Skip to main content
Top
Published in: Annals of Intensive Care 1/2019

Open Access 01-12-2019 | Research

Association between potassium concentrations, variability and supplementation, and in-hospital mortality in ICU patients: a retrospective analysis

Authors: Lilian Jo Engelhardt, Felix Balzer, Michael C. Müller, Julius J. Grunow, Claudia D. Spies, Kenneth B. Christopher, Steffen Weber-Carstens, Tobias Wollersheim

Published in: Annals of Intensive Care | Issue 1/2019

Login to get access

Abstract

Background

Serum potassium concentrations are commonly between 3.5 and 5.0 mmol/l. Standardised protocols for potassium range and supplementation in the ICU are lacking. The purpose of this retrospective analysis of ICU patients was to investigate potassium concentrations, variability and supplementation, and their association with in-hospital mortality.

Methods

ICU patients ≥ 18 years, with ≥ 2 serum potassium values, treated at the Charité - Universitätsmedizin Berlin between 2006 and 2018 were eligible for inclusion. We categorised into groups of mean potassium concentrations: < 3.0, 3.0–3.5, > 3.5–4.0, > 4.0–4.5, > 4.5–5.0, > 5.0–5.5, > 5.5 mmol/l and potassium variability: 1st, 2nd and ≥ 3rd standard deviation (SD). We analysed the association between the particular groups and in-hospital mortality and performed binary logistic regression analysis. Survival curves were performed according to Kaplan–Meier and tested by Log-Rank. In a subanalysis, the association between potassium supplementation and in-hospital mortality was investigated.

Results

In 53,248 ICU patients with 1,337,742 potassium values, the lowest mortality (3.7%) was observed in patients with mean potassium concentrations between > 3.5 and 4.0 mmol/l and a low potassium variability within the 1st SD. Binary logistic regression confirmed these results. In a subanalysis of 22,406 ICU patients (ICU admission: 2013–2018), 12,892 (57.5%) received oral and/or intravenous potassium supplementation. Potassium supplementation was associated with an increase in in-hospital mortality in potassium categories from > 3.5 to 4.5 mmol/l and in the 1st, 2nd and ≥ 3rd SD (p < 0.001 each).

Conclusions

ICU patients may benefit from a target range between 3.5 and 4.0 mmol/l and a minimal potassium variability. Clear potassium target ranges have to be determined. Criteria for widely applied potassium supplementation should be critically discussed.
Trial registration German Clinical Trials Register, DRKS00016411. Retrospectively registered 11 January 2019, http://​www.​drks.​de/​DRKS00016411
Appendix
Available only for authorised users
Literature
2.
go back to reference Truhlář A, Deakin CD, Soar J, Khalifa GEA, Alfonzo A, Bierens JJLM, et al. European resuscitation council guidelines for resuscitation 2015. Resuscitation. 2015;95:148–201.CrossRefPubMed Truhlář A, Deakin CD, Soar J, Khalifa GEA, Alfonzo A, Bierens JJLM, et al. European resuscitation council guidelines for resuscitation 2015. Resuscitation. 2015;95:148–201.CrossRefPubMed
4.
go back to reference Torlén K, Kalantar-Zadeh K, Molnar MZ, Vashistha T, Mehrotra R. Serum potassium and cause-specific mortality in a large peritoneal dialysis cohort. Clin J Am Soc Nephrol. 2012;7:1272–84.CrossRefPubMedPubMedCentral Torlén K, Kalantar-Zadeh K, Molnar MZ, Vashistha T, Mehrotra R. Serum potassium and cause-specific mortality in a large peritoneal dialysis cohort. Clin J Am Soc Nephrol. 2012;7:1272–84.CrossRefPubMedPubMedCentral
5.
go back to reference Hessels L, Hoekstra M, Mijzen LJ, Vogelzang M, Dieperink W, Lansink AO, et al. The relationship between serum potassium, potassium variability and in-hospital mortality in critically ill patients and a before-after analysis on the impact of computer-assisted potassium control. Crit Care Lond Engl. 2015;19:4.CrossRef Hessels L, Hoekstra M, Mijzen LJ, Vogelzang M, Dieperink W, Lansink AO, et al. The relationship between serum potassium, potassium variability and in-hospital mortality in critically ill patients and a before-after analysis on the impact of computer-assisted potassium control. Crit Care Lond Engl. 2015;19:4.CrossRef
6.
go back to reference McMahon GM, Mendu ML, Gibbons FK, Christopher KB. Association between hyperkalemia at critical care initiation and mortality. Intensive Care Med. 2012;38:1834–42.CrossRefPubMed McMahon GM, Mendu ML, Gibbons FK, Christopher KB. Association between hyperkalemia at critical care initiation and mortality. Intensive Care Med. 2012;38:1834–42.CrossRefPubMed
7.
go back to reference Rimmer JM, Horn JF, Gennari FJ. Hyperkalemia as a complication of drug therapy. Arch Intern Med. 1987;147:867–9.CrossRefPubMed Rimmer JM, Horn JF, Gennari FJ. Hyperkalemia as a complication of drug therapy. Arch Intern Med. 1987;147:867–9.CrossRefPubMed
8.
go back to reference Goyal A, Spertus JA, Gosch K, Venkitachalam L, Jones PG, Van den Berghe G, et al. Serum potassium levels and mortality in acute myocardial infarction. JAMA. 2012;307:157.CrossRefPubMed Goyal A, Spertus JA, Gosch K, Venkitachalam L, Jones PG, Van den Berghe G, et al. Serum potassium levels and mortality in acute myocardial infarction. JAMA. 2012;307:157.CrossRefPubMed
9.
go back to reference Antman EM, Anbe DT, Armstrong PW, Bates ER, Green LA, Hand M, et al. ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to revise the 1999 guidelines for the management of patients with acute myocardial infarction). Circulation. 2004;110:e82–292.PubMed Antman EM, Anbe DT, Armstrong PW, Bates ER, Green LA, Hand M, et al. ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to revise the 1999 guidelines for the management of patients with acute myocardial infarction). Circulation. 2004;110:e82–292.PubMed
10.
go back to reference Al-Khatib SM, Stevenson WG, Ackerman MJ, Bryant WJ, Callans DJ, Curtis AB, et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Heart Rhythm. 2018;15:e190–252.CrossRef Al-Khatib SM, Stevenson WG, Ackerman MJ, Bryant WJ, Callans DJ, Curtis AB, et al. 2017 AHA/ACC/HRS guideline for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Heart Rhythm. 2018;15:e190–252.CrossRef
11.
go back to reference Dunning J, Treasure T, Versteegh M, Nashef SAM, EACTS Audit and Guidelines Committee. Guidelines on the prevention and management of de novo atrial fibrillation after cardiac and thoracic surgery. Eur J Cardio-Thorac Surg. 2006;30:852–72.CrossRef Dunning J, Treasure T, Versteegh M, Nashef SAM, EACTS Audit and Guidelines Committee. Guidelines on the prevention and management of de novo atrial fibrillation after cardiac and thoracic surgery. Eur J Cardio-Thorac Surg. 2006;30:852–72.CrossRef
13.
go back to reference Uijtendaal EV, Zwart-van Rijkom JEF, de Lange DW, Lalmohamed A, van Solinge WW, Egberts TCG. Influence of a strict glucose protocol on serum potassium and glucose concentrations and their association with mortality in intensive care patients. Crit Care. 2015;19:270.CrossRefPubMedPubMedCentral Uijtendaal EV, Zwart-van Rijkom JEF, de Lange DW, Lalmohamed A, van Solinge WW, Egberts TCG. Influence of a strict glucose protocol on serum potassium and glucose concentrations and their association with mortality in intensive care patients. Crit Care. 2015;19:270.CrossRefPubMedPubMedCentral
14.
go back to reference Rimmer JM, et al. Hyperkalemia as a complication of drug therapy. Arch Internal Med. 1987;147(5):867–9.CrossRef Rimmer JM, et al. Hyperkalemia as a complication of drug therapy. Arch Internal Med. 1987;147(5):867–9.CrossRef
15.
17.
go back to reference Krinsley JS. Association between hyperglycemia and increased hospital mortality in a heterogeneous population of critically ill patients. Mayo Clin Proc. 2003;78:1471–8.CrossRefPubMed Krinsley JS. Association between hyperglycemia and increased hospital mortality in a heterogeneous population of critically ill patients. Mayo Clin Proc. 2003;78:1471–8.CrossRefPubMed
18.
go back to reference Krinsley JS. Glycemic variability: a strong independent predictor of mortality in critically ill patients. Crit Care Med. 2008;36:3008–13.CrossRefPubMed Krinsley JS. Glycemic variability: a strong independent predictor of mortality in critically ill patients. Crit Care Med. 2008;36:3008–13.CrossRefPubMed
19.
20.
go back to reference NICE-SUGAR Study Investigators, Finfer S, Liu B, Chittock DR, Norton R, Myburgh JA, et al. Hypoglycemia and risk of death in critically ill patients. N Engl J Med. 2012;367:1108–18.CrossRef NICE-SUGAR Study Investigators, Finfer S, Liu B, Chittock DR, Norton R, Myburgh JA, et al. Hypoglycemia and risk of death in critically ill patients. N Engl J Med. 2012;367:1108–18.CrossRef
21.
go back to reference McCowen KC, Malhotra A, Bistrian BR. Stress-induced hyperglycemia. Crit Care Clin. 2001;17:107–24.CrossRef McCowen KC, Malhotra A, Bistrian BR. Stress-induced hyperglycemia. Crit Care Clin. 2001;17:107–24.CrossRef
22.
go back to reference Vanhorebeek I, Gunst J, den Berghe GV. Critical care management of stress-induced hyperglycemia. Curr Diabetes Rep. 2018;18:17.CrossRef Vanhorebeek I, Gunst J, den Berghe GV. Critical care management of stress-induced hyperglycemia. Curr Diabetes Rep. 2018;18:17.CrossRef
23.
go back to reference van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, et al. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345:1359–67.CrossRefPubMed van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, et al. Intensive insulin therapy in critically ill patients. N Engl J Med. 2001;345:1359–67.CrossRefPubMed
24.
go back to reference Sterns RH. Oscillations of plasma K+ and insulin during K+ infusion in awake anephric dogs. Am J Physiol Ren Physiol. 1982;243:F44–52.CrossRef Sterns RH. Oscillations of plasma K+ and insulin during K+ infusion in awake anephric dogs. Am J Physiol Ren Physiol. 1982;243:F44–52.CrossRef
25.
26.
go back to reference Nguyen TQ, Maalouf NM, Sakhaee K, Moe OW. Comparison of insulin action on glucose versus potassium uptake in humans. Clin J Am Soc Nephrol. 2011;6:1533–9.CrossRefPubMedPubMedCentral Nguyen TQ, Maalouf NM, Sakhaee K, Moe OW. Comparison of insulin action on glucose versus potassium uptake in humans. Clin J Am Soc Nephrol. 2011;6:1533–9.CrossRefPubMedPubMedCentral
27.
go back to reference Ellger B, Debaveye Y, Vanhorebeek I, Langouche L, Giulietti A, Etten EV, et al. Survival benefits of intensive insulin therapy in critical illness: impact of maintaining normoglycemia versus glycemia-independent actions of insulin. Diabetes. 2006;55:1096–105.CrossRefPubMed Ellger B, Debaveye Y, Vanhorebeek I, Langouche L, Giulietti A, Etten EV, et al. Survival benefits of intensive insulin therapy in critical illness: impact of maintaining normoglycemia versus glycemia-independent actions of insulin. Diabetes. 2006;55:1096–105.CrossRefPubMed
28.
go back to reference Van den Berghe G, Schetz M, Vlasselaers D, Hermans G, Wilmer A, Bouillon R, et al. Clinical review: intensive insulin therapy in critically ill patients: NICE-SUGAR or Leuven blood glucose target? J Clin Endocrinol Metab. 2009;94:3163–70.CrossRefPubMed Van den Berghe G, Schetz M, Vlasselaers D, Hermans G, Wilmer A, Bouillon R, et al. Clinical review: intensive insulin therapy in critically ill patients: NICE-SUGAR or Leuven blood glucose target? J Clin Endocrinol Metab. 2009;94:3163–70.CrossRefPubMed
29.
go back to reference Hoekstra M, Vogelzang M, Drost JT, Janse M, Loef BG, van der Horst IC, et al. Implementation and evaluation of a nurse-centered computerized potassium regulation protocol in the intensive care unit—a before and after analysis. BMC Med Inform Decis Mak. 2010;10:5.CrossRefPubMedPubMedCentral Hoekstra M, Vogelzang M, Drost JT, Janse M, Loef BG, van der Horst IC, et al. Implementation and evaluation of a nurse-centered computerized potassium regulation protocol in the intensive care unit—a before and after analysis. BMC Med Inform Decis Mak. 2010;10:5.CrossRefPubMedPubMedCentral
Metadata
Title
Association between potassium concentrations, variability and supplementation, and in-hospital mortality in ICU patients: a retrospective analysis
Authors
Lilian Jo Engelhardt
Felix Balzer
Michael C. Müller
Julius J. Grunow
Claudia D. Spies
Kenneth B. Christopher
Steffen Weber-Carstens
Tobias Wollersheim
Publication date
01-12-2019
Publisher
Springer International Publishing
Published in
Annals of Intensive Care / Issue 1/2019
Electronic ISSN: 2110-5820
DOI
https://doi.org/10.1186/s13613-019-0573-0

Other articles of this Issue 1/2019

Annals of Intensive Care 1/2019 Go to the issue