:1550–1556
81.
go back to reference Weikert T, Noordtzij LA, Bremerich J et al (2020) Assessment of a deep learning algorithm for the detection of rib fractures on whole-body trauma computed tomography. Korean J Radiol 21:891–899PubMedCrossRef Weikert T, Noordtzij LA, Bremerich J et al (2020) Assessment of a deep learning algorithm for the detection of rib fractures on whole-body trauma computed tomography. Korean J Radiol 21:891–899PubMedCrossRef
82.
go back to reference Caravagna G, Giarratano Y, Ramazzotti D et al (2018) Detecting repeated cancer evolution from multi-region tumor sequencing data. Nat Methods 15:707–714PubMedPubMedCentralCrossRef Caravagna G, Giarratano Y, Ramazzotti D et al (2018) Detecting repeated cancer evolution from multi-region tumor sequencing data. Nat Methods 15:707–714PubMedPubMedCentralCrossRef
83.
85.
go back to reference Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22:1345–1359CrossRef Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22:1345–1359CrossRef
86.
go back to reference Thrall JH, Li X, Li Q et al (2018) Artificial intelligence and machine learning in radiology: opportunities, challenges, pitfalls, and criteria for success. J Am Coll Radiol 15:504–508PubMedCrossRef Thrall JH, Li X, Li Q et al (2018) Artificial intelligence and machine learning in radiology: opportunities, challenges, pitfalls, and criteria for success. J Am Coll Radiol 15:504–508PubMedCrossRef
87.
go back to reference Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D (2017) Grad-CAM: visual explanations from deep networks via gradient-based localization 2017 IEEE International Conference on Computer Vision (ICCV), pp 618-626 Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D (2017) Grad-CAM: visual explanations from deep networks via gradient-based localization 2017 IEEE International Conference on Computer Vision (ICCV), pp 618-626
Metadata
Title
Diagnostic accuracy and potential covariates of artificial intelligence for diagnosing orthopedic fractures: a systematic literature review and meta-analysis
Authors
Xiang Zhang
Yi Yang
Yi-Wei Shen
Ke-Rui Zhang
Ze-kun Jiang
Li-Tai Ma
Chen Ding
Bei-Yu Wang
Yang Meng
Hao Liu
Publication date
27-06-2022
Publisher
Springer Berlin Heidelberg
Published in
European Radiology / Issue 10/2022
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-022-08956-4

Other articles of this Issue 10/2022

European Radiology 10/2022 Go to the issue