Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2018

Open Access 01-12-2018 | Review

T cell senescence and CAR-T cell exhaustion in hematological malignancies

Authors: Dimitri Kasakovski, Ling Xu, Yangqiu Li

Published in: Journal of Hematology & Oncology | Issue 1/2018

Login to get access

Abstract

T cell senescence has been recognized to play an immunosuppressive role in the aging population and cancer patients. Strategies dedicated to preventing or reversing replicative and premature T cell senescence are required to increase the lifespan of human beings and to reduce the morbidity from cancer. In addition, overcoming the T cell terminal differentiation or senescence from lymphoma and leukemia patients is a promising approach to enhance the effectiveness of adoptive cellular immunotherapy (ACT). Chimeric antigen receptor T (CAR-T) cell and T cell receptor-engineered T (TCR-T) cell therapy highly rely on functionally active T cells. However, the mechanisms which drive T cell senescence remain unclear and controversial. In this review, we describe recent progress for restoration of T cell homeostasis from age-related senescence as well as recovery of T cell activation in hematological malignancies.
Literature
3.
go back to reference Candeias SM, Gaipl US. The immune system in cancer prevention, development and therapy. Anti Cancer Agents Med Chem. 2016;16:101–7.CrossRef Candeias SM, Gaipl US. The immune system in cancer prevention, development and therapy. Anti Cancer Agents Med Chem. 2016;16:101–7.CrossRef
5.
go back to reference Vicente R, Mausset-Bonnefont A-L, Jorgensen C, Louis-Plence P, Brondello J-M. Cellular senescence impact on immune cell fate and function. Aging Cell. 2016;15:400–6.CrossRefPubMedPubMedCentral Vicente R, Mausset-Bonnefont A-L, Jorgensen C, Louis-Plence P, Brondello J-M. Cellular senescence impact on immune cell fate and function. Aging Cell. 2016;15:400–6.CrossRefPubMedPubMedCentral
6.
7.
8.
go back to reference Lindqvist CA, Christiansson LH, Thörn I, Mangsbo S, Paul-Wetterberg G, Sundström C, et al. Both CD4+ FoxP3+ and CD4+ FoxP3– T cells from patients with B-cell malignancy express cytolytic markers and kill autologous leukaemic B cells in vitro. Immunology. 2011;133:296–306.CrossRefPubMedPubMedCentral Lindqvist CA, Christiansson LH, Thörn I, Mangsbo S, Paul-Wetterberg G, Sundström C, et al. Both CD4+ FoxP3+ and CD4+ FoxP3– T cells from patients with B-cell malignancy express cytolytic markers and kill autologous leukaemic B cells in vitro. Immunology. 2011;133:296–306.CrossRefPubMedPubMedCentral
10.
go back to reference Schosserer M, Grillari J, Breitenbach M. The dual role of cellular senescence in developing tumors and their response to cancer therapy. Front Oncol. 2017;7:278.CrossRefPubMedPubMedCentral Schosserer M, Grillari J, Breitenbach M. The dual role of cellular senescence in developing tumors and their response to cancer therapy. Front Oncol. 2017;7:278.CrossRefPubMedPubMedCentral
11.
go back to reference Singhal SK, Roder JC, Duwe AK. Suppressor cells in immunosenescence. Fed Proc. 1978;37:1245–52.PubMed Singhal SK, Roder JC, Duwe AK. Suppressor cells in immunosenescence. Fed Proc. 1978;37:1245–52.PubMed
15.
go back to reference Vallejo AN, Weyand CM, Goronzy JJ. T-cell senescence: a culprit of immune abnormalities in chronic inflammation and persistent infection. Trends Mol Med. 2004;10:119–24.CrossRefPubMed Vallejo AN, Weyand CM, Goronzy JJ. T-cell senescence: a culprit of immune abnormalities in chronic inflammation and persistent infection. Trends Mol Med. 2004;10:119–24.CrossRefPubMed
16.
17.
go back to reference Baitsch L, Fuertes-Marraco SA, Legat A, Meyer C, Speiser DE. The three main stumbling blocks for anticancer T cells. Trends Immunol. 2012;33:364–72.CrossRefPubMed Baitsch L, Fuertes-Marraco SA, Legat A, Meyer C, Speiser DE. The three main stumbling blocks for anticancer T cells. Trends Immunol. 2012;33:364–72.CrossRefPubMed
18.
go back to reference Crespo J, Sun H, Welling TH, Tian Z, Zou W. T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr Opin Immunol. 2013;25:214–21.CrossRefPubMedPubMedCentral Crespo J, Sun H, Welling TH, Tian Z, Zou W. T cell anergy, exhaustion, senescence, and stemness in the tumor microenvironment. Curr Opin Immunol. 2013;25:214–21.CrossRefPubMedPubMedCentral
19.
go back to reference Lanna A, Henson SM, Escors D, Akbar AN. The kinase p38 activated by the metabolic regulator AMPK and scaffold TAB1 drives the senescence of human T cells. Nat Immunol. 2014;15:965–72.CrossRefPubMedPubMedCentral Lanna A, Henson SM, Escors D, Akbar AN. The kinase p38 activated by the metabolic regulator AMPK and scaffold TAB1 drives the senescence of human T cells. Nat Immunol. 2014;15:965–72.CrossRefPubMedPubMedCentral
20.
go back to reference Lanna A, Henson SM, Akbar A. The regulation of T cell senescence and metabolism by P38 mapkinase signaling. Innov Aging Oxford University Press. 2017;1:1254.CrossRef Lanna A, Henson SM, Akbar A. The regulation of T cell senescence and metabolism by P38 mapkinase signaling. Innov Aging Oxford University Press. 2017;1:1254.CrossRef
22.
go back to reference Cristofalo VJ, Lorenzini A, Allen RG, Torres C, Tresini M. Replicative senescence: a critical review. Mech Ageing Dev. 2004;125:827–48.CrossRefPubMed Cristofalo VJ, Lorenzini A, Allen RG, Torres C, Tresini M. Replicative senescence: a critical review. Mech Ageing Dev. 2004;125:827–48.CrossRefPubMed
23.
go back to reference Dock JN, Effros RB. Role of CD8 T cell replicative senescence in human aging and in HIV-mediated immunosenescence. Aging Dis. 2014;2:382–97. Dock JN, Effros RB. Role of CD8 T cell replicative senescence in human aging and in HIV-mediated immunosenescence. Aging Dis. 2014;2:382–97.
24.
go back to reference Erickson S, Sangfelt O, Heyman M, Castro J, Einhorn S, Grandér D. Involvement of the Ink4 proteins p16 and p15 in T-lymphocyte senescence. Oncogene. 1998;17:595–602.CrossRefPubMed Erickson S, Sangfelt O, Heyman M, Castro J, Einhorn S, Grandér D. Involvement of the Ink4 proteins p16 and p15 in T-lymphocyte senescence. Oncogene. 1998;17:595–602.CrossRefPubMed
25.
go back to reference Liu X, Mo W, Ye J, Li L, Zhang Y, Hsueh EC, et al. Regulatory T cells trigger effector T cell DNA damage and senescence caused by metabolic competition. Nat Commun. 2018;9:249.CrossRefPubMedPubMedCentral Liu X, Mo W, Ye J, Li L, Zhang Y, Hsueh EC, et al. Regulatory T cells trigger effector T cell DNA damage and senescence caused by metabolic competition. Nat Commun. 2018;9:249.CrossRefPubMedPubMedCentral
26.
go back to reference Liu Y, Sanoff HK, Cho H, Burd CE, Torrice C, Ibrahim JG, et al. Expression of p16(INK4a) in peripheral blood T-cells is a biomarker of human aging. Aging Cell. 2009;8:439–48.CrossRefPubMedPubMedCentral Liu Y, Sanoff HK, Cho H, Burd CE, Torrice C, Ibrahim JG, et al. Expression of p16(INK4a) in peripheral blood T-cells is a biomarker of human aging. Aging Cell. 2009;8:439–48.CrossRefPubMedPubMedCentral
29.
go back to reference Lanna A, Coutavas E, Levati L, Seidel J, Rustin MHA, Henson SM, et al. IFN-α inhibits telomerase in human CD8+ T cells by both hTERT downregulation and induction of p38 MAPK signaling. J Immunol. 2013;191:3744–52.CrossRefPubMed Lanna A, Coutavas E, Levati L, Seidel J, Rustin MHA, Henson SM, et al. IFN-α inhibits telomerase in human CD8+ T cells by both hTERT downregulation and induction of p38 MAPK signaling. J Immunol. 2013;191:3744–52.CrossRefPubMed
30.
31.
go back to reference Song Y, Wang B, Song R, Hao Y, Wang D, Li Y, et al. T-cell immunoglobulin and ITIM domain contributes to CD8+T-cell immunosenescence. Aging Cell. 2018;17(2). Song Y, Wang B, Song R, Hao Y, Wang D, Li Y, et al. T-cell immunoglobulin and ITIM domain contributes to CD8+T-cell immunosenescence. Aging Cell. 2018;17(2).
32.
go back to reference Yang Z-Z, Kim HJ, Price-Troska T, Jalali S, Villasboas JC, Novak AJ, et al. Constitutive expression of TIGIT defines a population of CD4+ regulatory T cells in B cell non-Hodgkin lymphoma. J Immunol. 2017;198:155.12.CrossRef Yang Z-Z, Kim HJ, Price-Troska T, Jalali S, Villasboas JC, Novak AJ, et al. Constitutive expression of TIGIT defines a population of CD4+ regulatory T cells in B cell non-Hodgkin lymphoma. J Immunol. 2017;198:155.12.CrossRef
33.
go back to reference Tauriainen J, Scharf L, Frederiksen J, Naji A, Ljunggren H-G, Sönnerborg A, et al. Perturbed CD8+ T cell TIGIT/CD226/PVR axis despite early initiation of antiretroviral treatment in HIV infected individuals. Sci Rep. 2017;7:40354.CrossRefPubMedPubMedCentral Tauriainen J, Scharf L, Frederiksen J, Naji A, Ljunggren H-G, Sönnerborg A, et al. Perturbed CD8+ T cell TIGIT/CD226/PVR axis despite early initiation of antiretroviral treatment in HIV infected individuals. Sci Rep. 2017;7:40354.CrossRefPubMedPubMedCentral
34.
go back to reference Chew GM, Fujita T, Webb GM, Burwitz BJ, Wu HL, Reed JS, et al. TIGIT marks exhausted T cells, correlates with disease progression, and serves as a target for immune restoration in HIV and SIV infection. PLoS Pathog. 2016;12:e1005349.CrossRefPubMedPubMedCentral Chew GM, Fujita T, Webb GM, Burwitz BJ, Wu HL, Reed JS, et al. TIGIT marks exhausted T cells, correlates with disease progression, and serves as a target for immune restoration in HIV and SIV infection. PLoS Pathog. 2016;12:e1005349.CrossRefPubMedPubMedCentral
36.
39.
go back to reference Sansoni P, Vescovini R, Fagnoni FF, Akbar A, Arens R, Chiu Y-L, et al. New advances in CMV and immunosenescence. Exp Gerontol. 2014;55:54–62.CrossRefPubMed Sansoni P, Vescovini R, Fagnoni FF, Akbar A, Arens R, Chiu Y-L, et al. New advances in CMV and immunosenescence. Exp Gerontol. 2014;55:54–62.CrossRefPubMed
40.
go back to reference Kim J, Kim A-R, Shin E-C. Cytomegalovirus infection and memory T cell inflation. Immune Netw 2015;15: 186–190. Kim J, Kim A-R, Shin E-C. Cytomegalovirus infection and memory T cell inflation. Immune Netw 2015;15: 186–190.
41.
go back to reference Mougiakakos D, Choudhury A, Lladser A, Kiessling R, Johansson CC. Regulatory T cells in cancer. Adv Cancer Res. 2010;107:57–117.CrossRefPubMed Mougiakakos D, Choudhury A, Lladser A, Kiessling R, Johansson CC. Regulatory T cells in cancer. Adv Cancer Res. 2010;107:57–117.CrossRefPubMed
42.
44.
go back to reference Syed Khaja AS, Toor SM, El Salhat H, Faour I, Ul Haq N, Ali BR, et al. Preferential accumulation of regulatory T cells with highly immunosuppressive characteristics in breast tumor microenvironment. Oncotarget. 2017;8:33159–71.PubMed Syed Khaja AS, Toor SM, El Salhat H, Faour I, Ul Haq N, Ali BR, et al. Preferential accumulation of regulatory T cells with highly immunosuppressive characteristics in breast tumor microenvironment. Oncotarget. 2017;8:33159–71.PubMed
45.
go back to reference Zhang N-N, Chen J-N, Xiao L, Tang F, Zhang Z-G, Zhang Y-W, et al. Accumulation mechanisms of CD4(+) CD25(+) FOXP3(+) regulatory T cells in EBV-associated gastric carcinoma. Sci Rep. 2015;5:18057.CrossRefPubMedPubMedCentral Zhang N-N, Chen J-N, Xiao L, Tang F, Zhang Z-G, Zhang Y-W, et al. Accumulation mechanisms of CD4(+) CD25(+) FOXP3(+) regulatory T cells in EBV-associated gastric carcinoma. Sci Rep. 2015;5:18057.CrossRefPubMedPubMedCentral
46.
go back to reference Shang B, Liu Y, Jiang S-J, Liu Y. Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: a systematic review and meta-analysis. Sci Rep. 2015;5:15179.CrossRefPubMedPubMedCentral Shang B, Liu Y, Jiang S-J, Liu Y. Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: a systematic review and meta-analysis. Sci Rep. 2015;5:15179.CrossRefPubMedPubMedCentral
47.
go back to reference Zhang S, Ke X, Zeng S, Wu M, Lou J, Wu L, et al. Analysis of CD8+ Treg cells in patients with ovarian cancer: a possible mechanism for immune impairment. Cell Mol Immunol. 2015;12:580–91.CrossRefPubMedPubMedCentral Zhang S, Ke X, Zeng S, Wu M, Lou J, Wu L, et al. Analysis of CD8+ Treg cells in patients with ovarian cancer: a possible mechanism for immune impairment. Cell Mol Immunol. 2015;12:580–91.CrossRefPubMedPubMedCentral
48.
go back to reference Ustun C, Miller JS, Munn DH, Weisdorf DJ, Blazar BR. Regulatory T cells in acute myelogenous leukemia: is it time for immunomodulation? Blood. 2011;118:5084–95.CrossRefPubMedPubMedCentral Ustun C, Miller JS, Munn DH, Weisdorf DJ, Blazar BR. Regulatory T cells in acute myelogenous leukemia: is it time for immunomodulation? Blood. 2011;118:5084–95.CrossRefPubMedPubMedCentral
49.
go back to reference Sander FE, Nilsson M, Rydström A, Aurelius J, Riise RE, Movitz C, et al. Role of regulatory T cells in acute myeloid leukemia patients undergoing relapse-preventive immunotherapy. Cancer Immunol Immunother. 2017;66:1473–84.CrossRefPubMedPubMedCentral Sander FE, Nilsson M, Rydström A, Aurelius J, Riise RE, Movitz C, et al. Role of regulatory T cells in acute myeloid leukemia patients undergoing relapse-preventive immunotherapy. Cancer Immunol Immunother. 2017;66:1473–84.CrossRefPubMedPubMedCentral
50.
go back to reference Chung DJ, Pronschinske KB, Shyer JA, Sharma S, Leung S, Curran SA, et al. T-cell exhaustion in multiple myeloma relapse after autotransplant: optimal timing of immunotherapy. Cancer Immunol Res. 2016;4:61–71.CrossRefPubMed Chung DJ, Pronschinske KB, Shyer JA, Sharma S, Leung S, Curran SA, et al. T-cell exhaustion in multiple myeloma relapse after autotransplant: optimal timing of immunotherapy. Cancer Immunol Res. 2016;4:61–71.CrossRefPubMed
51.
go back to reference Suen H, Brown R, Yang S, Weatherburn C, Ho PJ, Woodland N, et al. Multiple myeloma causes clonal T-cell immunosenescence: identification of potential novel targets for promoting tumour immunity and implications for checkpoint blockade. Leukemia. 2016;30:1716–24.CrossRefPubMed Suen H, Brown R, Yang S, Weatherburn C, Ho PJ, Woodland N, et al. Multiple myeloma causes clonal T-cell immunosenescence: identification of potential novel targets for promoting tumour immunity and implications for checkpoint blockade. Leukemia. 2016;30:1716–24.CrossRefPubMed
53.
55.
go back to reference Lichtenegger FS, Krupka C, Haubner S, Köhnke T, Subklewe M. Recent developments in immunotherapy of acute myeloid leukemia. J Hematol Oncol. 2017;10:142.CrossRefPubMedPubMedCentral Lichtenegger FS, Krupka C, Haubner S, Köhnke T, Subklewe M. Recent developments in immunotherapy of acute myeloid leukemia. J Hematol Oncol. 2017;10:142.CrossRefPubMedPubMedCentral
56.
go back to reference Wei G, Ding L, Wang J, Hu Y, Huang H. Advances of CD19-directed chimeric antigen receptor-modified T cells in refractory/relapsed acute lymphoblastic leukemia. Exp Hematol Oncol. 2017;6:10.CrossRefPubMedPubMedCentral Wei G, Ding L, Wang J, Hu Y, Huang H. Advances of CD19-directed chimeric antigen receptor-modified T cells in refractory/relapsed acute lymphoblastic leukemia. Exp Hematol Oncol. 2017;6:10.CrossRefPubMedPubMedCentral
59.
60.
go back to reference Yao D, Xu L, Tan J, Zhang Y, Lu S, Li D, et al. Re-balance of memory T cell subsets in peripheral blood from patients with CML after TKI treatment. Oncotarget. 2017;8(47):81852–9.CrossRefPubMedPubMedCentral Yao D, Xu L, Tan J, Zhang Y, Lu S, Li D, et al. Re-balance of memory T cell subsets in peripheral blood from patients with CML after TKI treatment. Oncotarget. 2017;8(47):81852–9.CrossRefPubMedPubMedCentral
61.
go back to reference Cherkassky L, Morello A, Villena-Vargas J, Feng Y, Dimitrov DS, Jones DR, et al. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J Clin Invest. 2016;126(8):3130–44.CrossRefPubMedPubMedCentral Cherkassky L, Morello A, Villena-Vargas J, Feng Y, Dimitrov DS, Jones DR, et al. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J Clin Invest. 2016;126(8):3130–44.CrossRefPubMedPubMedCentral
62.
go back to reference Guha P, Cunetta M, Somasundar P, Espat NJ, Junghans RP, Frontline Science KSC. Functionally impaired geriatric CAR-T cells rescued by increased α5β1 integrin expression. J Leukoc Biol. 2017;102(2):201–8.CrossRefPubMed Guha P, Cunetta M, Somasundar P, Espat NJ, Junghans RP, Frontline Science KSC. Functionally impaired geriatric CAR-T cells rescued by increased α5β1 integrin expression. J Leukoc Biol. 2017;102(2):201–8.CrossRefPubMed
63.
go back to reference Fan M, Li M, Gao L, Geng S, Wang J, Wang Y, et al. Chimeric antigen receptors for adoptive T cell therapy in acute myeloid leukemia. J Hematol Oncol. 2017;10:151.CrossRefPubMedPubMedCentral Fan M, Li M, Gao L, Geng S, Wang J, Wang Y, et al. Chimeric antigen receptors for adoptive T cell therapy in acute myeloid leukemia. J Hematol Oncol. 2017;10:151.CrossRefPubMedPubMedCentral
65.
go back to reference Long AH, Haso WM, Shern JF, Wanhainen KM, Murgai M, Ingaramo M, et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med. 2015;21(6):581–90.CrossRefPubMedPubMedCentral Long AH, Haso WM, Shern JF, Wanhainen KM, Murgai M, Ingaramo M, et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med. 2015;21(6):581–90.CrossRefPubMedPubMedCentral
66.
go back to reference Gomes-Silva D, Mukherjee M, Srinivasan M, Krenciute G, Dakhova O, Zheng Y, et al. Tonic 4-1BB costimulation in chimeric antigen receptors impedes T cell survival and is vector-dependent. Cell Rep. 2017;21(1):17–26.CrossRefPubMedPubMedCentral Gomes-Silva D, Mukherjee M, Srinivasan M, Krenciute G, Dakhova O, Zheng Y, et al. Tonic 4-1BB costimulation in chimeric antigen receptors impedes T cell survival and is vector-dependent. Cell Rep. 2017;21(1):17–26.CrossRefPubMedPubMedCentral
67.
go back to reference Baar MP, Brandt RMC, Putavet DA, Klein JDD, Derks KWJ, Bourgeois BRM, et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell. 2017;169:132–147.e16.CrossRefPubMedPubMedCentral Baar MP, Brandt RMC, Putavet DA, Klein JDD, Derks KWJ, Bourgeois BRM, et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell. 2017;169:132–147.e16.CrossRefPubMedPubMedCentral
68.
go back to reference Delemarre EM, van den Broek T, Mijnheer G, Meerding J, Wehrens EJ, Olek S, et al. Autologous stem cell transplantation aids autoimmune patients by functional renewal and TCR diversification of regulatory T cells. Blood. 2016;127:91–101.CrossRefPubMed Delemarre EM, van den Broek T, Mijnheer G, Meerding J, Wehrens EJ, Olek S, et al. Autologous stem cell transplantation aids autoimmune patients by functional renewal and TCR diversification of regulatory T cells. Blood. 2016;127:91–101.CrossRefPubMed
69.
go back to reference Delemarre EM, Roord STA, van den Broek T, Zonneveld-Huijssoon E, de Jager W, Rozemuller H, et al. Brief report: Autologous stem cell transplantation restores immune tolerance in experimental arthritis by renewal and modulation of the Teff cell compartment. Arthritis Rheum. 2014;66:350–6.CrossRef Delemarre EM, Roord STA, van den Broek T, Zonneveld-Huijssoon E, de Jager W, Rozemuller H, et al. Brief report: Autologous stem cell transplantation restores immune tolerance in experimental arthritis by renewal and modulation of the Teff cell compartment. Arthritis Rheum. 2014;66:350–6.CrossRef
70.
go back to reference Rueff J, Medinger M, Heim D, Passweg J, Stern M. Lymphocyte subset recovery and outcome after autologous hematopoietic stem cell transplantation for plasma cell myeloma. Biol Blood Marrow Transplant. 2014;20:896–9.CrossRefPubMed Rueff J, Medinger M, Heim D, Passweg J, Stern M. Lymphocyte subset recovery and outcome after autologous hematopoietic stem cell transplantation for plasma cell myeloma. Biol Blood Marrow Transplant. 2014;20:896–9.CrossRefPubMed
71.
go back to reference Farge D, Arruda LCM, Brigant F, Clave E, Douay C, Marjanovic Z, et al. Long-term immune reconstitution and T cell repertoire analysis after autologous hematopoietic stem cell transplantation in systemic sclerosis patients. J Hematol Oncol. 2017;10:21.CrossRefPubMedPubMedCentral Farge D, Arruda LCM, Brigant F, Clave E, Douay C, Marjanovic Z, et al. Long-term immune reconstitution and T cell repertoire analysis after autologous hematopoietic stem cell transplantation in systemic sclerosis patients. J Hematol Oncol. 2017;10:21.CrossRefPubMedPubMedCentral
72.
go back to reference Rizk M, Aziz J, Shorr R, Allan DS. Cell-based therapy using umbilical cord blood for novel indications in regenerative therapy and immune modulation: an updated systematic scoping review of the literature. Biol Blood Marrow Transplant. 2017;23:1607–13.CrossRefPubMed Rizk M, Aziz J, Shorr R, Allan DS. Cell-based therapy using umbilical cord blood for novel indications in regenerative therapy and immune modulation: an updated systematic scoping review of the literature. Biol Blood Marrow Transplant. 2017;23:1607–13.CrossRefPubMed
73.
go back to reference Damien P, Allan DS. Regenerative therapy and immune modulation using umbilical cord blood–derived cells. Biol Blood Marrow Transplant bbmtorg. 2015;21(9):1545–54. Damien P, Allan DS. Regenerative therapy and immune modulation using umbilical cord blood–derived cells. Biol Blood Marrow Transplant bbmtorg. 2015;21(9):1545–54.
74.
go back to reference Politikos I, Boussiotis VA. The role of the thymus in T-cell immune reconstitution after umbilical cord blood transplantation. Blood. 2014;124:3201–11.CrossRefPubMedPubMedCentral Politikos I, Boussiotis VA. The role of the thymus in T-cell immune reconstitution after umbilical cord blood transplantation. Blood. 2014;124:3201–11.CrossRefPubMedPubMedCentral
75.
go back to reference Karagiannis P, Iriguchi S, Kaneko S. Reprogramming away from the exhausted T cell state. Semin Immunol. 2016;28:35–44.CrossRefPubMed Karagiannis P, Iriguchi S, Kaneko S. Reprogramming away from the exhausted T cell state. Semin Immunol. 2016;28:35–44.CrossRefPubMed
76.
go back to reference Nishimura T, Kaneko S, Kawana-Tachikawa A, Tajima Y, Goto H, Zhu D, et al. Generation of rejuvenated antigen-specific T cells by reprogramming to pluripotency and redifferentiation. Cell Stem Cell. 2013;12:114–26.CrossRefPubMed Nishimura T, Kaneko S, Kawana-Tachikawa A, Tajima Y, Goto H, Zhu D, et al. Generation of rejuvenated antigen-specific T cells by reprogramming to pluripotency and redifferentiation. Cell Stem Cell. 2013;12:114–26.CrossRefPubMed
78.
go back to reference Themeli M, Kloss CC, Ciriello G, Fedorov VD, Perna F, Gonen M, et al. Generation of tumor-targeted human T lymphocytes from induced pluripotent stem cells for cancer therapy. Nat Biotechnol. 2013;31:928–33.CrossRefPubMedPubMedCentral Themeli M, Kloss CC, Ciriello G, Fedorov VD, Perna F, Gonen M, et al. Generation of tumor-targeted human T lymphocytes from induced pluripotent stem cells for cancer therapy. Nat Biotechnol. 2013;31:928–33.CrossRefPubMedPubMedCentral
79.
go back to reference Effros RB. Telomerase induction in T cells: a cure for aging and disease? Exp Gerontol. 2007;42:416–20.CrossRefPubMed Effros RB. Telomerase induction in T cells: a cure for aging and disease? Exp Gerontol. 2007;42:416–20.CrossRefPubMed
81.
go back to reference Al-Chami E, Tormo A, Pasquin S, Kanjarawi R, Ziouani S, Rafei M. Interleukin-21 administration to aged mice rejuvenates their peripheral T-cell pool by triggering de novo thymopoiesis. Aging Cell. 2016;15:349–60.CrossRefPubMedPubMedCentral Al-Chami E, Tormo A, Pasquin S, Kanjarawi R, Ziouani S, Rafei M. Interleukin-21 administration to aged mice rejuvenates their peripheral T-cell pool by triggering de novo thymopoiesis. Aging Cell. 2016;15:349–60.CrossRefPubMedPubMedCentral
82.
go back to reference Tormo A, Khodayarian F, Cui Y, Al-Chami E, Kanjarawi R, Noé B, et al. Interleukin-21 promotes thymopoiesis recovery following hematopoietic stem cell transplantation. J Hematol Oncol. 2017;10:120.CrossRefPubMedPubMedCentral Tormo A, Khodayarian F, Cui Y, Al-Chami E, Kanjarawi R, Noé B, et al. Interleukin-21 promotes thymopoiesis recovery following hematopoietic stem cell transplantation. J Hematol Oncol. 2017;10:120.CrossRefPubMedPubMedCentral
83.
go back to reference Tuckett AZ, Thornton RH, O’Reilly RJ, den Brink MRM v, Zakrzewski JL. Intrathymic injection of hematopoietic progenitor cells establishes functional T cell development in a mouse model of severe combined immunodeficiency. J Hematol Oncol. 2017;10:109.CrossRefPubMedPubMedCentral Tuckett AZ, Thornton RH, O’Reilly RJ, den Brink MRM v, Zakrzewski JL. Intrathymic injection of hematopoietic progenitor cells establishes functional T cell development in a mouse model of severe combined immunodeficiency. J Hematol Oncol. 2017;10:109.CrossRefPubMedPubMedCentral
84.
85.
go back to reference Fan Y, Tajima A, Goh SK, Geng X, Gualtierotti G, Grupillo M, et al. Bioengineering thymus organoids to restore thymic function and induce donor-specific immune tolerance to allografts. Mol Ther. 2015;23:1262–77.CrossRefPubMedPubMedCentral Fan Y, Tajima A, Goh SK, Geng X, Gualtierotti G, Grupillo M, et al. Bioengineering thymus organoids to restore thymic function and induce donor-specific immune tolerance to allografts. Mol Ther. 2015;23:1262–77.CrossRefPubMedPubMedCentral
86.
go back to reference Wu C-P, Qing X, Wu C-Y, Zhu H, Zhou H-Y. Immunophenotype and increased presence of CD4(+) CD25(+) regulatory T cells in patients with acute lymphoblastic leukemia. Oncol Lett. 2012;3:421–4.CrossRefPubMed Wu C-P, Qing X, Wu C-Y, Zhu H, Zhou H-Y. Immunophenotype and increased presence of CD4(+) CD25(+) regulatory T cells in patients with acute lymphoblastic leukemia. Oncol Lett. 2012;3:421–4.CrossRefPubMed
87.
go back to reference Idris S-Z, Hassan N, Lee L-J, Md Noor S, Osman R, Abdul-Jalil M, et al. Increased regulatory T cells in acute lymphoblastic leukemia patients. Hematology. 2015;20:523–9.CrossRefPubMed Idris S-Z, Hassan N, Lee L-J, Md Noor S, Osman R, Abdul-Jalil M, et al. Increased regulatory T cells in acute lymphoblastic leukemia patients. Hematology. 2015;20:523–9.CrossRefPubMed
88.
go back to reference Zelle-Rieser C, Thangavadivel S, Biedermann R, Brunner A, Stoitzner P, Willenbacher E, et al. T cells in multiple myeloma display features of exhaustion and senescence at the tumor site. J Hematol Oncol. 2016;9:116.CrossRefPubMedPubMedCentral Zelle-Rieser C, Thangavadivel S, Biedermann R, Brunner A, Stoitzner P, Willenbacher E, et al. T cells in multiple myeloma display features of exhaustion and senescence at the tumor site. J Hematol Oncol. 2016;9:116.CrossRefPubMedPubMedCentral
89.
go back to reference Serag El-Dien MM, Abdou AG, Asaad NY, Abd El-Wahed MM, Kora MAE-HM. Intratumoral FOXP3+ regulatory T cells in diffuse large B-cell lymphoma. Appl Immunohistochem Mol Morphol. 2017;25:534–42.CrossRefPubMed Serag El-Dien MM, Abdou AG, Asaad NY, Abd El-Wahed MM, Kora MAE-HM. Intratumoral FOXP3+ regulatory T cells in diffuse large B-cell lymphoma. Appl Immunohistochem Mol Morphol. 2017;25:534–42.CrossRefPubMed
90.
go back to reference Zhu L, Kong Y, Zhang J, Claxton DF, Ehmann WC, Rybka WB, et al. Blimp-1 impairs T cell function via upregulation of TIGIT and PD-1 in patients with acute myeloid leukemia. J Hematol Oncol. 2017;10:124.CrossRefPubMedPubMedCentral Zhu L, Kong Y, Zhang J, Claxton DF, Ehmann WC, Rybka WB, et al. Blimp-1 impairs T cell function via upregulation of TIGIT and PD-1 in patients with acute myeloid leukemia. J Hematol Oncol. 2017;10:124.CrossRefPubMedPubMedCentral
91.
go back to reference Lang PO, Govind S, Aspinall R. Reversing T cell immunosenescence: why, who, and how. Age. 2013;35:609–20.CrossRefPubMed Lang PO, Govind S, Aspinall R. Reversing T cell immunosenescence: why, who, and how. Age. 2013;35:609–20.CrossRefPubMed
92.
94.
go back to reference Ye J, Ma C, Hsueh EC, Dou J, Mo W, Liu S, et al. TLR8 signaling enhances tumor immunity by preventing tumor-induced T-cell senescence. EMBO Mol Med. 2014;6:1294–311.CrossRefPubMedPubMedCentral Ye J, Ma C, Hsueh EC, Dou J, Mo W, Liu S, et al. TLR8 signaling enhances tumor immunity by preventing tumor-induced T-cell senescence. EMBO Mol Med. 2014;6:1294–311.CrossRefPubMedPubMedCentral
96.
go back to reference Karlsson H. Approaches to augment CAR T-cell therapy by targeting the apoptotic machinery. Biochem Soc Trans. 2016;44:371–6.CrossRefPubMed Karlsson H. Approaches to augment CAR T-cell therapy by targeting the apoptotic machinery. Biochem Soc Trans. 2016;44:371–6.CrossRefPubMed
Metadata
Title
T cell senescence and CAR-T cell exhaustion in hematological malignancies
Authors
Dimitri Kasakovski
Ling Xu
Yangqiu Li
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2018
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/s13045-018-0629-x

Other articles of this Issue 1/2018

Journal of Hematology & Oncology 1/2018 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine