Skip to main content
Top
Published in: BMC Sports Science, Medicine and Rehabilitation 1/2017

Open Access 01-12-2017 | Research article

Comparison between logbook-reported and objectively-assessed physical activity and sedentary time in breast cancer patients: an agreement study

Authors: Anne-Sophie Mazzoni, Karin Nordin, Sveinung Berntsen, Ingrid Demmelmaier, Helena Igelström

Published in: BMC Sports Science, Medicine and Rehabilitation | Issue 1/2017

Login to get access

Abstract

Background

Increasing physical activity (PA) and decreasing sedentary time (ST) have important health effects among breast cancer patients, a growing population group. PA and sedentary behaviors are complex multi-dimensional behaviors and are challenging to monitor accurately. To date few studies have compared self-reports and objective measurement in assessing PA and ST in women undergoing breast cancer treatments. The aim of the present study was to compare self-reports and objective measures for assessing daily time spent in moderate-intensity physical activity (MPA), vigorous-intensity physical activity (VPA) and ST in women undergoing breast cancer treatments.

Methods

Baseline data from 65 women with breast cancer scheduled to undergo adjuvant treatment was included. Daily time spent in MPA, VPA and ST was assessed by a study-specific logbook and the SenseWear Armband mini (SWA). The level of agreement between the two measurement methods was then determined by performing Bland-Altman plots with limits of agreements, and calculating Spearman’s rank correlation coefficients.

Results

The mean difference between the logbook and SWA with limits of agreement was 14 (±102) minutes for MPA, 1 (±21) minute for VPA and −196 (±408) minutes for ST, respectively. The logbook reported an average of 34 and 50% higher values than the SWA for MPA and VPA, as well as an average of 27% lower values for ST (P < 0.05). The Spearman’s rank correlation coefficients showed that the differences between the methods increased as the average amount of time spent in PA and ST increased (P < 0.01).

Conclusions

The results imply that the two measurement methods have limited agreement and cannot be used interchangeably.
Literature
1.
go back to reference Global Burden of Disease Cancer Collaboration, Fitzmaurice C, Dicker D, Pain A, Hamavid H, Moradi-Lakeh M, et al. The Global Burden of Cancer 2013. JAMA Oncol. 2015;1(4):505–27.PubMedCentralCrossRef Global Burden of Disease Cancer Collaboration, Fitzmaurice C, Dicker D, Pain A, Hamavid H, Moradi-Lakeh M, et al. The Global Burden of Cancer 2013. JAMA Oncol. 2015;1(4):505–27.PubMedCentralCrossRef
2.
go back to reference Thompson PD, Buchner D, Pina IL, Balady GJ, Williams MA, Marcus BH, et al. Exercise and physical activity in the prevention and treatment of atherosclerotic cardiovascular disease: a statement from the Council on Clinical Cardiology (Subcommittee on Exercise, Rehabilitation, and Prevention) and the Council on Nutrition, Physical Activity, and Metabolism (Subcommittee on Physical Activity). Circulation. 2003;107(24):3109–16.PubMedCrossRef Thompson PD, Buchner D, Pina IL, Balady GJ, Williams MA, Marcus BH, et al. Exercise and physical activity in the prevention and treatment of atherosclerotic cardiovascular disease: a statement from the Council on Clinical Cardiology (Subcommittee on Exercise, Rehabilitation, and Prevention) and the Council on Nutrition, Physical Activity, and Metabolism (Subcommittee on Physical Activity). Circulation. 2003;107(24):3109–16.PubMedCrossRef
3.
go back to reference Ibrahim EM, Al-Homaidh A. Physical activity and survival after breast cancer diagnosis: meta-analysis of published studies. Med Oncol. 2011;28(3):753–65.PubMedCrossRef Ibrahim EM, Al-Homaidh A. Physical activity and survival after breast cancer diagnosis: meta-analysis of published studies. Med Oncol. 2011;28(3):753–65.PubMedCrossRef
4.
go back to reference Schmitz KH, Courneya KS, Matthews C, Demark-Wahnefried W, Galvão DA, Pinto BM, et al. American College of Sports Medicine roundtable on exercise guidelines for cancer survivors. Med Sci Sports Exerc. 2010;42(7):1409–26.PubMedCrossRef Schmitz KH, Courneya KS, Matthews C, Demark-Wahnefried W, Galvão DA, Pinto BM, et al. American College of Sports Medicine roundtable on exercise guidelines for cancer survivors. Med Sci Sports Exerc. 2010;42(7):1409–26.PubMedCrossRef
5.
go back to reference Sedentary Behaviour Research Network. Letter to the editor: standardized Use of the terms “sedentary” and “sedentary behaviours”. Appl Physiol Nutr Metab. 2012;37(3):540–2.CrossRef Sedentary Behaviour Research Network. Letter to the editor: standardized Use of the terms “sedentary” and “sedentary behaviours”. Appl Physiol Nutr Metab. 2012;37(3):540–2.CrossRef
6.
go back to reference George SM, Alfano CM, Groves J, Karabulut Z, Haman KL, Murphy BA, Matthews CE. Objectively measured sedentary time is related to quality of life among cancer survivors. PLoS One. 2014;9(2):e87937.PubMedPubMedCentralCrossRef George SM, Alfano CM, Groves J, Karabulut Z, Haman KL, Murphy BA, Matthews CE. Objectively measured sedentary time is related to quality of life among cancer survivors. PLoS One. 2014;9(2):e87937.PubMedPubMedCentralCrossRef
7.
go back to reference George SM, Smith AW, Alfano CM, Bowles HR, Irwin ML, Mctiernan A, et al. The association between television watching time and all-cause mortality after breast cancer. J Cancer Surviv. 2013;7(2):247–52.PubMedPubMedCentralCrossRef George SM, Smith AW, Alfano CM, Bowles HR, Irwin ML, Mctiernan A, et al. The association between television watching time and all-cause mortality after breast cancer. J Cancer Surviv. 2013;7(2):247–52.PubMedPubMedCentralCrossRef
8.
go back to reference Bauman A, Phongsavan P, Schoeppe S, Owen N. Physical activity measurement—a primer for health promotion. Promot Educ. 2006;13(2):92–103.PubMedCrossRef Bauman A, Phongsavan P, Schoeppe S, Owen N. Physical activity measurement—a primer for health promotion. Promot Educ. 2006;13(2):92–103.PubMedCrossRef
9.
go back to reference Broderick JM, Ryan J, O’Donnell DM, Hussey J. A guide to assessing physical activity using accelerometry in cancer patients. Support Care Cancer. 2014;22(4):1121–30.PubMedCrossRef Broderick JM, Ryan J, O’Donnell DM, Hussey J. A guide to assessing physical activity using accelerometry in cancer patients. Support Care Cancer. 2014;22(4):1121–30.PubMedCrossRef
10.
go back to reference Warren JM, Ekelund U, Besson H, Mezzani A, Geladas N, Vanhees L, et al. Assessment of physical activity—a review of methodologies with reference to epidemiological research: a report of the exercise physiology section of the European Association of Cardiovascular Prevention and Rehabilitation. Eur J Cardiovasc Prev Rehabil. 2010;17(2):127–39.PubMedCrossRef Warren JM, Ekelund U, Besson H, Mezzani A, Geladas N, Vanhees L, et al. Assessment of physical activity—a review of methodologies with reference to epidemiological research: a report of the exercise physiology section of the European Association of Cardiovascular Prevention and Rehabilitation. Eur J Cardiovasc Prev Rehabil. 2010;17(2):127–39.PubMedCrossRef
11.
go back to reference Ainsworth B, Cahalin L, Buman M, Ross R. The current state of physical activity assessment tools. Prog Cardiovasc Dis. 2015;57(4):387–95.PubMedCrossRef Ainsworth B, Cahalin L, Buman M, Ross R. The current state of physical activity assessment tools. Prog Cardiovasc Dis. 2015;57(4):387–95.PubMedCrossRef
12.
go back to reference Prince SA, Adamo KB, Hamel ME, Hardt J, Connor Gorber S, Tremblay M. A comparison of direct versus self-report measures for assessing physical activity in adults: a systematic review. Int J Behav Nutr Phys Act. 2008;5:56.PubMedPubMedCentralCrossRef Prince SA, Adamo KB, Hamel ME, Hardt J, Connor Gorber S, Tremblay M. A comparison of direct versus self-report measures for assessing physical activity in adults: a systematic review. Int J Behav Nutr Phys Act. 2008;5:56.PubMedPubMedCentralCrossRef
13.
go back to reference Bassett DR, Troiano RP, McClain JJ, Wolff DL. Accelerometer-based physical activity: total volume per day and standardized measures. Med Sci Sports Exerc. 2015;47(4):833–8.PubMedCrossRef Bassett DR, Troiano RP, McClain JJ, Wolff DL. Accelerometer-based physical activity: total volume per day and standardized measures. Med Sci Sports Exerc. 2015;47(4):833–8.PubMedCrossRef
14.
go back to reference Ahles TA, Saykin AJ, McDonald BC, Furstenberg CT, Cole BF, Hanscom BS, et al. Cognitive function in breast cancer patients prior to adjuvant treatment. Breast Cancer Res Treat. 2008;110(1):143–52.PubMedCrossRef Ahles TA, Saykin AJ, McDonald BC, Furstenberg CT, Cole BF, Hanscom BS, et al. Cognitive function in breast cancer patients prior to adjuvant treatment. Breast Cancer Res Treat. 2008;110(1):143–52.PubMedCrossRef
15.
go back to reference Wefel JS, Lenzi R, Theriault RL, Davis RN, Meyers CA. The cognitive sequelae of standard-dose adjuvant chemotherapy in women with breast carcinoma: results of a prospective, randomized, longitudinal trial. Cancer. 2004;100(11):2292–9.PubMedCrossRef Wefel JS, Lenzi R, Theriault RL, Davis RN, Meyers CA. The cognitive sequelae of standard-dose adjuvant chemotherapy in women with breast carcinoma: results of a prospective, randomized, longitudinal trial. Cancer. 2004;100(11):2292–9.PubMedCrossRef
16.
go back to reference Wefel JS, Lenzi R, Theriault R, Buzdar AU, Cruickshank S, Meyers CA. ‘Chemobrain’ in breast carcinoma?: a prologue. Cancer. 2004;101(3):466–75.PubMedCrossRef Wefel JS, Lenzi R, Theriault R, Buzdar AU, Cruickshank S, Meyers CA. ‘Chemobrain’ in breast carcinoma?: a prologue. Cancer. 2004;101(3):466–75.PubMedCrossRef
17.
go back to reference Yee J, Davis GM, Beith JM, Wilcken N, Currow D, Emery J, et al. Physical activity and fitness in women with metastatic breast cancer. J Cancer Surviv. 2014;8(4):647–56.PubMedCrossRef Yee J, Davis GM, Beith JM, Wilcken N, Currow D, Emery J, et al. Physical activity and fitness in women with metastatic breast cancer. J Cancer Surviv. 2014;8(4):647–56.PubMedCrossRef
18.
go back to reference Villarini A, Pasanisi P, Traina A, Mano MP, Bonanni B, Panico S, et al. Lifestyle and breast cancer recurrences: the DIANA-5 trial. Tumori. 2012;98(1):1–18.PubMed Villarini A, Pasanisi P, Traina A, Mano MP, Bonanni B, Panico S, et al. Lifestyle and breast cancer recurrences: the DIANA-5 trial. Tumori. 2012;98(1):1–18.PubMed
19.
go back to reference Boyle T, Lynch BM, Courneya KS, Vallance JK. Agreement between accelerometer-assessed and self-reported physical activity and sedentary time in colon cancer survivors. Support Care Cancer. 2015;23(4):1121–6.PubMedCrossRef Boyle T, Lynch BM, Courneya KS, Vallance JK. Agreement between accelerometer-assessed and self-reported physical activity and sedentary time in colon cancer survivors. Support Care Cancer. 2015;23(4):1121–6.PubMedCrossRef
20.
go back to reference Johnson-Kozlow M, Sallis JF, Gilpin EA, Rock CL, Pierce JP. Comparative validation of the IPAQ and the 7-Day PAR among women diagnosed with breast cancer. Int J Behav Nutr Phys Act. 2006;3:7.PubMedPubMedCentralCrossRef Johnson-Kozlow M, Sallis JF, Gilpin EA, Rock CL, Pierce JP. Comparative validation of the IPAQ and the 7-Day PAR among women diagnosed with breast cancer. Int J Behav Nutr Phys Act. 2006;3:7.PubMedPubMedCentralCrossRef
21.
go back to reference Jovanovic JL, Hughes DC, Baum GP, Carmack C, Greisinger AJ, Basen-Engquist K. Accelerometry and self-report in sedentary populations. Am J Health Behav. 2011;35(1):71–80.PubMedPubMedCentralCrossRef Jovanovic JL, Hughes DC, Baum GP, Carmack C, Greisinger AJ, Basen-Engquist K. Accelerometry and self-report in sedentary populations. Am J Health Behav. 2011;35(1):71–80.PubMedPubMedCentralCrossRef
22.
go back to reference Johannsen DL, Calabro MA, Stewart J, Franke W, Rood JC, Welk GJ. Accuracy of armband monitors for measuring daily energy expenditure in healthy adults. Med Sci Sports Exerc. 2010;42(11):2134–40.PubMedCrossRef Johannsen DL, Calabro MA, Stewart J, Franke W, Rood JC, Welk GJ. Accuracy of armband monitors for measuring daily energy expenditure in healthy adults. Med Sci Sports Exerc. 2010;42(11):2134–40.PubMedCrossRef
23.
go back to reference Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett Jr DR, Tudor-Locke C, et al. 2011 Compendium of Physical Activities: a second update of codes and MET values. Med Sci Sports Exerc. 2011;43(8):1575–81.PubMedCrossRef Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett Jr DR, Tudor-Locke C, et al. 2011 Compendium of Physical Activities: a second update of codes and MET values. Med Sci Sports Exerc. 2011;43(8):1575–81.PubMedCrossRef
25.
go back to reference Jakicic JM, Marcus M, Gallagher KI, Randall C, Thomas E, Goss FL, et al. Evaluation of the SenseWear Pro Armband to assess energy expenditure during exercise. Med Sci Sports Exerc. 2004;36(5):897–904.PubMedCrossRef Jakicic JM, Marcus M, Gallagher KI, Randall C, Thomas E, Goss FL, et al. Evaluation of the SenseWear Pro Armband to assess energy expenditure during exercise. Med Sci Sports Exerc. 2004;36(5):897–904.PubMedCrossRef
26.
go back to reference Cereda E, Turrini M, Ciapanna D, Marbello L, Pietrobelli A, Corradi E. Assessing energy expenditure in cancer patients: a pilot validation of a new wearable device. JPEN J Parenter Enteral Nutr. 2007;31(6):502–7.PubMedCrossRef Cereda E, Turrini M, Ciapanna D, Marbello L, Pietrobelli A, Corradi E. Assessing energy expenditure in cancer patients: a pilot validation of a new wearable device. JPEN J Parenter Enteral Nutr. 2007;31(6):502–7.PubMedCrossRef
27.
go back to reference Trost SG, McIver KL, Pate RR. Conducting accelerometer-based activity assessments in field-based research. Med Sci Sports Exerc. 2005;37 Suppl 11:531–43.CrossRef Trost SG, McIver KL, Pate RR. Conducting accelerometer-based activity assessments in field-based research. Med Sci Sports Exerc. 2005;37 Suppl 11:531–43.CrossRef
28.
go back to reference Herrmann SD, Barreira TV, Kang M, Ainsworth BE. Impact of accelerometer wear time on physical activity data: a NHANES semisimulation data approach. Br J Sports Med. 2014;48(3):278–82.PubMedCrossRef Herrmann SD, Barreira TV, Kang M, Ainsworth BE. Impact of accelerometer wear time on physical activity data: a NHANES semisimulation data approach. Br J Sports Med. 2014;48(3):278–82.PubMedCrossRef
29.
go back to reference Buffart LM, Galvão DA, Brug J, Chinapaw MJ, Newton RU. Evidence-based physical activity guidelines for cancer survivors: current guidelines, knowledge gaps and future research directions. Cancer Treat Rev. 2014;40(2):327–40.PubMedCrossRef Buffart LM, Galvão DA, Brug J, Chinapaw MJ, Newton RU. Evidence-based physical activity guidelines for cancer survivors: current guidelines, knowledge gaps and future research directions. Cancer Treat Rev. 2014;40(2):327–40.PubMedCrossRef
30.
go back to reference Mâsse LC, Fuemmeler BF, Anderson CB, Matthews CE, Trost SG, Catellier DJ, et al. Accelerometer data reduction: a comparison of four reduction algorithms on select outcome variables. Med Sci Sports Exerc. 2005;37 Suppl 11:544–54.CrossRef Mâsse LC, Fuemmeler BF, Anderson CB, Matthews CE, Trost SG, Catellier DJ, et al. Accelerometer data reduction: a comparison of four reduction algorithms on select outcome variables. Med Sci Sports Exerc. 2005;37 Suppl 11:544–54.CrossRef
33.
go back to reference Igelström H, Emtner M, Lindberg E, Asenlöf P. Physical activity and sedentary time in persons with obstructive sleep apnea and overweight enrolled in a randomized controlled trial for enhanced physical activity and healthy eating. Sleep Breath. 2013;17(4):1257–66.PubMedCrossRef Igelström H, Emtner M, Lindberg E, Asenlöf P. Physical activity and sedentary time in persons with obstructive sleep apnea and overweight enrolled in a randomized controlled trial for enhanced physical activity and healthy eating. Sleep Breath. 2013;17(4):1257–66.PubMedCrossRef
34.
go back to reference Igelström H, Emtner M, Lindberg E, Asenlöf P. Level of agreement between methods for measuring moderate to vigorous physical activity and sedentary time in people with obstructive sleep apnea and obesity. Phys Ther. 2013;93(1):50–9.PubMedCrossRef Igelström H, Emtner M, Lindberg E, Asenlöf P. Level of agreement between methods for measuring moderate to vigorous physical activity and sedentary time in people with obstructive sleep apnea and obesity. Phys Ther. 2013;93(1):50–9.PubMedCrossRef
35.
go back to reference Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999;8(2):135–60.PubMedCrossRef Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999;8(2):135–60.PubMedCrossRef
36.
go back to reference Lee DC, Pate RR, Lavie CJ, Sui X, Church TS, Blair SN. Leisure-time running reduces all-cause and cardiovascular mortality risk. J Am Coll Cardiol. 2014;64(5):472–81.PubMedPubMedCentralCrossRef Lee DC, Pate RR, Lavie CJ, Sui X, Church TS, Blair SN. Leisure-time running reduces all-cause and cardiovascular mortality risk. J Am Coll Cardiol. 2014;64(5):472–81.PubMedPubMedCentralCrossRef
37.
go back to reference Murakami H, Tripette J, Kawakami R, Miyachi M. “Add 10 min for your health”: the new Japanese recommendation for physical activity based on dose–response analysis. J Am Coll Cardiol. 2015;65(11):1153–4.PubMedCrossRef Murakami H, Tripette J, Kawakami R, Miyachi M. “Add 10 min for your health”: the new Japanese recommendation for physical activity based on dose–response analysis. J Am Coll Cardiol. 2015;65(11):1153–4.PubMedCrossRef
38.
go back to reference Dunstan DW, Salmon J, Owen N, et al. Associations of TV viewing and physical activity with the metabolic syndrome in Australian adults. Diabetologia. 2005;48(11):2254–61.PubMedCrossRef Dunstan DW, Salmon J, Owen N, et al. Associations of TV viewing and physical activity with the metabolic syndrome in Australian adults. Diabetologia. 2005;48(11):2254–61.PubMedCrossRef
39.
go back to reference Bland JM, Altman DG. Applying the right statistics: analyses of measurement studies. Ultrasound Obstet Gynecol. 2003;22(1):85–93.PubMedCrossRef Bland JM, Altman DG. Applying the right statistics: analyses of measurement studies. Ultrasound Obstet Gynecol. 2003;22(1):85–93.PubMedCrossRef
40.
go back to reference Clemes SA, David BM, Zhao Y, Han X, Brown W. Validity of two self-report measures of sitting time. J Phys Act Health. 2012;9(4):533–9.PubMedCrossRef Clemes SA, David BM, Zhao Y, Han X, Brown W. Validity of two self-report measures of sitting time. J Phys Act Health. 2012;9(4):533–9.PubMedCrossRef
41.
go back to reference Kottner J, Audigé L, Brorson S, Donner A, Gajewski BJ, Hróbjartsson A, et al. Guidelines for Reporting Reliability and Agreement Studies (GRRAS) were proposed. J Clin Epidemiol. 2011;64(1):96–106.PubMedCrossRef Kottner J, Audigé L, Brorson S, Donner A, Gajewski BJ, Hróbjartsson A, et al. Guidelines for Reporting Reliability and Agreement Studies (GRRAS) were proposed. J Clin Epidemiol. 2011;64(1):96–106.PubMedCrossRef
42.
go back to reference Liao JJ. Sample size calculation for an agreement study. Pharm Stat. 2010;9(2):125–32.PubMed Liao JJ. Sample size calculation for an agreement study. Pharm Stat. 2010;9(2):125–32.PubMed
43.
go back to reference Mcalinden C, Khadka J, Pesudovs K. Statistical methods for conducting agreement (comparison of clinical tests) and precision (repeatability or reproducibility) studies in optometry and ophthalmology. Ophthalmic Physiol Opt. 2011;31(4):330–8.PubMedCrossRef Mcalinden C, Khadka J, Pesudovs K. Statistical methods for conducting agreement (comparison of clinical tests) and precision (repeatability or reproducibility) studies in optometry and ophthalmology. Ophthalmic Physiol Opt. 2011;31(4):330–8.PubMedCrossRef
44.
go back to reference Matthews CE, Ainsworth BE, Thompson RW, Bassett Jr DR. Sources of variance in daily physical activity levels as measured by an accelerometer. Med Sci Sports Exerc. 2002;34(8):1376–81.PubMedCrossRef Matthews CE, Ainsworth BE, Thompson RW, Bassett Jr DR. Sources of variance in daily physical activity levels as measured by an accelerometer. Med Sci Sports Exerc. 2002;34(8):1376–81.PubMedCrossRef
45.
go back to reference Buchowski MS, Choi L, Majchrzak KM, Acra S, Mathews CE, Chen KY. Seasonal changes in amount and patterns of physical activity in women. J Phys Act Health. 2009;6(2):252–61.PubMedPubMedCentralCrossRef Buchowski MS, Choi L, Majchrzak KM, Acra S, Mathews CE, Chen KY. Seasonal changes in amount and patterns of physical activity in women. J Phys Act Health. 2009;6(2):252–61.PubMedPubMedCentralCrossRef
46.
go back to reference Matthews CE, Hagströmer M, Pober DM, Bowles HR. Best practices for using physical activity monitors in population-based research. Med Sci Sports Exerc. 2012;44 Suppl 1:68–76.CrossRef Matthews CE, Hagströmer M, Pober DM, Bowles HR. Best practices for using physical activity monitors in population-based research. Med Sci Sports Exerc. 2012;44 Suppl 1:68–76.CrossRef
47.
go back to reference Ward DS, Evenson KR, Vaughn A, Rodgers AB, Troiano RP. Accelerometer use in physical activity: best practices and research recommendations. Med Sci Sports Exerc. 2005;37 Suppl 11:582–8.CrossRef Ward DS, Evenson KR, Vaughn A, Rodgers AB, Troiano RP. Accelerometer use in physical activity: best practices and research recommendations. Med Sci Sports Exerc. 2005;37 Suppl 11:582–8.CrossRef
48.
go back to reference Bassett Jr DR, John D. Use of pedometers and accelerometers in clinical populations: validity and reliability issues. Phys Ther Rev. 2010;15(3):135–42.CrossRef Bassett Jr DR, John D. Use of pedometers and accelerometers in clinical populations: validity and reliability issues. Phys Ther Rev. 2010;15(3):135–42.CrossRef
Metadata
Title
Comparison between logbook-reported and objectively-assessed physical activity and sedentary time in breast cancer patients: an agreement study
Authors
Anne-Sophie Mazzoni
Karin Nordin
Sveinung Berntsen
Ingrid Demmelmaier
Helena Igelström
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Sports Science, Medicine and Rehabilitation / Issue 1/2017
Electronic ISSN: 2052-1847
DOI
https://doi.org/10.1186/s13102-017-0072-2

Other articles of this Issue 1/2017

BMC Sports Science, Medicine and Rehabilitation 1/2017 Go to the issue