Skip to main content
Top
Published in: Journal of Ovarian Research 1/2015

Open Access 01-12-2015 | Research

Expression and localisation of c-kit and KITL in the adult human ovary

Authors: Astrud R Tuck, Rebecca L Robker, Robert J Norman, Wayne D Tilley, Theresa E Hickey

Published in: Journal of Ovarian Research | Issue 1/2015

Login to get access

Abstract

Background

The c-kit/kit ligand (KITL) signalling axis is an essential component of ovarian folliculogenesis in mammals, but little is known about expression and localisation of its key components in the ovaries of reproductive age women. This study aimed to characterise mRNA expression of c-kit and KITL isoforms and the localisation of c-kit and KITL proteins in adult human premenopausal ovaries.

Methods

This study utilised granulosa cells obtained from the preovulatory follicles of women undergoing assisted reproduction, pieces of ovarian tissue obtained from premenopausal women undergoing gynaecological surgeries and archival paraffin-embedded premenopausal ovarian tissues. Methodology included PCR for gene expression and Western blot or immunohistochemistry for protein expression.

Results

Both c-kit mRNA isoforms, known as GNNK+ and GNNK-, were detected in human ovarian cortex, while KITL protein isoforms (KITL1 and KITL2) were present in ovarian cortex and human granulosa cells. Immunohistochemistry showed expression of KITL and c-kit protein in multiple cell types within follicles throughout development, from primordial follicles to large antral follicles, in addition to atretic follicles. Oocytes of all follicle stages expressed c-kit protein exclusively. Interestingly, unlike animal models, expression of both proteins displayed a less cell-type specific distribution with immunostaining present in granulosa, theca and stromal cells, suggesting that autocrine signalling occurs within the human ovary.

Conclusion

The results of this study indicate that c-kit/KITL signalling also occurs in the human ovary, as established in various animal models, and may involve previously unknown autocrine signalling.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hutt KJ, McLaughlin EA, Holland MK. KIT/KIT ligand in mammalian oogenesis and folliculogenesis: roles in rabbit and murine ovarian follicle activation and oocyte growth. Biol Reprod. 2006;75:421–33.PubMedCrossRef Hutt KJ, McLaughlin EA, Holland MK. KIT/KIT ligand in mammalian oogenesis and folliculogenesis: roles in rabbit and murine ovarian follicle activation and oocyte growth. Biol Reprod. 2006;75:421–33.PubMedCrossRef
2.
go back to reference Hutt KJ, McLaughlin EA, Holland MK. Kit ligand and c-Kit have diverse roles during mammalian oogenesis and folliculogenesis. Mol Hum Reprod. 2006;12:61–9.PubMedCrossRef Hutt KJ, McLaughlin EA, Holland MK. Kit ligand and c-Kit have diverse roles during mammalian oogenesis and folliculogenesis. Mol Hum Reprod. 2006;12:61–9.PubMedCrossRef
3.
go back to reference Thomas FH, Vanderhyden BC. Oocyte-granulosa cell interactions during mouse follicular development: regulation of kit ligand expression and its role in oocyte growth. Reprod Biol Endocrinol. 2006;4:19.PubMedCentralPubMedCrossRef Thomas FH, Vanderhyden BC. Oocyte-granulosa cell interactions during mouse follicular development: regulation of kit ligand expression and its role in oocyte growth. Reprod Biol Endocrinol. 2006;4:19.PubMedCentralPubMedCrossRef
4.
go back to reference Brannan CI, Lyman SD, Williams DE, Eisenman J, Anderson DM, Cosman D, et al. Steel-Dickie mutation encodes a c-kit ligand lacking transmembrane and cytoplasmic domains. Proc Natl Acad Sci U S A. 1991;88:4671–4.PubMedCentralPubMedCrossRef Brannan CI, Lyman SD, Williams DE, Eisenman J, Anderson DM, Cosman D, et al. Steel-Dickie mutation encodes a c-kit ligand lacking transmembrane and cytoplasmic domains. Proc Natl Acad Sci U S A. 1991;88:4671–4.PubMedCentralPubMedCrossRef
5.
go back to reference Manova K, Huang EJ, Angeles M, De Leon V, Sanchez S, Pronovost SM, et al. The expression pattern of the c-kit ligand in gonads of mice supports a role for the c-kit receptor in oocyte growth and in proliferation of spermatogonia. Dev Biol. 1993;157:85–99.PubMedCrossRef Manova K, Huang EJ, Angeles M, De Leon V, Sanchez S, Pronovost SM, et al. The expression pattern of the c-kit ligand in gonads of mice supports a role for the c-kit receptor in oocyte growth and in proliferation of spermatogonia. Dev Biol. 1993;157:85–99.PubMedCrossRef
6.
go back to reference Bedell MA, Brannan CI, Evans EP, Copeland NG, Jenkins NA, Donovan PJ. DNA rearrangements located over 100 kb 5′ of the Steel (Sl)-coding region in Steel-panda and Steel-contrasted mice deregulate Sl expression and cause female sterility by disrupting ovarian follicle development. Genes Dev. 1995;9:455–70.PubMedCrossRef Bedell MA, Brannan CI, Evans EP, Copeland NG, Jenkins NA, Donovan PJ. DNA rearrangements located over 100 kb 5′ of the Steel (Sl)-coding region in Steel-panda and Steel-contrasted mice deregulate Sl expression and cause female sterility by disrupting ovarian follicle development. Genes Dev. 1995;9:455–70.PubMedCrossRef
7.
go back to reference Tajima Y, Moore MA, Soares V, Ono M, Kissel H, Besmer P. Consequences of exclusive expression in vivo of Kit-ligand lacking the major proteolytic cleavage site. Proc Natl Acad Sci U S A. 1998;95:11903–8.PubMedCentralPubMedCrossRef Tajima Y, Moore MA, Soares V, Ono M, Kissel H, Besmer P. Consequences of exclusive expression in vivo of Kit-ligand lacking the major proteolytic cleavage site. Proc Natl Acad Sci U S A. 1998;95:11903–8.PubMedCentralPubMedCrossRef
8.
go back to reference Joyce IM, Pendola FL, Wigglesworth K, Eppig JJ. Oocyte regulation of kit ligand expression in mouse ovarian follicles. Dev Biol. 1999;214:342–53.PubMedCrossRef Joyce IM, Pendola FL, Wigglesworth K, Eppig JJ. Oocyte regulation of kit ligand expression in mouse ovarian follicles. Dev Biol. 1999;214:342–53.PubMedCrossRef
9.
go back to reference Driancourt MA, Reynaud K, Cortvrindt R, Smitz J. Roles of KIT and KIT LIGAND in ovarian function. Rev Reprod. 2000;5:143–52.PubMedCrossRef Driancourt MA, Reynaud K, Cortvrindt R, Smitz J. Roles of KIT and KIT LIGAND in ovarian function. Rev Reprod. 2000;5:143–52.PubMedCrossRef
10.
go back to reference Brankin V, Hunter MG, Horan TL, Armstrong DG, Webb R. The expression patterns of mRNA-encoding stem cell factor, internal stem cell factor and c-kit in the prepubertal and adult porcine ovary. J Anat. 2004;205:393–403.PubMedCentralPubMedCrossRef Brankin V, Hunter MG, Horan TL, Armstrong DG, Webb R. The expression patterns of mRNA-encoding stem cell factor, internal stem cell factor and c-kit in the prepubertal and adult porcine ovary. J Anat. 2004;205:393–403.PubMedCentralPubMedCrossRef
11.
go back to reference Silva JR, van den Hurk R, van Tol HT, Roelen BA, Figueiredo JR. The Kit ligand/c-Kit receptor system in goat ovaries: gene expression and protein localization. Zygote. 2006;14:317–28.PubMedCrossRef Silva JR, van den Hurk R, van Tol HT, Roelen BA, Figueiredo JR. The Kit ligand/c-Kit receptor system in goat ovaries: gene expression and protein localization. Zygote. 2006;14:317–28.PubMedCrossRef
12.
go back to reference Carlsson IB, Laitinen MP, Scott JE, Louhio H, Velentzis L, Tuuri T, et al. Kit ligand and c-Kit are expressed during early human ovarian follicular development and their interaction is required for the survival of follicles in long-term culture. Reproduction. 2006;131:641–9.PubMedCrossRef Carlsson IB, Laitinen MP, Scott JE, Louhio H, Velentzis L, Tuuri T, et al. Kit ligand and c-Kit are expressed during early human ovarian follicular development and their interaction is required for the survival of follicles in long-term culture. Reproduction. 2006;131:641–9.PubMedCrossRef
13.
go back to reference Tanikawa M, Harada T, Mitsunari M, Onohara Y, Iwabe T, Terakawa N. Expression of c-kit messenger ribonucleic acid in human oocyte and presence of soluble c-kit in follicular fluid. J Clin Endocrinol Metab. 1998;83:1239–42.PubMedCrossRef Tanikawa M, Harada T, Mitsunari M, Onohara Y, Iwabe T, Terakawa N. Expression of c-kit messenger ribonucleic acid in human oocyte and presence of soluble c-kit in follicular fluid. J Clin Endocrinol Metab. 1998;83:1239–42.PubMedCrossRef
14.
go back to reference Abir R, Fisch B, Jin S, Barnnet M, Kessler-Icekson G, Ao A. Expression of stem cell factor and its receptor in human fetal and adult ovaries. Fertil Steril. 2004;82 Suppl 3:1235–43.PubMedCrossRef Abir R, Fisch B, Jin S, Barnnet M, Kessler-Icekson G, Ao A. Expression of stem cell factor and its receptor in human fetal and adult ovaries. Fertil Steril. 2004;82 Suppl 3:1235–43.PubMedCrossRef
15.
go back to reference Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril. 2004;81:19–25. Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril. 2004;81:19–25.
16.
17.
go back to reference Hughesdon PE. Morphology and morphogenesis of the Stein-Leventhal ovary and of so-called “hyperthecosis”. Obstet Gynecol Surv. 1982;37:59–77.PubMedCrossRef Hughesdon PE. Morphology and morphogenesis of the Stein-Leventhal ovary and of so-called “hyperthecosis”. Obstet Gynecol Surv. 1982;37:59–77.PubMedCrossRef
18.
go back to reference Gilling-Smith C, Willis DS, Beard RW, Franks S. Hypersecretion of androstenedione by isolated thecal cells from polycystic ovaries. J Clin Endocrinol Metab. 1994;79:1158–65.PubMed Gilling-Smith C, Willis DS, Beard RW, Franks S. Hypersecretion of androstenedione by isolated thecal cells from polycystic ovaries. J Clin Endocrinol Metab. 1994;79:1158–65.PubMed
19.
go back to reference Nelson VL, Legro RS, Strauss 3rd JF, McAllister JM. Augmented androgen production is a stable steroidogenic phenotype of propagated theca cells from polycystic ovaries. Mol Endocrinol. 1999;13:946–57.PubMedCrossRef Nelson VL, Legro RS, Strauss 3rd JF, McAllister JM. Augmented androgen production is a stable steroidogenic phenotype of propagated theca cells from polycystic ovaries. Mol Endocrinol. 1999;13:946–57.PubMedCrossRef
20.
go back to reference Webber LJ, Stubbs S, Stark J, Trew GH, Margara R, Hardy K, et al. Formation and early development of follicles in the polycystic ovary. Lancet. 2003;362:1017–21.PubMedCrossRef Webber LJ, Stubbs S, Stark J, Trew GH, Margara R, Hardy K, et al. Formation and early development of follicles in the polycystic ovary. Lancet. 2003;362:1017–21.PubMedCrossRef
21.
go back to reference Maciel GA, Baracat EC, Benda JA, Markham SM, Hensinger K, Chang RJ, et al. Stockpiling of transitional and classic primary follicles in ovaries of women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2004;89:5321–7.PubMedCrossRef Maciel GA, Baracat EC, Benda JA, Markham SM, Hensinger K, Chang RJ, et al. Stockpiling of transitional and classic primary follicles in ovaries of women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2004;89:5321–7.PubMedCrossRef
22.
go back to reference Stubbs SA, Stark J, Dilworth SM, Franks S, Hardy K. Abnormal preantral folliculogenesis in polycystic ovaries is associated with increased granulosa cell division. J Clin Endocrinol Metab. 2007;92:4418–26.PubMedCrossRef Stubbs SA, Stark J, Dilworth SM, Franks S, Hardy K. Abnormal preantral folliculogenesis in polycystic ovaries is associated with increased granulosa cell division. J Clin Endocrinol Metab. 2007;92:4418–26.PubMedCrossRef
23.
go back to reference Wang Y, Li J, Ying Wang C, Yan Kwok AH, Leung FC. Epidermal growth factor (EGF) receptor ligands in the chicken ovary: I. Evidence for heparin-binding EGF-like growth factor (HB-EGF) as a potential oocyte-derived signal to control granulosa cell proliferation and HB-EGF and kit ligand expression. Endocrinology. 2007;148:3426–40.PubMedCrossRef Wang Y, Li J, Ying Wang C, Yan Kwok AH, Leung FC. Epidermal growth factor (EGF) receptor ligands in the chicken ovary: I. Evidence for heparin-binding EGF-like growth factor (HB-EGF) as a potential oocyte-derived signal to control granulosa cell proliferation and HB-EGF and kit ligand expression. Endocrinology. 2007;148:3426–40.PubMedCrossRef
24.
go back to reference Thomas FH, Ismail RS, Jiang JY, Vanderhyden BC. Kit ligand 2 promotes murine oocyte growth in vitro. Biol Reprod. 2008;78:167–75.PubMedCrossRef Thomas FH, Ismail RS, Jiang JY, Vanderhyden BC. Kit ligand 2 promotes murine oocyte growth in vitro. Biol Reprod. 2008;78:167–75.PubMedCrossRef
25.
go back to reference Caruana G, Cambareri AC, Ashman LK. Isoforms of c-KIT differ in activation of signalling pathways and transformation of NIH3T3 fibroblasts. Oncogene. 1999;18:5573–81.PubMedCrossRef Caruana G, Cambareri AC, Ashman LK. Isoforms of c-KIT differ in activation of signalling pathways and transformation of NIH3T3 fibroblasts. Oncogene. 1999;18:5573–81.PubMedCrossRef
26.
go back to reference Ogawa M, Matsuzaki Y, Nishikawa S, Hayashi S, Kunisada T, Sudo T, et al. Expression and function of c-kit in hemopoietic progenitor cells. J Exp Med. 1991;174:63–71.PubMedCrossRef Ogawa M, Matsuzaki Y, Nishikawa S, Hayashi S, Kunisada T, Sudo T, et al. Expression and function of c-kit in hemopoietic progenitor cells. J Exp Med. 1991;174:63–71.PubMedCrossRef
27.
go back to reference Xie ZN, Liu DS, Cao WK, Deng ZK, Li YF. Influence of celecoxib combined with IFN-alpha on proliferation, apoptosis, cell cycle and CD117 expression of K562 cells. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2010;18:330–4.PubMed Xie ZN, Liu DS, Cao WK, Deng ZK, Li YF. Influence of celecoxib combined with IFN-alpha on proliferation, apoptosis, cell cycle and CD117 expression of K562 cells. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2010;18:330–4.PubMed
28.
go back to reference Li J, Quirt J, Do HQ, Lyte K, Fellows F, Goodyer CG, et al. Expression of c-Kit receptor tyrosine kinase and effect on beta-cell development in the human fetal pancreas. Am J Physiol Endocrinol Metab. 2007;293:E475–83.PubMedCrossRef Li J, Quirt J, Do HQ, Lyte K, Fellows F, Goodyer CG, et al. Expression of c-Kit receptor tyrosine kinase and effect on beta-cell development in the human fetal pancreas. Am J Physiol Endocrinol Metab. 2007;293:E475–83.PubMedCrossRef
29.
go back to reference Wong NA, Melegh Z. Antigen retrieval and primary antibody type affect sensitivity but not specificity of CD117 immunohistochemistry. Histopathology. 2009;54:529–38.PubMedCrossRef Wong NA, Melegh Z. Antigen retrieval and primary antibody type affect sensitivity but not specificity of CD117 immunohistochemistry. Histopathology. 2009;54:529–38.PubMedCrossRef
30.
go back to reference Novelli M, Rossi S, Rodriguez-Justo M, Taniere P, Seddon B, Toffolatti L, et al. DOG1 and CD117 are the antibodies of choice in the diagnosis of gastrointestinal stromal tumours. Histopathology. 2010;57:259–70.PubMedCrossRef Novelli M, Rossi S, Rodriguez-Justo M, Taniere P, Seddon B, Toffolatti L, et al. DOG1 and CD117 are the antibodies of choice in the diagnosis of gastrointestinal stromal tumours. Histopathology. 2010;57:259–70.PubMedCrossRef
31.
go back to reference Liu Y, Wu C, Lyu Q, Yang D, Albertini DF, Keefe DL, et al. Germline stem cells and neo-oogenesis in the adult human ovary. Dev Biol. 2007;306:112–20.PubMedCrossRef Liu Y, Wu C, Lyu Q, Yang D, Albertini DF, Keefe DL, et al. Germline stem cells and neo-oogenesis in the adult human ovary. Dev Biol. 2007;306:112–20.PubMedCrossRef
32.
go back to reference Ricciardelli C, Choong CS, Buchanan G, Vivekanandan S, Neufing P, Stahl J, et al. Androgen receptor levels in prostate cancer epithelial and peritumoral stromal cells identify non-organ confined disease. Prostate. 2005;63:19–28.PubMedCrossRef Ricciardelli C, Choong CS, Buchanan G, Vivekanandan S, Neufing P, Stahl J, et al. Androgen receptor levels in prostate cancer epithelial and peritumoral stromal cells identify non-organ confined disease. Prostate. 2005;63:19–28.PubMedCrossRef
33.
go back to reference Amin MM, El-Hawary AK, Farouk O. Relation of CD117 immunoreactivity and microvascular density in invasive breast carcinoma. Indian J Pathol Microbiol. 2012;55:456–60.PubMedCrossRef Amin MM, El-Hawary AK, Farouk O. Relation of CD117 immunoreactivity and microvascular density in invasive breast carcinoma. Indian J Pathol Microbiol. 2012;55:456–60.PubMedCrossRef
34.
go back to reference Reith AD, Ellis C, Lyman SD, Anderson DM, Williams DE, Bernstein A, et al. Signal transduction by normal isoforms and W mutant variants of the Kit receptor tyrosine kinase. EMBO J. 1991;10:2451–9.PubMedCentralPubMed Reith AD, Ellis C, Lyman SD, Anderson DM, Williams DE, Bernstein A, et al. Signal transduction by normal isoforms and W mutant variants of the Kit receptor tyrosine kinase. EMBO J. 1991;10:2451–9.PubMedCentralPubMed
35.
go back to reference Koch D, Sakurai M, Hummitzsch K, Hermsdorf T, Erdmann S, Schwalbe S, et al. KIT variants in bovine ovarian cells and corpus luteum. Growth Factors. 2009;27:100–13.PubMedCrossRef Koch D, Sakurai M, Hummitzsch K, Hermsdorf T, Erdmann S, Schwalbe S, et al. KIT variants in bovine ovarian cells and corpus luteum. Growth Factors. 2009;27:100–13.PubMedCrossRef
36.
go back to reference Nishi Y, Yanase T, Mu Y, Oba K, Ichino I, Saito M, et al. Establishment and characterization of a steroidogenic human granulosa-like tumor cell line, KGN, that expresses functional follicle-stimulating hormone receptor. Endocrinology. 2001;142:437–45.PubMedCrossRef Nishi Y, Yanase T, Mu Y, Oba K, Ichino I, Saito M, et al. Establishment and characterization of a steroidogenic human granulosa-like tumor cell line, KGN, that expresses functional follicle-stimulating hormone receptor. Endocrinology. 2001;142:437–45.PubMedCrossRef
37.
go back to reference Hoyer PE, Byskov AG, Mollgard K. Stem cell factor and c-Kit in human primordial germ cells and fetal ovaries. Mol Cell Endocrinol. 2005;234:1–10.PubMedCrossRef Hoyer PE, Byskov AG, Mollgard K. Stem cell factor and c-Kit in human primordial germ cells and fetal ovaries. Mol Cell Endocrinol. 2005;234:1–10.PubMedCrossRef
38.
go back to reference Klinger FG, De Felici M. In vitro development of growing oocytes from fetal mouse oocytes: stage-specific regulation by stem cell factor and granulosa cells. Dev Biol. 2002;244:85–95.PubMedCrossRef Klinger FG, De Felici M. In vitro development of growing oocytes from fetal mouse oocytes: stage-specific regulation by stem cell factor and granulosa cells. Dev Biol. 2002;244:85–95.PubMedCrossRef
39.
go back to reference Muruvi W, Picton HM, Rodway RG, Joyce IM. In vitro growth of oocytes from primordial follicles isolated from frozen-thawed lamb ovaries. Theriogenology. 2005;64:1357–70.PubMedCrossRef Muruvi W, Picton HM, Rodway RG, Joyce IM. In vitro growth of oocytes from primordial follicles isolated from frozen-thawed lamb ovaries. Theriogenology. 2005;64:1357–70.PubMedCrossRef
40.
go back to reference John GB, Shidler MJ, Besmer P, Castrillon DH. Kit signaling via PI3K promotes ovarian follicle maturation but is dispensable for primordial follicle activation. Dev Biol. 2009;331:292–9.PubMedCentralPubMedCrossRef John GB, Shidler MJ, Besmer P, Castrillon DH. Kit signaling via PI3K promotes ovarian follicle maturation but is dispensable for primordial follicle activation. Dev Biol. 2009;331:292–9.PubMedCentralPubMedCrossRef
41.
go back to reference Parrott JA, Skinner MK. Direct actions of kit-ligand on theca cell growth and differentiation during follicle development. Endocrinology. 1997;138:3819–27.PubMed Parrott JA, Skinner MK. Direct actions of kit-ligand on theca cell growth and differentiation during follicle development. Endocrinology. 1997;138:3819–27.PubMed
42.
go back to reference Parrott JA, Skinner MK. Thecal cell-granulosa cell interactions involve a positive feedback loop among keratinocyte growth factor, hepatocyte growth factor, and Kit ligand during ovarian follicular development. Endocrinology. 1998;139:2240–5.PubMed Parrott JA, Skinner MK. Thecal cell-granulosa cell interactions involve a positive feedback loop among keratinocyte growth factor, hepatocyte growth factor, and Kit ligand during ovarian follicular development. Endocrinology. 1998;139:2240–5.PubMed
43.
go back to reference Parrott JA, Skinner MK. Kit ligand actions on ovarian stromal cells: effects on theca cell recruitment and steroid production. Mol Reprod Dev. 2000;55:55–64.PubMedCrossRef Parrott JA, Skinner MK. Kit ligand actions on ovarian stromal cells: effects on theca cell recruitment and steroid production. Mol Reprod Dev. 2000;55:55–64.PubMedCrossRef
44.
go back to reference Tisdall DJ, Quirke LD, Smith P, McNatty KP. Expression of the ovine stem cell factor gene during folliculogenesis in late fetal and adult ovaries. J Mol Endocrinol. 1997;18:127–35.PubMedCrossRef Tisdall DJ, Quirke LD, Smith P, McNatty KP. Expression of the ovine stem cell factor gene during folliculogenesis in late fetal and adult ovaries. J Mol Endocrinol. 1997;18:127–35.PubMedCrossRef
45.
go back to reference Brannan CI, Bedell MA, Resnick JL, Eppig JJ, Handel MA, Williams DE, et al. Developmental abnormalities in Steel17H mice result from a splicing defect in the steel factor cytoplasmic tail. Genes Dev. 1992;6:1832–42.PubMedCrossRef Brannan CI, Bedell MA, Resnick JL, Eppig JJ, Handel MA, Williams DE, et al. Developmental abnormalities in Steel17H mice result from a splicing defect in the steel factor cytoplasmic tail. Genes Dev. 1992;6:1832–42.PubMedCrossRef
46.
go back to reference Miyazawa K, Williams DA, Gotoh A, Nishimaki J, Broxmeyer HE, Toyama K. Membrane-bound Steel factor induces more persistent tyrosine kinase activation and longer life span of c-kit gene-encoded protein than its soluble form. Blood. 1995;85:641–9.PubMed Miyazawa K, Williams DA, Gotoh A, Nishimaki J, Broxmeyer HE, Toyama K. Membrane-bound Steel factor induces more persistent tyrosine kinase activation and longer life span of c-kit gene-encoded protein than its soluble form. Blood. 1995;85:641–9.PubMed
47.
go back to reference Parrott JA, Skinner MK. Kit-ligand/stem cell factor induces primordial follicle development and initiates folliculogenesis. Endocrinology. 1999;140:4262–71.PubMed Parrott JA, Skinner MK. Kit-ligand/stem cell factor induces primordial follicle development and initiates folliculogenesis. Endocrinology. 1999;140:4262–71.PubMed
48.
go back to reference Reynaud K, Cortvrindt R, Smitz J, Driancourt MA. Effects of Kit Ligand and anti-Kit antibody on growth of cultured mouse preantral follicles. Mol Reprod Dev. 2000;56:483–94.PubMedCrossRef Reynaud K, Cortvrindt R, Smitz J, Driancourt MA. Effects of Kit Ligand and anti-Kit antibody on growth of cultured mouse preantral follicles. Mol Reprod Dev. 2000;56:483–94.PubMedCrossRef
49.
go back to reference Jin X, Han CS, Yu FQ, Wei P, Hu ZY, Liu YX. Anti-apoptotic action of stem cell factor on oocytes in primordial follicles and its signal transduction. Mol Reprod Dev. 2005;70:82–90.PubMedCrossRef Jin X, Han CS, Yu FQ, Wei P, Hu ZY, Liu YX. Anti-apoptotic action of stem cell factor on oocytes in primordial follicles and its signal transduction. Mol Reprod Dev. 2005;70:82–90.PubMedCrossRef
50.
go back to reference Jin X, Han CS, Zhang XS, Yuan JX, Hu ZY, Liu YX. Signal transduction of stem cell factor in promoting early follicle development. Mol Cell Endocrinol. 2005;229:3–10.PubMedCrossRef Jin X, Han CS, Zhang XS, Yuan JX, Hu ZY, Liu YX. Signal transduction of stem cell factor in promoting early follicle development. Mol Cell Endocrinol. 2005;229:3–10.PubMedCrossRef
51.
go back to reference Franks S, Stark J, Hardy K. Follicle dynamics and anovulation in polycystic ovary syndrome. Hum Reprod Update. 2008;14:367–78.PubMedCrossRef Franks S, Stark J, Hardy K. Follicle dynamics and anovulation in polycystic ovary syndrome. Hum Reprod Update. 2008;14:367–78.PubMedCrossRef
Metadata
Title
Expression and localisation of c-kit and KITL in the adult human ovary
Authors
Astrud R Tuck
Rebecca L Robker
Robert J Norman
Wayne D Tilley
Theresa E Hickey
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Journal of Ovarian Research / Issue 1/2015
Electronic ISSN: 1757-2215
DOI
https://doi.org/10.1186/s13048-015-0159-x

Other articles of this Issue 1/2015

Journal of Ovarian Research 1/2015 Go to the issue