Skip to main content
Top
Published in: Trials 1/2017

Open Access 01-12-2017 | Study protocol

Establishing core outcome sets for phenylketonuria (PKU) and medium-chain Acyl-CoA dehydrogenase (MCAD) deficiency in children: study protocol for systematic reviews and Delphi surveys

Authors: Beth K. Potter, Brian Hutton, Tammy J. Clifford, Nicole Pallone, Maureen Smith, Sylvia Stockler, Pranesh Chakraborty, Pauline Barbeau, Chantelle M. Garritty, Michael Pugliese, Alvi Rahman, Becky Skidmore, Laure Tessier, Kylie Tingley, Doug Coyle, Cheryl R. Greenberg, Lawrence Korngut, Alex MacKenzie, John J. Mitchell, Stuart Nicholls, Martin Offringa, Andreas Schulze, Monica Taljaard, In collaboration with the Canadian Inherited Metabolic Diseases Research Network

Published in: Trials | Issue 1/2017

Login to get access

Abstract

Background

Inherited metabolic diseases (IMD) are a large group of rare single-gene disorders that are typically diagnosed early in life. There are important evidence gaps related to the comparative effectiveness of therapies for IMD, which are in part due to challenges in conducting randomized controlled trials (RCTs) for rare diseases. Registry-based RCTs present a unique opportunity to address these challenges provided the registries implement standardized collection of outcomes that are important to patients and their caregivers and to clinical providers and healthcare systems. Currently there is no core outcome set (COS) for studies evaluating interventions for paediatric IMD. This protocol outlines a study that will establish COS for each of two relatively common IMD in children, phenylketonuria (PKU) and medium-chain acyl-CoA dehydrogenase (MCAD) deficiency.

Methods

This two-part study is registered with the Core Outcome Measures in Effectiveness Trials (COMET) initiative. Part 1 includes a rapid review and development of an evidence map to identify a comprehensive listing of outcomes reported in past studies of PKU and MCAD deficiency. The review follows established methods for knowledge synthesis, including a comprehensive search strategy, two stages of screening citations against inclusion/exclusion criteria by two reviewers working independently, and extraction of important data elements from eligible studies, including details of the outcomes collected and outcome measurement instruments. The review findings will inform part 2 of our study, a set of Delphi surveys to establish consensus on the highest priority outcomes for each condition. Healthcare providers, families of children with PKU or MCAD deficiency, and health system decision-makers will be invited to participate in two to three rounds of Delphi surveys. The design of the surveys will involve parents of children with IMD who are part of a family advisory forum.

Discussion

This protocol is a crucial step in developing the capacity to launch RCTs with meaningful outcomes that address comparative effectiveness questions in the field of paediatric IMD. Such trials will contribute high-quality evidence to inform decision-making by patients and their family members, clinicians, and policy-makers.
Appendix
Available only for authorised users
Literature
1.
go back to reference Applegarth DDA, Toone JJR, Lowry RB, Applegarth DDA, Toone JJR. Incidence of inborn errors of metabolism in British Columbia, 1969–1996. Pediatrics. 2000;105:e10.CrossRefPubMed Applegarth DDA, Toone JJR, Lowry RB, Applegarth DDA, Toone JJR. Incidence of inborn errors of metabolism in British Columbia, 1969–1996. Pediatrics. 2000;105:e10.CrossRefPubMed
2.
3.
go back to reference Schieppati A, Henter J-II, Daina E, Aperia A. Why rare diseases are an important medical and social issue. Lancet. 2008;371:2039–41.CrossRefPubMed Schieppati A, Henter J-II, Daina E, Aperia A. Why rare diseases are an important medical and social issue. Lancet. 2008;371:2039–41.CrossRefPubMed
4.
go back to reference Jimenez-Sanchez G, Childs B, Valle D. The effect of mendelian disease on human health. In: Valle D, Beaudet AL, Vogelstein B, Kinzler KW, Antonarakis SE, Ballabio A, et al., editors. On-line Metab. Mol. Bases Inherit. Dis. McGraw-Hill. Available from: www.ommbid.com. Accessed 13 Dec 2017. Jimenez-Sanchez G, Childs B, Valle D. The effect of mendelian disease on human health. In: Valle D, Beaudet AL, Vogelstein B, Kinzler KW, Antonarakis SE, Ballabio A, et al., editors. On-line Metab. Mol. Bases Inherit. Dis. McGraw-Hill. Available from: www.​ommbid.​com. Accessed 13 Dec 2017.
5.
go back to reference Cohen E, Berry JG, Camacho X, Anderson G, Wodchis W, Guttmann A. Patterns and costs of health care use of children with medical complexity. Pediatrics. 2012;130:e1463–70.CrossRefPubMedPubMedCentral Cohen E, Berry JG, Camacho X, Anderson G, Wodchis W, Guttmann A. Patterns and costs of health care use of children with medical complexity. Pediatrics. 2012;130:e1463–70.CrossRefPubMedPubMedCentral
6.
go back to reference Siddiq S, Wilson BJ, Graham ID, Lamoureux MF, Khangura SD, Tingley K, on behalf of the Canadian Inherited Metabolic Diseases Research Network, et al. Experiences of caregivers of children with inherited metabolic diseases: a qualitative study. Orphanet J Rare Dis. 2016;11:168.CrossRefPubMedPubMedCentral Siddiq S, Wilson BJ, Graham ID, Lamoureux MF, Khangura SD, Tingley K, on behalf of the Canadian Inherited Metabolic Diseases Research Network, et al. Experiences of caregivers of children with inherited metabolic diseases: a qualitative study. Orphanet J Rare Dis. 2016;11:168.CrossRefPubMedPubMedCentral
7.
go back to reference Vockley J, Vockley CMW. Clinical trials: Curing a critical deficiency in metabolic medicine. Mol Genet Metab. 2010;99:244–5.CrossRefPubMed Vockley J, Vockley CMW. Clinical trials: Curing a critical deficiency in metabolic medicine. Mol Genet Metab. 2010;99:244–5.CrossRefPubMed
8.
go back to reference Potter BK, Chakraborty P, Kronick JB, Wilson K, Coyle D, Feigenbaum A, et al. Achieving the “triple aim” for inborn errors of metabolism: a review of challenges to outcomes research and presentation of a new practice-based evidence framework. Genet Med. 2013;15:415–22.CrossRefPubMed Potter BK, Chakraborty P, Kronick JB, Wilson K, Coyle D, Feigenbaum A, et al. Achieving the “triple aim” for inborn errors of metabolism: a review of challenges to outcomes research and presentation of a new practice-based evidence framework. Genet Med. 2013;15:415–22.CrossRefPubMed
9.
go back to reference Vernon HJ. Inborn errors of metabolism: advances in diagnosis and therapy. JAMA Pediatr. 2015;169:778–82.CrossRefPubMed Vernon HJ. Inborn errors of metabolism: advances in diagnosis and therapy. JAMA Pediatr. 2015;169:778–82.CrossRefPubMed
10.
go back to reference Westfall JM, Mold J, Fagnan L. Practice-based research - “blue highways” on the NIH roadmap. JAMA. 2007;297:403–6.CrossRefPubMed Westfall JM, Mold J, Fagnan L. Practice-based research - “blue highways” on the NIH roadmap. JAMA. 2007;297:403–6.CrossRefPubMed
11.
go back to reference Potter BK, Khangura SD, Tingley K, Chakraborty P, Little J. Translating rare-disease therapies into improved care for patients and families: what are the right outcomes, designs, and engagement approaches in health-systems research? Genet Med. 2016;18:117–23.CrossRefPubMed Potter BK, Khangura SD, Tingley K, Chakraborty P, Little J. Translating rare-disease therapies into improved care for patients and families: what are the right outcomes, designs, and engagement approaches in health-systems research? Genet Med. 2016;18:117–23.CrossRefPubMed
12.
go back to reference Berwick DM, Nolan TW, Whittington J. The triple aim: care, health, and cost. Health Aff. 2008;27:759–69.CrossRef Berwick DM, Nolan TW, Whittington J. The triple aim: care, health, and cost. Health Aff. 2008;27:759–69.CrossRef
14.
go back to reference Wilcken B. Rare diseases and the assessment of intervention: what sorts of clinical trials can we use? J Inherit Metab Dis. 2001;24:291–8.CrossRefPubMed Wilcken B. Rare diseases and the assessment of intervention: what sorts of clinical trials can we use? J Inherit Metab Dis. 2001;24:291–8.CrossRefPubMed
15.
go back to reference Griggs RC, Batshaw M, Dunkle M, Gopal-Srivastava R, Kaye E, Krischer J, et al. Clinical research for rare disease: opportunities, challenges, and solutions. Mol Genet Metab. 2009;96:20–6.CrossRefPubMed Griggs RC, Batshaw M, Dunkle M, Gopal-Srivastava R, Kaye E, Krischer J, et al. Clinical research for rare disease: opportunities, challenges, and solutions. Mol Genet Metab. 2009;96:20–6.CrossRefPubMed
16.
go back to reference Basch E, Bennett AV. Patient-reported outcomes in clinical trials of rare diseases. J Gen Intern Med. 2014;29:13–5.CrossRef Basch E, Bennett AV. Patient-reported outcomes in clinical trials of rare diseases. J Gen Intern Med. 2014;29:13–5.CrossRef
17.
18.
go back to reference Facey K, Granados A, Guyatt G, Kent A, Shah N, van der Wilt GJ, et al. Generating health technology assessment evidence for rare diseases. Int J Technol Assess Health Care. 2014;30:416–22.CrossRefPubMed Facey K, Granados A, Guyatt G, Kent A, Shah N, van der Wilt GJ, et al. Generating health technology assessment evidence for rare diseases. Int J Technol Assess Health Care. 2014;30:416–22.CrossRefPubMed
19.
go back to reference Gagne JJ, Thompson L, O’Keefe K, Kesselheim AS. Innovative research methods for studying treatments for rare diseases: methodological review. BMJ. 2014;349:g6802.CrossRefPubMedPubMedCentral Gagne JJ, Thompson L, O’Keefe K, Kesselheim AS. Innovative research methods for studying treatments for rare diseases: methodological review. BMJ. 2014;349:g6802.CrossRefPubMedPubMedCentral
20.
go back to reference Cornu C, Kassai B, Fisch R, Chiron C, Alberti C, Guerrini R, et al. Experimental designs for small randomised clinical trials: an algorithm for choice. Orphanet J Rare Dis. 2013;8:48.CrossRefPubMedPubMedCentral Cornu C, Kassai B, Fisch R, Chiron C, Alberti C, Guerrini R, et al. Experimental designs for small randomised clinical trials: an algorithm for choice. Orphanet J Rare Dis. 2013;8:48.CrossRefPubMedPubMedCentral
21.
go back to reference Gupta S, Faughnan ME, Tomlinson GA, Bayoumi AM. A framework for applying unfamiliar trial designs in studies of rare diseases. J Clin Epidemiol. 2011;64:1085–94.CrossRefPubMed Gupta S, Faughnan ME, Tomlinson GA, Bayoumi AM. A framework for applying unfamiliar trial designs in studies of rare diseases. J Clin Epidemiol. 2011;64:1085–94.CrossRefPubMed
22.
go back to reference Hampson LV, Whitehead J, Eleftheriou D, Brogan P. Bayesian methods for the design and interpretation of clinical trials in very rare diseases. Stat Med. 2014;33:4186–201.CrossRefPubMedPubMedCentral Hampson LV, Whitehead J, Eleftheriou D, Brogan P. Bayesian methods for the design and interpretation of clinical trials in very rare diseases. Stat Med. 2014;33:4186–201.CrossRefPubMedPubMedCentral
23.
go back to reference Lauer MS, D’Agostino RB. The randomized registry trial - the next disruptive technology in clinical research? N Engl J Med. 2013;369:1579–81.CrossRefPubMed Lauer MS, D’Agostino RB. The randomized registry trial - the next disruptive technology in clinical research? N Engl J Med. 2013;369:1579–81.CrossRefPubMed
24.
go back to reference Vickers AJ, Scardino PT. The clinically-integrated randomized trial: proposed novel method for conducting large trials at low cost. Trials. 2009;10:14.CrossRefPubMedPubMedCentral Vickers AJ, Scardino PT. The clinically-integrated randomized trial: proposed novel method for conducting large trials at low cost. Trials. 2009;10:14.CrossRefPubMedPubMedCentral
25.
go back to reference Relton C, Torgerson D, O’Cathain A, Nicholl J. Rethinking pragmatic randomised controlled trials: Introducing the “cohort multiple randomised controlled trial” design. BMJ. 2010;340:963–7.CrossRef Relton C, Torgerson D, O’Cathain A, Nicholl J. Rethinking pragmatic randomised controlled trials: Introducing the “cohort multiple randomised controlled trial” design. BMJ. 2010;340:963–7.CrossRef
26.
go back to reference Kwakkenbos L, Jewett LR, Baron M, Bartlett SJ, Furst D, Gottesman K, et al. The Scleroderma Patient-centered Intervention Network (SPIN) Cohort: protocol for a cohort multiple randomised controlled trial (cmRCT) design to support trials of psychosocial and rehabilitation interventions in a rare disease context. BMJ Open. 2013;3:e003563.CrossRefPubMedPubMedCentral Kwakkenbos L, Jewett LR, Baron M, Bartlett SJ, Furst D, Gottesman K, et al. The Scleroderma Patient-centered Intervention Network (SPIN) Cohort: protocol for a cohort multiple randomised controlled trial (cmRCT) design to support trials of psychosocial and rehabilitation interventions in a rare disease context. BMJ Open. 2013;3:e003563.CrossRefPubMedPubMedCentral
27.
go back to reference Newman AB, Avilés-Santa ML, Anderson G, Heiss G, Howard WJ, Krucoff M, et al. Embedding clinical interventions into observational studies. Contemp Clin Trials. 2016;46:100–5.CrossRefPubMed Newman AB, Avilés-Santa ML, Anderson G, Heiss G, Howard WJ, Krucoff M, et al. Embedding clinical interventions into observational studies. Contemp Clin Trials. 2016;46:100–5.CrossRefPubMed
28.
go back to reference Li G, Sajobi TT, Menon BK, Korngut L, Lowerison M, James M, et al. Registry-based randomized controlled trials: advantages, challenges and areas for future research. J Clin Epidemiol. 2016;80:16–24.CrossRefPubMed Li G, Sajobi TT, Menon BK, Korngut L, Lowerison M, James M, et al. Registry-based randomized controlled trials: advantages, challenges and areas for future research. J Clin Epidemiol. 2016;80:16–24.CrossRefPubMed
30.
go back to reference Williamson PR, Altman DG, Blazeby JM, Clarke M, Gargon E. The COMET (Core Outcome Measures in Effectiveness Trials) Initiative. Trials. 2011;12:A70.CrossRefPubMedCentral Williamson PR, Altman DG, Blazeby JM, Clarke M, Gargon E. The COMET (Core Outcome Measures in Effectiveness Trials) Initiative. Trials. 2011;12:A70.CrossRefPubMedCentral
31.
go back to reference Gargon E, Gurung B, Medley N, Altman DG, Blazeby JM, Clarke M, et al. Choosing important health outcomes for comparative effectiveness research: a systematic review. PLoS One. 2014;9(6):e991114.CrossRef Gargon E, Gurung B, Medley N, Altman DG, Blazeby JM, Clarke M, et al. Choosing important health outcomes for comparative effectiveness research: a systematic review. PLoS One. 2014;9(6):e991114.CrossRef
32.
go back to reference Williamson PR, Altman DG, Blazeby JM, Clarke M, Devane D, Gargon E, et al. Developing core outcome sets for clinical trials: issues to consider. Trials. 2012;13:1.CrossRef Williamson PR, Altman DG, Blazeby JM, Clarke M, Devane D, Gargon E, et al. Developing core outcome sets for clinical trials: issues to consider. Trials. 2012;13:1.CrossRef
34.
go back to reference Sinha IA, Altman DG, Beresford MW, Boers M, Clarke M, Craig J, et al. Standard 5: selection, measurement, and reporting of outcomes in clinical trials in children. Pediatrics. 2012;129:S146–52.CrossRefPubMed Sinha IA, Altman DG, Beresford MW, Boers M, Clarke M, Craig J, et al. Standard 5: selection, measurement, and reporting of outcomes in clinical trials in children. Pediatrics. 2012;129:S146–52.CrossRefPubMed
36.
go back to reference Mccauley SR, Wilde EA, Anderson VA, Bedell G, Beers SR, Campbell TF, et al. Recommendations for the use of common outcome measures in pediatric traumatic brain injury research. J Neurotrauma. 2012;29:678–705.CrossRefPubMedPubMedCentral Mccauley SR, Wilde EA, Anderson VA, Bedell G, Beers SR, Campbell TF, et al. Recommendations for the use of common outcome measures in pediatric traumatic brain injury research. J Neurotrauma. 2012;29:678–705.CrossRefPubMedPubMedCentral
37.
go back to reference McGrath PJ, Walco GA, Turk DC, Dworkin RH, Brown MT, Davidson K, et al. Core outcome domains and measures for pediatric acute and chronic/recurrent pain clinical trials: PedIMMPACT recommendations. J Pain. 2008;9(9):771–83.CrossRefPubMed McGrath PJ, Walco GA, Turk DC, Dworkin RH, Brown MT, Davidson K, et al. Core outcome domains and measures for pediatric acute and chronic/recurrent pain clinical trials: PedIMMPACT recommendations. J Pain. 2008;9(9):771–83.CrossRefPubMed
38.
go back to reference Haeusler GM, Phillips RS, Lehrnbecher T, Thursky KA, Sung L, Ammann RA. Core outcomes and definitions for pediatric fever and neutropenia research: a consensus statement from an international panel. Pediatr Blood Cancer. 2015;62(3):483–9.CrossRefPubMed Haeusler GM, Phillips RS, Lehrnbecher T, Thursky KA, Sung L, Ammann RA. Core outcomes and definitions for pediatric fever and neutropenia research: a consensus statement from an international panel. Pediatr Blood Cancer. 2015;62(3):483–9.CrossRefPubMed
39.
go back to reference Ruemmele FM, Hyams JS, Otley A, Griffiths A, Kolho K-L, Dias JA, et al. Outcome measures for clinical trials in paediatric IBD: an evidence-based, expert-driven practical statement paper of the paediatric ECCO committee. Gut. 2014;64(3):438–46.CrossRefPubMed Ruemmele FM, Hyams JS, Otley A, Griffiths A, Kolho K-L, Dias JA, et al. Outcome measures for clinical trials in paediatric IBD: an evidence-based, expert-driven practical statement paper of the paediatric ECCO committee. Gut. 2014;64(3):438–46.CrossRefPubMed
40.
go back to reference Bruce I, Harman N, Williamson P, Tierney S, Callery P, Mohiuddin S, et al. The management of otitis media with effusion in children with cleft palate (mOMEnt): a feasibility study and economic evaluation. Health Technol Assess. 2015;19:1–374.CrossRefPubMedPubMedCentral Bruce I, Harman N, Williamson P, Tierney S, Callery P, Mohiuddin S, et al. The management of otitis media with effusion in children with cleft palate (mOMEnt): a feasibility study and economic evaluation. Health Technol Assess. 2015;19:1–374.CrossRefPubMedPubMedCentral
41.
go back to reference Choquet R, Maaroufi M, De Carrara A, Messiaen C, Luigi E, Landais P. A methodology for a minimum data set for rare diseases to support national centers of excellence for healthcare and research. J Am Med Inform Assoc. 2015;22(1):76–85.CrossRefPubMed Choquet R, Maaroufi M, De Carrara A, Messiaen C, Luigi E, Landais P. A methodology for a minimum data set for rare diseases to support national centers of excellence for healthcare and research. J Am Med Inform Assoc. 2015;22(1):76–85.CrossRefPubMed
42.
go back to reference Shapiro E, Bernstein J, Adams HR, Barbier AJ, Buracchio T, Como P, et al. Neurocognitive clinical outcome assessments for inborn errors of metabolism and other rare conditions. Mol Genet Metab. 2016;118(2):65–9.CrossRefPubMedPubMedCentral Shapiro E, Bernstein J, Adams HR, Barbier AJ, Buracchio T, Como P, et al. Neurocognitive clinical outcome assessments for inborn errors of metabolism and other rare conditions. Mol Genet Metab. 2016;118(2):65–9.CrossRefPubMedPubMedCentral
43.
go back to reference Taruscio D, Mollo E, Gainotti S, Posada De La Paz M, Bianchi F, Vittozzi L. The EPIRARE proposal of a set of indicators and common data elements for the European platform for rare disease registration. Arch Public Health. 2014;72(1):35.CrossRefPubMedPubMedCentral Taruscio D, Mollo E, Gainotti S, Posada De La Paz M, Bianchi F, Vittozzi L. The EPIRARE proposal of a set of indicators and common data elements for the European platform for rare disease registration. Arch Public Health. 2014;72(1):35.CrossRefPubMedPubMedCentral
44.
go back to reference Vockley J, Andersson HC, Antshel KM, Braverman NE, Burton BK, Frazier DM, et al. Phenylalanine hydroxylase deficiency: diagnosis and management guideline. Genet Med. 2014;16:188–200.CrossRefPubMed Vockley J, Andersson HC, Antshel KM, Braverman NE, Burton BK, Frazier DM, et al. Phenylalanine hydroxylase deficiency: diagnosis and management guideline. Genet Med. 2014;16:188–200.CrossRefPubMed
45.
go back to reference MacDonald A, Gokmen-Ozel H, van Rijn M, Burgard P. The reality of dietary compliance in the management of phenylketonuria. J Inherit Metab Dis. 2010;33:665–70.CrossRefPubMed MacDonald A, Gokmen-Ozel H, van Rijn M, Burgard P. The reality of dietary compliance in the management of phenylketonuria. J Inherit Metab Dis. 2010;33:665–70.CrossRefPubMed
46.
go back to reference Hartnett C, Salvarinova-Zivkovic R, Yap-Todos E, Cheng B, Giezen A, Horvath G, et al. Long-term outcomes of blood phenylalanine concentrations in children with classical phenylketonuria. Mol Genet Metab. 2013;108:255–8.CrossRefPubMed Hartnett C, Salvarinova-Zivkovic R, Yap-Todos E, Cheng B, Giezen A, Horvath G, et al. Long-term outcomes of blood phenylalanine concentrations in children with classical phenylketonuria. Mol Genet Metab. 2013;108:255–8.CrossRefPubMed
47.
go back to reference Sullivan J, Chang P. Review: Emotional and behavioral functioning in phenylketonuria. J Pediatr Psychol. 1999;24:281–99.CrossRefPubMed Sullivan J, Chang P. Review: Emotional and behavioral functioning in phenylketonuria. J Pediatr Psychol. 1999;24:281–99.CrossRefPubMed
48.
go back to reference Smith I, Knowles J. Behaviour in early treated phenylketonuria: a systematic review. Eur J Pediatr. 2000;159 Suppl 2:S89–93.CrossRefPubMed Smith I, Knowles J. Behaviour in early treated phenylketonuria: a systematic review. Eur J Pediatr. 2000;159 Suppl 2:S89–93.CrossRefPubMed
49.
go back to reference Trefz FK, Burton BK, Longo N, Casanova MM-P, Gruskin DJ, Dorenbaum A, et al. Efficacy of sapropterin dihydrochloride in increasing phenylalanine tolerance in children with phenylketonuria: a phase III, randomized, double-blind, placebo-controlled study. J Pediatr. 2009;154:700–7.CrossRefPubMed Trefz FK, Burton BK, Longo N, Casanova MM-P, Gruskin DJ, Dorenbaum A, et al. Efficacy of sapropterin dihydrochloride in increasing phenylalanine tolerance in children with phenylketonuria: a phase III, randomized, double-blind, placebo-controlled study. J Pediatr. 2009;154:700–7.CrossRefPubMed
50.
go back to reference Burton B, Grant M, Feigenbaum A, Singh R, Hendren R, Siriwardena K, et al. A randomized, placebo-controlled, double-blind study of sapropterin to treat ADHD symptoms and executive function impairment in children and adults with sapropterin-responsive phenylketonuria. Mol Genet Metab. 2015;114:415–24.CrossRefPubMed Burton B, Grant M, Feigenbaum A, Singh R, Hendren R, Siriwardena K, et al. A randomized, placebo-controlled, double-blind study of sapropterin to treat ADHD symptoms and executive function impairment in children and adults with sapropterin-responsive phenylketonuria. Mol Genet Metab. 2015;114:415–24.CrossRefPubMed
52.
go back to reference Matalon R, Michals-Matalon K, Bhatia G, Burlina ABP, Burlina ABP, Braga C, et al. Double blind placebo control trial of large neutral amino acids in treatment of PKU: effect on blood phenylalanine. J Inherit Metab Dis. 2007;30:153–8.CrossRefPubMed Matalon R, Michals-Matalon K, Bhatia G, Burlina ABP, Burlina ABP, Braga C, et al. Double blind placebo control trial of large neutral amino acids in treatment of PKU: effect on blood phenylalanine. J Inherit Metab Dis. 2007;30:153–8.CrossRefPubMed
53.
go back to reference Matalon R, Michals-Matalon K, Bhatia G, Grechanina E, Novikov P, McDonald JD, et al. Large neutral amino acids in the treatment of phenylketonuria (PKU). J Inherit Metab Dis. 2006;29:732–8.CrossRefPubMed Matalon R, Michals-Matalon K, Bhatia G, Grechanina E, Novikov P, McDonald JD, et al. Large neutral amino acids in the treatment of phenylketonuria (PKU). J Inherit Metab Dis. 2006;29:732–8.CrossRefPubMed
54.
go back to reference Schindeler S, Ghosh-Jerath S, Thompson S, Rocca A, Joy P, Kemp A, et al. The effects of large neutral amino acid supplements in PKU: an MRS and neuropsychological study. Mol Genet Metab. 2007;91:48–54.CrossRefPubMed Schindeler S, Ghosh-Jerath S, Thompson S, Rocca A, Joy P, Kemp A, et al. The effects of large neutral amino acid supplements in PKU: an MRS and neuropsychological study. Mol Genet Metab. 2007;91:48–54.CrossRefPubMed
55.
go back to reference Potter BK, Little J, Chakraborty P, Kronick JB, Evans J, Frei J, et al. Variability in the clinical management of fatty acid oxidation disorders: results of a survey of Canadian metabolic physicians. J Inherit Metab Dis. 2012;35:115–23.CrossRefPubMed Potter BK, Little J, Chakraborty P, Kronick JB, Evans J, Frei J, et al. Variability in the clinical management of fatty acid oxidation disorders: results of a survey of Canadian metabolic physicians. J Inherit Metab Dis. 2012;35:115–23.CrossRefPubMed
56.
go back to reference Ufnal M, Zadlo A, Ostaszewski R. TMAO: A small molecule of great expectations. Nutrition. 2015;31(11-12):1317–23.CrossRefPubMed Ufnal M, Zadlo A, Ostaszewski R. TMAO: A small molecule of great expectations. Nutrition. 2015;31(11-12):1317–23.CrossRefPubMed
57.
go back to reference Miller MJ, Bostwick BL, Kennedy AD, Donti TR, Sun Q, Sutton VR, et al. Chronic oral L-Carnitine supplementation drives marked plasma TMAO elevations in patients with organic acidemias despite dietary meat restrictions. JIMD Rep. 2016;30:39–446.CrossRefPubMedPubMedCentral Miller MJ, Bostwick BL, Kennedy AD, Donti TR, Sun Q, Sutton VR, et al. Chronic oral L-Carnitine supplementation drives marked plasma TMAO elevations in patients with organic acidemias despite dietary meat restrictions. JIMD Rep. 2016;30:39–446.CrossRefPubMedPubMedCentral
58.
go back to reference Walter JH. L-Carnitine in inborn errors of metabolism: What is the evidence? J Inherit Metab Dis. 2003;26:181–8.CrossRefPubMed Walter JH. L-Carnitine in inborn errors of metabolism: What is the evidence? J Inherit Metab Dis. 2003;26:181–8.CrossRefPubMed
59.
go back to reference Rinaldo P, Schmidt-Sommerfeld E, Posca AP, Heales SJR, Woolf DA, Leonard JV. Effect of treatment with glycine and l-carnitine in medium-chain acyl-coenzyme A dehydrogenase deficiency. J Pediatr. 1993;122:580–4.CrossRefPubMed Rinaldo P, Schmidt-Sommerfeld E, Posca AP, Heales SJR, Woolf DA, Leonard JV. Effect of treatment with glycine and l-carnitine in medium-chain acyl-coenzyme A dehydrogenase deficiency. J Pediatr. 1993;122:580–4.CrossRefPubMed
60.
go back to reference Schmidt-Sommerfeld E, Penn D, Kerner J, Bieber LL, Rossi TM, Lebenthal E. Quantitation of urinary carnitine esters in a patient with medium-chain acyl-coenzyme A dehydrogenase deficiency: Effect of metabolic state and l-carnitine therapy. J Pediatr. 1989;115:577–82.CrossRefPubMed Schmidt-Sommerfeld E, Penn D, Kerner J, Bieber LL, Rossi TM, Lebenthal E. Quantitation of urinary carnitine esters in a patient with medium-chain acyl-coenzyme A dehydrogenase deficiency: Effect of metabolic state and l-carnitine therapy. J Pediatr. 1989;115:577–82.CrossRefPubMed
61.
go back to reference Treem WR, Stanley CA, Goodman SI. Medium-chain acyl-CoA dehydrogenase deficiency: Metabolic effects and therapeutic efficacy of long-term l-carnitine supplementation. J Inherit Metab Dis. 1989;12:112–9.CrossRefPubMed Treem WR, Stanley CA, Goodman SI. Medium-chain acyl-CoA dehydrogenase deficiency: Metabolic effects and therapeutic efficacy of long-term l-carnitine supplementation. J Inherit Metab Dis. 1989;12:112–9.CrossRefPubMed
62.
go back to reference Van Hove JL, Kahler SG, Millington DS, Roe DS, Chace DH, Heales SJ, et al. Intravenous L-carnitine and acetyl-L-carnitine in medium-chain acyl-coenzyme A dehydrogenase deficiency and isovaleric acidemia. Pediatr Res. 1994;35:96–101.CrossRefPubMed Van Hove JL, Kahler SG, Millington DS, Roe DS, Chace DH, Heales SJ, et al. Intravenous L-carnitine and acetyl-L-carnitine in medium-chain acyl-coenzyme A dehydrogenase deficiency and isovaleric acidemia. Pediatr Res. 1994;35:96–101.CrossRefPubMed
63.
go back to reference Wilson CJ, Champion MP, Collins JE, Clayton PT, Leonard JV. Outcome of medium chain acyl-CoA dehydrogenase deficiency after diagnosis. Arch Dis Child. 1999;80:459–62.CrossRefPubMedPubMedCentral Wilson CJ, Champion MP, Collins JE, Clayton PT, Leonard JV. Outcome of medium chain acyl-CoA dehydrogenase deficiency after diagnosis. Arch Dis Child. 1999;80:459–62.CrossRefPubMedPubMedCentral
64.
go back to reference Huidekoper HH, Schneider J, Westphal T, Vaz FM, Duran M, Wijburg FA. Prolonged moderate-intensity exercise without and with L-carnitine supplementation in patients with MCAD deficiency. J Inherit Metab Dis. 2006;29:631–6.CrossRefPubMed Huidekoper HH, Schneider J, Westphal T, Vaz FM, Duran M, Wijburg FA. Prolonged moderate-intensity exercise without and with L-carnitine supplementation in patients with MCAD deficiency. J Inherit Metab Dis. 2006;29:631–6.CrossRefPubMed
65.
go back to reference Lee PJ, Harrison EL, Jones MG, Jones S, Leonard JV, Chalmers RA. L-Carnitine and exercise tolerance in medium-chain acyl-coenzyme A dehydrogenase (MCAD) deficiency: a pilot study. J Inherit Metab Dis. 2005;28:141–52.CrossRefPubMed Lee PJ, Harrison EL, Jones MG, Jones S, Leonard JV, Chalmers RA. L-Carnitine and exercise tolerance in medium-chain acyl-coenzyme A dehydrogenase (MCAD) deficiency: a pilot study. J Inherit Metab Dis. 2005;28:141–52.CrossRefPubMed
66.
go back to reference Khangura SD, Karaceper MD, Trakadis Y, Mitchell JJ, Chakraborty P, Tingley K, et al. Scoping review of patient- and family-oriented outcomes and measures for chronic pediatric disease. BMC Pediatr. 2015;15:7.CrossRefPubMedPubMedCentral Khangura SD, Karaceper MD, Trakadis Y, Mitchell JJ, Chakraborty P, Tingley K, et al. Scoping review of patient- and family-oriented outcomes and measures for chronic pediatric disease. BMC Pediatr. 2015;15:7.CrossRefPubMedPubMedCentral
67.
go back to reference Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. 2015;7647:1–25. Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. 2015;7647:1–25.
68.
go back to reference Sampson M, Mcgowan J, Cogo E, Grimshaw J. An evidence-based practice guideline for the peer review of electronic search strategies. J Clin Epidemiol. 2009;62:944–52.CrossRefPubMed Sampson M, Mcgowan J, Cogo E, Grimshaw J. An evidence-based practice guideline for the peer review of electronic search strategies. J Clin Epidemiol. 2009;62:944–52.CrossRefPubMed
69.
go back to reference Moher D, Liberati A, Tetzlaff J, Altman DG, Group TP. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.CrossRefPubMedPubMedCentral Moher D, Liberati A, Tetzlaff J, Altman DG, Group TP. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.CrossRefPubMedPubMedCentral
70.
go back to reference Kapadia M, Chan W, Jegathesan T, Offringa M. Development of core outcome set for pediatric health conditions: a systematic review. Trials. 2015;16:P25.CrossRefPubMedCentral Kapadia M, Chan W, Jegathesan T, Offringa M. Development of core outcome set for pediatric health conditions: a systematic review. Trials. 2015;16:P25.CrossRefPubMedCentral
71.
go back to reference Payne K, Nicholls SG, McAllister M, MacLeod R, Ellis I, Donnai D, et al. Outcome measures for clinical genetics services: a comparison of genetics healthcare professionals and patients’ views. Health Policy. 2007;84:112–22.CrossRefPubMed Payne K, Nicholls SG, McAllister M, MacLeod R, Ellis I, Donnai D, et al. Outcome measures for clinical genetics services: a comparison of genetics healthcare professionals and patients’ views. Health Policy. 2007;84:112–22.CrossRefPubMed
72.
go back to reference Nicholls SG, Quach P, von Elm E, Guttmann A, Moher D, Petersen I, et al. The reporting of studies conducted using observational routinely-collected health data (RECORD) statement: methods for arriving at consensus and developing reporting guidelines. PLoS One. 2015;10:e0125620.CrossRefPubMedPubMedCentral Nicholls SG, Quach P, von Elm E, Guttmann A, Moher D, Petersen I, et al. The reporting of studies conducted using observational routinely-collected health data (RECORD) statement: methods for arriving at consensus and developing reporting guidelines. PLoS One. 2015;10:e0125620.CrossRefPubMedPubMedCentral
73.
go back to reference Young B, Bagley H. Including patients in core outcome set development: issues to consider based on three workshops with around 100 international delegates. Res Involv Engagem. 2016;2:25.CrossRef Young B, Bagley H. Including patients in core outcome set development: issues to consider based on three workshops with around 100 international delegates. Res Involv Engagem. 2016;2:25.CrossRef
74.
go back to reference Irwin DE, Stucky BD, Thissen D, DeWitt EM, Lai JS, Yeatts K, et al. Sampling plan and patient characteristics of the PROMIS pediatrics large-scale survey. Qual Life Res. 2010;19:585–94.CrossRefPubMedPubMedCentral Irwin DE, Stucky BD, Thissen D, DeWitt EM, Lai JS, Yeatts K, et al. Sampling plan and patient characteristics of the PROMIS pediatrics large-scale survey. Qual Life Res. 2010;19:585–94.CrossRefPubMedPubMedCentral
75.
go back to reference Mokkink LB, Terwee CB, Patrick DL, Alonso J, Stratford PW, Knol DL, et al. The COSMIN study reached international consensus on taxonomy, terminology, and definitions of measurement properties for health-related patient-reported outcomes. J Clin Epidemiol. 2010;63:737–45.CrossRefPubMed Mokkink LB, Terwee CB, Patrick DL, Alonso J, Stratford PW, Knol DL, et al. The COSMIN study reached international consensus on taxonomy, terminology, and definitions of measurement properties for health-related patient-reported outcomes. J Clin Epidemiol. 2010;63:737–45.CrossRefPubMed
76.
go back to reference Arnold GL, Van Hove J, Freedenberg D, Strauss A, Longo N, Burton B, et al. A Delphi clinical practice protocol for the management of very long chain acyl-CoA dehydrogenase deficiency. Mol Genet Metab. 2009;96:85–90.CrossRefPubMedPubMedCentral Arnold GL, Van Hove J, Freedenberg D, Strauss A, Longo N, Burton B, et al. A Delphi clinical practice protocol for the management of very long chain acyl-CoA dehydrogenase deficiency. Mol Genet Metab. 2009;96:85–90.CrossRefPubMedPubMedCentral
77.
go back to reference Kolker S, Christensen E, Leonard JV, Greenberg CR, Boneh A, Burlina AB, et al. Diagnosis and management of glutaric aciduria type I–revised recommendations. J Inherit Metab Dis. 2011;34:677–94.CrossRefPubMedPubMedCentral Kolker S, Christensen E, Leonard JV, Greenberg CR, Boneh A, Burlina AB, et al. Diagnosis and management of glutaric aciduria type I–revised recommendations. J Inherit Metab Dis. 2011;34:677–94.CrossRefPubMedPubMedCentral
78.
go back to reference Scarpa M, Almássy Z, Beck M, Bodamer O, Bruce IA, De Meirleir L, et al. Mucopolysaccharidosis type II: European recommendations for the diagnosis and multidisciplinary management of a rare disease. Orphanet J Rare Dis. 2011;6:72.CrossRefPubMedPubMedCentral Scarpa M, Almássy Z, Beck M, Bodamer O, Bruce IA, De Meirleir L, et al. Mucopolysaccharidosis type II: European recommendations for the diagnosis and multidisciplinary management of a rare disease. Orphanet J Rare Dis. 2011;6:72.CrossRefPubMedPubMedCentral
79.
go back to reference Onakpoya IJ, Spencer EA, Thompson MJ, Heneghan CJ. The effectiveness, safety and costs of orphan drugs: an evidence-based review. BMJ Open. 2015;37:e22. Onakpoya IJ, Spencer EA, Thompson MJ, Heneghan CJ. The effectiveness, safety and costs of orphan drugs: an evidence-based review. BMJ Open. 2015;37:e22.
80.
go back to reference Atkins D, Siegel J, Slutsky J. Making policy when the evidence is in dispute. Health Aff. 2005;24:102–13.CrossRef Atkins D, Siegel J, Slutsky J. Making policy when the evidence is in dispute. Health Aff. 2005;24:102–13.CrossRef
Metadata
Title
Establishing core outcome sets for phenylketonuria (PKU) and medium-chain Acyl-CoA dehydrogenase (MCAD) deficiency in children: study protocol for systematic reviews and Delphi surveys
Authors
Beth K. Potter
Brian Hutton
Tammy J. Clifford
Nicole Pallone
Maureen Smith
Sylvia Stockler
Pranesh Chakraborty
Pauline Barbeau
Chantelle M. Garritty
Michael Pugliese
Alvi Rahman
Becky Skidmore
Laure Tessier
Kylie Tingley
Doug Coyle
Cheryl R. Greenberg
Lawrence Korngut
Alex MacKenzie
John J. Mitchell
Stuart Nicholls
Martin Offringa
Andreas Schulze
Monica Taljaard
In collaboration with the Canadian Inherited Metabolic Diseases Research Network
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Trials / Issue 1/2017
Electronic ISSN: 1745-6215
DOI
https://doi.org/10.1186/s13063-017-2327-3

Other articles of this Issue 1/2017

Trials 1/2017 Go to the issue