Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2019

Open Access 01-12-2019 | Research

Identifying and targeting cancer stem cells in leiomyosarcoma: prognostic impact and role to overcome secondary resistance to PI3K/mTOR inhibition

Authors: Benjamin Fourneaux, Aurélien Bourdon, Bérengère Dadone, Carlo Lucchesi, Scott R. Daigle, Elodie Richard, Audrey Laroche-Clary, François Le Loarer, Antoine Italiano

Published in: Journal of Hematology & Oncology | Issue 1/2019

Login to get access

Abstract

Background

Leiomyosarcoma (LMS) is one of the most frequent soft tissue sarcoma subtypes and is characterized by a consistent deregulation of the PI3K/mTOR pathway. Cancer stem cells (CSCs) have been poorly studied in soft tissue sarcomas. In this study, we aimed to evaluate the association between CSCs, the outcome of LMS patients, and the resistance to PI3K/mTOR pathway inhibition.

Methods

We investigated the relationships between aldehyde dehydrogenase 1 (ALDH1) expression, a cancer stem cell marker, and the outcome of LMS patients in two independent cohorts. We assessed the impact of CSCs in resistance to PI3K/mTOR pathway inhibition using LMS cell lines, a xenograft mouse model, and human tumor samples.

Results

We found that enhanced ALDH1 activity is a hallmark of LMS stem cells and is an independent prognostic factor. We also identified that secondary resistance to PI3K/mTOR pathway inhibition was associated with the expansion of LMS CSCs. Interestingly, we found that EZH2 inhibition, a catalytic component of polycomb repressive complex which plays a critical role in stem cell maintenance, restored sensitivity to PI3K/mTOR pathway inhibition. Importantly, we confirmed the clinical relevance of our findings by analyzing tumor samples from patients who showed secondary resistance after treatment with a PI3Kα inhibitor.

Conclusions

Altogether, our findings suggest that CSCs have a strong impact on the outcome of patients with LMS and that combining PI3K/mTOR and EZH2 inhibitors may represent a promising strategy in this setting.
Appendix
Available only for authorised users
Literature
1.
go back to reference Agaram NP, Zhang L, LeLoarer F, et al. Targeted exome sequencing profiles genetic alterations in leiomyosarcoma. Genes Chromosom Cancer. 2016;55(2):124–30.CrossRef Agaram NP, Zhang L, LeLoarer F, et al. Targeted exome sequencing profiles genetic alterations in leiomyosarcoma. Genes Chromosom Cancer. 2016;55(2):124–30.CrossRef
2.
go back to reference Italiano A, Lagarde P, Brulard C, et al. Genetic profiling identifies two classes of soft-tissue leiomyosarcomas with distinct clinical characteristics. Clin Cancer Res Off J Am Assoc Cancer Res. 2013;19(5):1190–6.CrossRef Italiano A, Lagarde P, Brulard C, et al. Genetic profiling identifies two classes of soft-tissue leiomyosarcomas with distinct clinical characteristics. Clin Cancer Res Off J Am Assoc Cancer Res. 2013;19(5):1190–6.CrossRef
3.
go back to reference Hu J, Rao UNM, Jasani S, et al. Loss of DNA copy number of 10q is associated with aggressive behavior of leiomyosarcomas: a comparative genomic hybridization study. Cancer Genet Cytogenet. 2005;161(1):20–7.CrossRef Hu J, Rao UNM, Jasani S, et al. Loss of DNA copy number of 10q is associated with aggressive behavior of leiomyosarcomas: a comparative genomic hybridization study. Cancer Genet Cytogenet. 2005;161(1):20–7.CrossRef
4.
go back to reference Hernando E, Charytonowicz E, Dudas ME, et al. The AKT-mTOR pathway plays a critical role in the development of leiomyosarcomas. Nat Med. 2007;13(6):748–53.CrossRef Hernando E, Charytonowicz E, Dudas ME, et al. The AKT-mTOR pathway plays a critical role in the development of leiomyosarcomas. Nat Med. 2007;13(6):748–53.CrossRef
5.
go back to reference Cancer Genome Atlas Research Network. Electronic address: elizabeth.demicco@sinaihealthsystem.ca1; Cancer Genome Atlas Research Network. Comprehensive and integrated genomic characterization of adult soft tissue sarcomas. Cell. 2017;171(4):950–965.e28.CrossRef Cancer Genome Atlas Research Network. Electronic address: elizabeth.demicco@sinaihealthsystem.ca1; Cancer Genome Atlas Research Network. Comprehensive and integrated genomic characterization of adult soft tissue sarcomas. Cell. 2017;171(4):950–965.e28.CrossRef
6.
go back to reference Fourneaux B, Chaire V, Lucchesi C, et al. Dual inhibition of the PI3K/AKT/mTOR pathway suppresses the growth of leiomyosarcomas but leads to ERK activation through mTORC2: biological and clinical implications. Oncotarget. 2017;8(5):7878–90.CrossRef Fourneaux B, Chaire V, Lucchesi C, et al. Dual inhibition of the PI3K/AKT/mTOR pathway suppresses the growth of leiomyosarcomas but leads to ERK activation through mTORC2: biological and clinical implications. Oncotarget. 2017;8(5):7878–90.CrossRef
7.
go back to reference Cuppens T, Annibali D, Coosemans A, et al. Potential targets’ analysis reveals dual PI3K/mTOR pathway inhibition as a promising therapeutic strategy for uterine leiomyosarcomas-an ENITEC group initiative. Clin Cancer Res Off J Am Assoc Cancer Res. 2017;23(5):1274–85.CrossRef Cuppens T, Annibali D, Coosemans A, et al. Potential targets’ analysis reveals dual PI3K/mTOR pathway inhibition as a promising therapeutic strategy for uterine leiomyosarcomas-an ENITEC group initiative. Clin Cancer Res Off J Am Assoc Cancer Res. 2017;23(5):1274–85.CrossRef
8.
go back to reference Cojoc M, Mäbert K, Muders MH, Dubrovska A. A role for cancer stem cells in therapy resistance: cellular and molecular mechanisms. Semin Cancer Biol. 2015;31:16–27.CrossRef Cojoc M, Mäbert K, Muders MH, Dubrovska A. A role for cancer stem cells in therapy resistance: cellular and molecular mechanisms. Semin Cancer Biol. 2015;31:16–27.CrossRef
9.
go back to reference Murtagh F, Contreras P. Algorithms for hierarchical clustering: an overview, II. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 2017;7(6):e1219. Murtagh F, Contreras P. Algorithms for hierarchical clustering: an overview, II. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 2017;7(6):e1219.
10.
go back to reference Tomita H, Tanaka K, Tanaka T, Hara A. Aldehyde dehydrogenase 1A1 in stem cells and cancer. Oncotarget. 2016;7(10):11018–32.CrossRef Tomita H, Tanaka K, Tanaka T, Hara A. Aldehyde dehydrogenase 1A1 in stem cells and cancer. Oncotarget. 2016;7(10):11018–32.CrossRef
11.
go back to reference Wang L, Park P, Zhang H, et al. Prospective identification of tumorigenic osteosarcoma cancer stem cells in OS99-1 cells based on high aldehyde dehydrogenase activity. Int J Cancer. 2011;128(2):294–303.CrossRef Wang L, Park P, Zhang H, et al. Prospective identification of tumorigenic osteosarcoma cancer stem cells in OS99-1 cells based on high aldehyde dehydrogenase activity. Int J Cancer. 2011;128(2):294–303.CrossRef
12.
go back to reference Martins-Neves SR, Corver WE, Paiva-Oliveira DI, et al. Osteosarcoma stem cells have active Wnt/β-catenin and overexpress SOX2 and KLF4. J Cell Physiol. 2016;231(4):876–86.CrossRef Martins-Neves SR, Corver WE, Paiva-Oliveira DI, et al. Osteosarcoma stem cells have active Wnt/β-catenin and overexpress SOX2 and KLF4. J Cell Physiol. 2016;231(4):876–86.CrossRef
13.
go back to reference Moreb JS, Ucar D, Han S, et al. The enzymatic activity of human aldehyde dehydrogenases 1A2 and 2 (ALDH1A2 and ALDH2) is detected by Aldefluor, inhibited by diethylaminobenzaldehyde and has significant effects on cell proliferation and drug resistance. Chem Biol Interact. 2012;195(1):52–60.CrossRef Moreb JS, Ucar D, Han S, et al. The enzymatic activity of human aldehyde dehydrogenases 1A2 and 2 (ALDH1A2 and ALDH2) is detected by Aldefluor, inhibited by diethylaminobenzaldehyde and has significant effects on cell proliferation and drug resistance. Chem Biol Interact. 2012;195(1):52–60.CrossRef
14.
go back to reference Morikawa M, Koinuma D, Mizutani A, et al. BMP sustains embryonic stem cell self-renewal through distinct functions of different Krüppel-like factors. Stem Cell Rep. 2016;6(1):64–73.CrossRef Morikawa M, Koinuma D, Mizutani A, et al. BMP sustains embryonic stem cell self-renewal through distinct functions of different Krüppel-like factors. Stem Cell Rep. 2016;6(1):64–73.CrossRef
15.
go back to reference Ginestier C, Hur MH, Charafe-Jauffret E, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1(5):555–67.CrossRef Ginestier C, Hur MH, Charafe-Jauffret E, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1(5):555–67.CrossRef
16.
go back to reference O’Carroll D, Erhardt S, Pagani M, et al. The polycomb-group gene Ezh2 is required for early mouse development. Mol Cell Biol. 2001;21(13):4330–6.CrossRef O’Carroll D, Erhardt S, Pagani M, et al. The polycomb-group gene Ezh2 is required for early mouse development. Mol Cell Biol. 2001;21(13):4330–6.CrossRef
17.
go back to reference Boyer LA, Plath K, Zeitlinger J, et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature. 2006;441(7091):349–53.CrossRef Boyer LA, Plath K, Zeitlinger J, et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature. 2006;441(7091):349–53.CrossRef
18.
go back to reference Nishimoto M, Miyagi S, Yamagishi T, et al. Oct-3/4 maintains the proliferative embryonic stem cell state via specific binding to a variant octamer sequence in the regulatory region of the UTF1 locus. Mol Cell Biol. 2005;25(12):5084–94.CrossRef Nishimoto M, Miyagi S, Yamagishi T, et al. Oct-3/4 maintains the proliferative embryonic stem cell state via specific binding to a variant octamer sequence in the regulatory region of the UTF1 locus. Mol Cell Biol. 2005;25(12):5084–94.CrossRef
19.
go back to reference Richly H, Aloia L, Di Croce L. Roles of the polycomb group proteins in stem cells and cancer. Cell Death Dis. 2011;2:e204.CrossRef Richly H, Aloia L, Di Croce L. Roles of the polycomb group proteins in stem cells and cancer. Cell Death Dis. 2011;2:e204.CrossRef
20.
go back to reference Kadoch C, Crabtree GR. Mammalian SWI/SNF chromatin remodeling complexes and cancer: mechanistic insights gained from human genomics. Sci Adv. 2015;1(5):e1500447.CrossRef Kadoch C, Crabtree GR. Mammalian SWI/SNF chromatin remodeling complexes and cancer: mechanistic insights gained from human genomics. Sci Adv. 2015;1(5):e1500447.CrossRef
21.
go back to reference Italiano A, Soria J-C, Toulmonde M, et al. Tazemetostat, an EZH2 inhibitor, in relapsed or refractory B-cell non-Hodgkin lymphoma and advanced solid tumours: a first-in-human, open-label, phase 1 study. Lancet Oncol. 2018;19(5):649–59.CrossRef Italiano A, Soria J-C, Toulmonde M, et al. Tazemetostat, an EZH2 inhibitor, in relapsed or refractory B-cell non-Hodgkin lymphoma and advanced solid tumours: a first-in-human, open-label, phase 1 study. Lancet Oncol. 2018;19(5):649–59.CrossRef
22.
go back to reference Honoki K. Do stem-like cells play a role in drug resistance of sarcomas? Expert Rev Anticancer Ther. 2010;10(2):261–70.CrossRef Honoki K. Do stem-like cells play a role in drug resistance of sarcomas? Expert Rev Anticancer Ther. 2010;10(2):261–70.CrossRef
Metadata
Title
Identifying and targeting cancer stem cells in leiomyosarcoma: prognostic impact and role to overcome secondary resistance to PI3K/mTOR inhibition
Authors
Benjamin Fourneaux
Aurélien Bourdon
Bérengère Dadone
Carlo Lucchesi
Scott R. Daigle
Elodie Richard
Audrey Laroche-Clary
François Le Loarer
Antoine Italiano
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2019
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-018-0694-1

Other articles of this Issue 1/2019

Journal of Hematology & Oncology 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine