Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2018

Open Access 01-12-2018 | Research article

Antibacterial activity evaluation of selected essential oils in liquid and vapor phase on respiratory tract pathogens

Authors: Kamilla Ács, Viktória L. Balázs, Béla Kocsis, Tímea Bencsik, Andrea Böszörményi, Györgyi Horváth

Published in: BMC Complementary Medicine and Therapies | Issue 1/2018

Login to get access

Abstract

Background

The increasing number of multidrug-resistant bacteria and the fact of antibiotic resistance is leading to a continuous need for discovering alternative treatments against infections, e.g. in the case of respiratory tract diseases. Essential oils (EOs), because of their volatility, can easily reach both the upper and lower parts of the respiratory tract via inhalation. Therefore, the aim of the present study was the antibacterial evaluation of clove, cinnamon bark, eucalyptus, thyme, scots pine, peppermint, and citronella EOs against respiratory tract pathogens such as Streptococcus pneumoniae, S. mutans, S. pyogenes, Haemophilus influenzae, H. parainfluenzae, and Moraxella catarrhalis. Furthermore, we wanted to compare the antibacterial effect of these EOs in two different test systems to provide data for the development of an appropriate product formulation.

Methods

Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined with in vitro vapor phase test (VPT) and broth macrodilution test (BDT). The chemical and percentage compositions of the EOs were determined by GC-MS and GC-FID analysis.

Results

Among the EOs, thyme was the most effective against S. mutans (MIC: 0.04 mg/mL in BDT, but cinnamon bark and clove oils also presented high inhibition in liquid medium with MIC values of 0.06 mg/mL and 0.1 mg/mL against S. pneumoniae and S. pyogenes, respectively. M. catarrhalis was the most sensitive to thyme EO (MIC: 0.09 mg/mL). Cinnamon bark EO was the most effective against Haemophilus spp. (MIC: 0.06 mg/mL). In the VPT, cinnamon bark was the most effective oil against all investigated pathogens with MIC values in the range of 15.62–90 μl/L. Surprisingly, the eucalyptus and scots pine showed weak activity against the test bacteria in both test systems.

Conclusions

The EO of thyme, clove and cinnamon bark may provide promising antibacterial activity against respiratory tract pathogens either in liquid medium or in vapor phase. However, their effect is lower than that of the reference antibiotics. The combination of EOs and antibiotics may be beneficial in the alternative treatment of respiratory tract diseases. In vivo studies are necessary to calculate the effective dose of EOs in patients and determine their possible side effects and toxicity.
Literature
3.
go back to reference Forbes BA, Sahm DF, Weissfeld AS. Bailey and Scott’s diagnostic microbiology. 12th ed. St. Louis: Mosby Elsevier; 2007. Forbes BA, Sahm DF, Weissfeld AS. Bailey and Scott’s diagnostic microbiology. 12th ed. St. Louis: Mosby Elsevier; 2007.
4.
go back to reference Pauli A, Schilcher H. In vitro antimicrobial activities of essential oils. In: Baser KHC, Buchbauer G, editors. Handbook of essential oils, science, technology, and application. New York: CRC Press; 2010. p. 353–547. Pauli A, Schilcher H. In vitro antimicrobial activities of essential oils. In: Baser KHC, Buchbauer G, editors. Handbook of essential oils, science, technology, and application. New York: CRC Press; 2010. p. 353–547.
5.
go back to reference Inouye S, Yamaguchi H, Takizawa T. Screening of the antibacterial effects of a variety of essential oils on respiratory tract pathogens, using a modified dilution assay method. J Infect Chemother. 2001;7:251–4.CrossRefPubMed Inouye S, Yamaguchi H, Takizawa T. Screening of the antibacterial effects of a variety of essential oils on respiratory tract pathogens, using a modified dilution assay method. J Infect Chemother. 2001;7:251–4.CrossRefPubMed
6.
go back to reference Shah SMM, Ullah F, Shah SMH, Zahoor M, Sadiq A. Analysis of chemical constituents and antinociceptive potential of essential oil of Teucrium stocksianum bioss collected from the north west of Pakistan. BMC Complement Altern Med. 2012;12:244.CrossRefPubMedPubMedCentral Shah SMM, Ullah F, Shah SMH, Zahoor M, Sadiq A. Analysis of chemical constituents and antinociceptive potential of essential oil of Teucrium stocksianum bioss collected from the north west of Pakistan. BMC Complement Altern Med. 2012;12:244.CrossRefPubMedPubMedCentral
7.
go back to reference Gy H, Ács K. Essential oils in the treatment of respiratory tract diseases highlighting their role in bacterial infections and their antiinflammatory action: a review. Flavour Frag J. 2015;30:331–41.CrossRef Gy H, Ács K. Essential oils in the treatment of respiratory tract diseases highlighting their role in bacterial infections and their antiinflammatory action: a review. Flavour Frag J. 2015;30:331–41.CrossRef
8.
go back to reference Yousef SAA. Essential oils: their antimicrobial activity and potential application against pathogens by gaseous contact - a review. Egypt Acad J Biolog Sci. 2014;6(1):37–54. Yousef SAA. Essential oils: their antimicrobial activity and potential application against pathogens by gaseous contact - a review. Egypt Acad J Biolog Sci. 2014;6(1):37–54.
9.
go back to reference Inouye S, Nishiyama Y, Yamagughi H. Antibacterial activity of essential oils and their major constituents against respiratory tract pathogens by gaseous contact. J Antimicrob Chemoth. 2001;47:565–73.CrossRef Inouye S, Nishiyama Y, Yamagughi H. Antibacterial activity of essential oils and their major constituents against respiratory tract pathogens by gaseous contact. J Antimicrob Chemoth. 2001;47:565–73.CrossRef
10.
go back to reference Nedorostova L, Kloucek P, Kokoska L, Stolcova M, Pulkrabek J. Antimicrobial properties of selected essential oils in vapor phase against foodborne bacteria. Food Control. 2009;20:157–60.CrossRef Nedorostova L, Kloucek P, Kokoska L, Stolcova M, Pulkrabek J. Antimicrobial properties of selected essential oils in vapor phase against foodborne bacteria. Food Control. 2009;20:157–60.CrossRef
11.
go back to reference Ács K, Bencsik T, Böszörményi A, Kocsis B, Gy H. Essential oils and their vapors as potential antibacterial agents against respiratory tract pathogens. Nat Prod Commun. 2016;11:1–4. Ács K, Bencsik T, Böszörményi A, Kocsis B, Gy H. Essential oils and their vapors as potential antibacterial agents against respiratory tract pathogens. Nat Prod Commun. 2016;11:1–4.
12.
go back to reference Cornu A, Carnat AP, Martin B, Coulon JB, Lamaison JL, Berdague JL. Solidphase microextraction of volatile components from natural grassland plants. J Agr Food Chem. 2001;49(1):203–9.CrossRef Cornu A, Carnat AP, Martin B, Coulon JB, Lamaison JL, Berdague JL. Solidphase microextraction of volatile components from natural grassland plants. J Agr Food Chem. 2001;49(1):203–9.CrossRef
13.
go back to reference Jorgensen JH, Turnidge JD. Susceptibility test methods: dilution and disk diffusion methods. In: Jorgensen JH, Pfaller MA, Carroll KC, Funke G, Landry ML, Richter SS, Warnock DW, editors. Manual of clinical microbiology. Washington DC: ASM; 2011. p. 1253–72. Jorgensen JH, Turnidge JD. Susceptibility test methods: dilution and disk diffusion methods. In: Jorgensen JH, Pfaller MA, Carroll KC, Funke G, Landry ML, Richter SS, Warnock DW, editors. Manual of clinical microbiology. Washington DC: ASM; 2011. p. 1253–72.
14.
go back to reference Kloucek P, Smid J, Flesar J, Havlik J, Titera D, Rada V, Drabek O, Kokoska L. In vitro inhibitory activity of essential oil vapors against Ascosphaera apis. Nat Prod Commun. 2012;7:253–6.PubMed Kloucek P, Smid J, Flesar J, Havlik J, Titera D, Rada V, Drabek O, Kokoska L. In vitro inhibitory activity of essential oil vapors against Ascosphaera apis. Nat Prod Commun. 2012;7:253–6.PubMed
15.
go back to reference Tyagi A, Malik A. Liquid and vapour-phase antifungal activities of selected essential oils against Candida albicans: microscopic observations and chemical characterization of Cymbopogon citratus. BMC Complem Altern M. 2010;10:65.CrossRef Tyagi A, Malik A. Liquid and vapour-phase antifungal activities of selected essential oils against Candida albicans: microscopic observations and chemical characterization of Cymbopogon citratus. BMC Complem Altern M. 2010;10:65.CrossRef
16.
go back to reference Usachev EV, Pyankov OV, Usacheva OV, Agranovski IE. Antiviral activity of tea tree and eucalyptus oil aerosol and vapour. J Aerosol Sci. 2013;59:22–30.CrossRef Usachev EV, Pyankov OV, Usacheva OV, Agranovski IE. Antiviral activity of tea tree and eucalyptus oil aerosol and vapour. J Aerosol Sci. 2013;59:22–30.CrossRef
17.
go back to reference Yousef SAA. Antifungal activity of volatiles from lemongrass (Cymbopogon citratus) and peppermint (Mentha piperita) oils against some respiratory pathogenic species of Aspergillus. Int J Curr Microbiol App Sci. 2013;2(6):261–72. Yousef SAA. Antifungal activity of volatiles from lemongrass (Cymbopogon citratus) and peppermint (Mentha piperita) oils against some respiratory pathogenic species of Aspergillus. Int J Curr Microbiol App Sci. 2013;2(6):261–72.
18.
go back to reference Mandras N, Nostro A, Roana J, Scalas D, Banche G, Ghisetti V, et al. Liquid and vapour-phase antifungal activities of essential oils against Candida albicans and non-albicans Candida. BMC Complem Altern M. 2016;16:330.CrossRef Mandras N, Nostro A, Roana J, Scalas D, Banche G, Ghisetti V, et al. Liquid and vapour-phase antifungal activities of essential oils against Candida albicans and non-albicans Candida. BMC Complem Altern M. 2016;16:330.CrossRef
19.
go back to reference Kon KV, Rai MK. Plant essential oils and their constituents in coping with multidrug-resistant bacteria. Expert Rev Anti-Infect Ther. 2012;10(7):775–90.CrossRefPubMed Kon KV, Rai MK. Plant essential oils and their constituents in coping with multidrug-resistant bacteria. Expert Rev Anti-Infect Ther. 2012;10(7):775–90.CrossRefPubMed
20.
go back to reference Mulyaningsih S, Sporer F, Zimmermann S, Reichling J, Wink M. Synergistic properties of the terpenoids aromadendrene and 1,8-cineole from the essential oil of Eucalyptus globulus against antibiotic-susceptible and antibiotic-resistant pathogens. Phytomedicine. 2010;17:1061–6.CrossRefPubMed Mulyaningsih S, Sporer F, Zimmermann S, Reichling J, Wink M. Synergistic properties of the terpenoids aromadendrene and 1,8-cineole from the essential oil of Eucalyptus globulus against antibiotic-susceptible and antibiotic-resistant pathogens. Phytomedicine. 2010;17:1061–6.CrossRefPubMed
21.
go back to reference Choi O, Cho SK, Kim J, Park CG, Kim J. In vitro antibacterial activity and major bioactive components of Cinnamomum verum essential oils against cariogenic bacteria, Streptococcus mutans and Streptococcus sobrinus. Asian Pac J Trop Biomed. 2016;6(4):308–14.CrossRef Choi O, Cho SK, Kim J, Park CG, Kim J. In vitro antibacterial activity and major bioactive components of Cinnamomum verum essential oils against cariogenic bacteria, Streptococcus mutans and Streptococcus sobrinus. Asian Pac J Trop Biomed. 2016;6(4):308–14.CrossRef
22.
go back to reference Goldbeck JC, Edmilson do Nascimento J, Jacob RG, Fiorentini AM, Padilha da Silva W. Bioactivity of essential oils from Eucalyptus globulus and Eucalyptus urograndis against planktonic cells and biofilms of Streptococcus mutans. Ind Crop Prod. 2014;60:304–9.CrossRef Goldbeck JC, Edmilson do Nascimento J, Jacob RG, Fiorentini AM, Padilha da Silva W. Bioactivity of essential oils from Eucalyptus globulus and Eucalyptus urograndis against planktonic cells and biofilms of Streptococcus mutans. Ind Crop Prod. 2014;60:304–9.CrossRef
23.
go back to reference Fabio A, Cermelli C, Fabio G, Nicoletti P, Quaglio P. Screening of the antibacterial effects of a variety of essential oils on microorganisms responsible for respiratory infections. Phytother Res. 2007;21:374–7.CrossRefPubMed Fabio A, Cermelli C, Fabio G, Nicoletti P, Quaglio P. Screening of the antibacterial effects of a variety of essential oils on microorganisms responsible for respiratory infections. Phytother Res. 2007;21:374–7.CrossRefPubMed
24.
go back to reference Tanaka Y, Kikuzaki H, Nakatani N. Antibacterial activity of essential oils and oleoresins of spices and herbs against pathogens bacteria in upper airway respiratory tract. Jpn J Food Chem. 2002;9(2):67–76. Tanaka Y, Kikuzaki H, Nakatani N. Antibacterial activity of essential oils and oleoresins of spices and herbs against pathogens bacteria in upper airway respiratory tract. Jpn J Food Chem. 2002;9(2):67–76.
25.
go back to reference Cermelli C, Fabio A, Fabio G, Quaglio P. Effect of eucalyptus essential oil on respiratory bacteria and viruses. Curr Microbiol. 2008;56:89–92.CrossRefPubMed Cermelli C, Fabio A, Fabio G, Quaglio P. Effect of eucalyptus essential oil on respiratory bacteria and viruses. Curr Microbiol. 2008;56:89–92.CrossRefPubMed
26.
go back to reference Dorman HJ, Deans SG. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol. 2000;88:308–16.CrossRefPubMed Dorman HJ, Deans SG. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol. 2000;88:308–16.CrossRefPubMed
27.
go back to reference Houdkova M, Rondevaldova J, Doskocil I, Kokoska L. Evaluation of antibacterial potential and toxicity of plant volatile compounds using new broth microdilution volatilization method and modified MTT assay. Fitoterapia. 2017;118:56–62.CrossRefPubMed Houdkova M, Rondevaldova J, Doskocil I, Kokoska L. Evaluation of antibacterial potential and toxicity of plant volatile compounds using new broth microdilution volatilization method and modified MTT assay. Fitoterapia. 2017;118:56–62.CrossRefPubMed
28.
go back to reference Doran AL, Morden WE, Dunn K, Edwards-Jones V. Vapor-phase activities of essential oils against antibiotic sensitive and resistant bacteria including MRSA. Lett Appl Microbiol. 2009;48:387–92.CrossRefPubMed Doran AL, Morden WE, Dunn K, Edwards-Jones V. Vapor-phase activities of essential oils against antibiotic sensitive and resistant bacteria including MRSA. Lett Appl Microbiol. 2009;48:387–92.CrossRefPubMed
29.
go back to reference Burt S. Essential oils: their antibacterial properties and potential applications in foods- a review. Int J Food Microbiol. 2004;94:223–53.CrossRefPubMed Burt S. Essential oils: their antibacterial properties and potential applications in foods- a review. Int J Food Microbiol. 2004;94:223–53.CrossRefPubMed
30.
go back to reference Holetz FB, Pessini GL, Sanches NR, Cortez DA, Nakamura CV, Filho BP. Screening of some plants used in the Brazilian folk medicine for the treatment of infectious diseases. Mem Inst Oswaldo Cruz. 2002;7:1027–31.CrossRef Holetz FB, Pessini GL, Sanches NR, Cortez DA, Nakamura CV, Filho BP. Screening of some plants used in the Brazilian folk medicine for the treatment of infectious diseases. Mem Inst Oswaldo Cruz. 2002;7:1027–31.CrossRef
31.
go back to reference Kolins MC. United States Patent: Application Publication: Personal aromatherapy device. US 2010/0001093, 7 January 2010. Kolins MC. United States Patent: Application Publication: Personal aromatherapy device. US 2010/0001093, 7 January 2010.
32.
go back to reference Sienkiewicz M, Kowalczyk E, Wasiela M. Recent patents regarding essential oils and the significance of their constituents in human health and treatment. Recent Pat Antiinfect Drug Discov. 2012;7:133–40.CrossRefPubMed Sienkiewicz M, Kowalczyk E, Wasiela M. Recent patents regarding essential oils and the significance of their constituents in human health and treatment. Recent Pat Antiinfect Drug Discov. 2012;7:133–40.CrossRefPubMed
33.
go back to reference Vail WB, Vail ML. United States patent: methods and apparatus to prevent, treat and cure infections of the human respiratory system by pathogens causing severe acute respiratory syndrome (SARS). US. 2006;20067048953:19. Vail WB, Vail ML. United States patent: methods and apparatus to prevent, treat and cure infections of the human respiratory system by pathogens causing severe acute respiratory syndrome (SARS). US. 2006;20067048953:19.
Metadata
Title
Antibacterial activity evaluation of selected essential oils in liquid and vapor phase on respiratory tract pathogens
Authors
Kamilla Ács
Viktória L. Balázs
Béla Kocsis
Tímea Bencsik
Andrea Böszörményi
Györgyi Horváth
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2018
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-018-2291-9

Other articles of this Issue 1/2018

BMC Complementary Medicine and Therapies 1/2018 Go to the issue