Skip to main content
Top
Published in: Journal of Ovarian Research 1/2012

Open Access 01-12-2012 | Research

Metformin and phenethyl isothiocyanate combined treatment in vitro is cytotoxic to ovarian cancer cultures

Authors: Daniel K Chan, W Keith Miskimins

Published in: Journal of Ovarian Research | Issue 1/2012

Login to get access

Abstract

Background

High mortality rates in ovarian cancer are largely a result of resistance to currently used chemotherapies. Expanding therapies with a variety of drugs has the potential to reduce this high mortality rate. Metformin and phenethyl isothiocyanate (PEITC) are both potentially useful in ovarian cancer, and they are particularly attractive because of their safety.

Methods

Cell proliferation of each drug and drug combination was evaluated by hemacytometry with Trypan blue exclusion or Sytox green staining for cell death. Levels of total and cleaved PARP were measured by Western blot. General cellular and mitochondrial reactive oxygen species were measured by flow cytometry and live cell confocal microscopy with the fluorescent dyes dihydroethidine and MitoSOX.

Results

Individually, metformin and PEITC each show inhibition of cell growth in multiple ovarian cancer cell lines. Alone, PEITC was also able to induce apoptosis, whereas metformin was primarily growth inhibitory. Both total cellular and mitochondrial reactive oxygen species were increased when treated with either metformin or PEITC. The growth inhibitory effects of metformin were reversed by methyl succinate supplementation, suggesting complex I plays a role in metformin's anti-cancer mechanism. PEITC's anti-cancer effect was reversed by N-acetyl-cysteine supplementation, suggesting PEITC relies on reactive oxygen species generation to induce apoptosis. Metformin and PEITC together showed a synergistic effect on ovarian cancer cell lines, including the cisplatin resistant A2780cis.

Conclusions

Here we show that when used in combination, these drugs are effective in both slowing cancer cell growth and killing ovarian cancer cells in vitro. Furthermore, the combination of these drugs remains effective in cisplatin resistant cell lines. Novel combinations such as metformin and PEITC show promise in expanding ovarian cancer therapies and overcoming the high incidence of cisplatin resistant cancers.
Appendix
Available only for authorised users
Literature
1.
go back to reference Buys SS, Partridge E, Black A, Johnson CC, Lamerato L, Isaacs C, Reding DJ, Greenlee RT, Yokochi LA, Kessel B, et al.: Effect of screening on ovarian cancer mortality: the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Randomized Controlled Trial. JAMA 2011, 305: 2295–2303. 10.1001/jama.2011.766PubMedCrossRef Buys SS, Partridge E, Black A, Johnson CC, Lamerato L, Isaacs C, Reding DJ, Greenlee RT, Yokochi LA, Kessel B, et al.: Effect of screening on ovarian cancer mortality: the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Randomized Controlled Trial. JAMA 2011, 305: 2295–2303. 10.1001/jama.2011.766PubMedCrossRef
2.
go back to reference Gotlieb WH, Saumet J, Beauchamp MC, Gu J, Lau S, Pollak MN, Bruchim I: In vitro metformin anti-neoplastic activity in epithelial ovarian cancer. Gynecol Oncol 2008, 110: 246–250. 10.1016/j.ygyno.2008.04.008PubMedCrossRef Gotlieb WH, Saumet J, Beauchamp MC, Gu J, Lau S, Pollak MN, Bruchim I: In vitro metformin anti-neoplastic activity in epithelial ovarian cancer. Gynecol Oncol 2008, 110: 246–250. 10.1016/j.ygyno.2008.04.008PubMedCrossRef
3.
go back to reference Rattan R, Giri S, Hartmann L, Shridhar V: Metformin attenuates ovarian cancer cell growth in an AMP- kinase dispensable manner. J Cell Mol Med 2009, 15: 166–178.PubMedCentralCrossRef Rattan R, Giri S, Hartmann L, Shridhar V: Metformin attenuates ovarian cancer cell growth in an AMP- kinase dispensable manner. J Cell Mol Med 2009, 15: 166–178.PubMedCentralCrossRef
4.
go back to reference Satyan KS, Swamy N, Dizon DS, Singh R, Granai CO, Brard L: Phenethyl isothiocyanate (PEITC) inhibits growth of ovarian cancer cells by inducing apoptosis: role of caspase and MAPK activation. Gynecol Oncol 2006, 103: 261–270. 10.1016/j.ygyno.2006.03.002PubMedCrossRef Satyan KS, Swamy N, Dizon DS, Singh R, Granai CO, Brard L: Phenethyl isothiocyanate (PEITC) inhibits growth of ovarian cancer cells by inducing apoptosis: role of caspase and MAPK activation. Gynecol Oncol 2006, 103: 261–270. 10.1016/j.ygyno.2006.03.002PubMedCrossRef
5.
go back to reference Trachootham D, Zhou Y, Zhang H, Demizu Y, Chen Z, Pelicano H, Chiao PJ, Achanta G, Arlinghaus RB, Liu J, Huang P: Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell 2006, 10: 241–252. 10.1016/j.ccr.2006.08.009PubMedCrossRef Trachootham D, Zhou Y, Zhang H, Demizu Y, Chen Z, Pelicano H, Chiao PJ, Achanta G, Arlinghaus RB, Liu J, Huang P: Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl isothiocyanate. Cancer Cell 2006, 10: 241–252. 10.1016/j.ccr.2006.08.009PubMedCrossRef
6.
go back to reference Xiao D, Powolny AA, Moura MB, Kelley EE, Bommareddy A, Kim SH, Hahm ER, Normolle D, Van Houten B, Singh SV: Phenethyl isothiocyanate inhibits oxidative phosphorylation to trigger reactive oxygen species-mediated death of human prostate cancer cells. J Biol Chem 2010, 285: 26558–26569. 10.1074/jbc.M109.063255PubMedCentralPubMedCrossRef Xiao D, Powolny AA, Moura MB, Kelley EE, Bommareddy A, Kim SH, Hahm ER, Normolle D, Van Houten B, Singh SV: Phenethyl isothiocyanate inhibits oxidative phosphorylation to trigger reactive oxygen species-mediated death of human prostate cancer cells. J Biol Chem 2010, 285: 26558–26569. 10.1074/jbc.M109.063255PubMedCentralPubMedCrossRef
7.
go back to reference El-Mir MY, Nogueira V, Fontaine E, Averet N, Rigoulet M, Leverve X: Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem 2000, 275: 223–228. 10.1074/jbc.275.1.223PubMedCrossRef El-Mir MY, Nogueira V, Fontaine E, Averet N, Rigoulet M, Leverve X: Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem 2000, 275: 223–228. 10.1074/jbc.275.1.223PubMedCrossRef
8.
go back to reference Sherman-Baust CA, Becker KG, Wood Iii WH, Zhang Y, Morin PJ: Gene expression and pathway analysis of ovarian cancer cells selected for resistance to cisplatin, paclitaxel, or doxorubicin. J Ovarian Res 2011, 4: 21. 10.1186/1757-2215-4-21PubMedCentralPubMedCrossRef Sherman-Baust CA, Becker KG, Wood Iii WH, Zhang Y, Morin PJ: Gene expression and pathway analysis of ovarian cancer cells selected for resistance to cisplatin, paclitaxel, or doxorubicin. J Ovarian Res 2011, 4: 21. 10.1186/1757-2215-4-21PubMedCentralPubMedCrossRef
9.
go back to reference Ishida S, Lee J, Thiele DJ, Herskowitz I: Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc Natl Acad Sci U S A 2002, 99: 14298–14302. 10.1073/pnas.162491399PubMedCentralPubMedCrossRef Ishida S, Lee J, Thiele DJ, Herskowitz I: Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc Natl Acad Sci U S A 2002, 99: 14298–14302. 10.1073/pnas.162491399PubMedCentralPubMedCrossRef
10.
go back to reference Segal ED, Yasmeen A, Beauchamp MC, Rosenblatt J, Pollak M, Gotlieb WH: Relevance of the OCT1 transporter to the antineoplastic effect of biguanides. Biochem Biophys Res Commun 2011, 414: 694–699. 10.1016/j.bbrc.2011.09.134PubMedCrossRef Segal ED, Yasmeen A, Beauchamp MC, Rosenblatt J, Pollak M, Gotlieb WH: Relevance of the OCT1 transporter to the antineoplastic effect of biguanides. Biochem Biophys Res Commun 2011, 414: 694–699. 10.1016/j.bbrc.2011.09.134PubMedCrossRef
11.
go back to reference Liebes L, Conaway CC, Hochster H, Mendoza S, Hecht SS, Crowell J, Chung FL: High-performance liquid chromatography-based determination of total isothiocyanate levels in human plasma: application to studies with 2-phenethyl isothiocyanate. Anal Biochem 2001, 291: 279–289. 10.1006/abio.2001.5030PubMedCrossRef Liebes L, Conaway CC, Hochster H, Mendoza S, Hecht SS, Crowell J, Chung FL: High-performance liquid chromatography-based determination of total isothiocyanate levels in human plasma: application to studies with 2-phenethyl isothiocyanate. Anal Biochem 2001, 291: 279–289. 10.1006/abio.2001.5030PubMedCrossRef
12.
go back to reference Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD: Metformin and reduced risk of cancer in diabetic patients. BMJ 2005, 330: 1304–1305. 10.1136/bmj.38415.708634.F7PubMedCentralPubMedCrossRef Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD: Metformin and reduced risk of cancer in diabetic patients. BMJ 2005, 330: 1304–1305. 10.1136/bmj.38415.708634.F7PubMedCentralPubMedCrossRef
13.
go back to reference Zhuang Y, Miskimins WK: Metformin induces both caspase-dependent and poly(ADP-ribose) polymerase-dependent cell death in breast cancer cells. Mol Cancer Res 2011, 9: 603–615. 10.1158/1541-7786.MCR-10-0343PubMedCentralPubMedCrossRef Zhuang Y, Miskimins WK: Metformin induces both caspase-dependent and poly(ADP-ribose) polymerase-dependent cell death in breast cancer cells. Mol Cancer Res 2011, 9: 603–615. 10.1158/1541-7786.MCR-10-0343PubMedCentralPubMedCrossRef
14.
go back to reference Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K: Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res 2009, 69: 7507–7511. 10.1158/0008-5472.CAN-09-2994PubMedCentralPubMedCrossRef Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K: Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res 2009, 69: 7507–7511. 10.1158/0008-5472.CAN-09-2994PubMedCentralPubMedCrossRef
15.
go back to reference Chyou PH, Nomura AM, Hankin JH, Stemmermann GN: A case-cohort study of diet and stomach cancer. Cancer Res 1990, 50: 7501–7504.PubMed Chyou PH, Nomura AM, Hankin JH, Stemmermann GN: A case-cohort study of diet and stomach cancer. Cancer Res 1990, 50: 7501–7504.PubMed
16.
go back to reference Stoner GD, Morrissey DT, Heur YH, Daniel EM, Galati AJ, Wagner SA: Inhibitory effects of phenethyl isothiocyanate on N-nitrosobenzylmethylamine carcinogenesis in the rat esophagus. Cancer Res 1991, 51: 2063–2068.PubMed Stoner GD, Morrissey DT, Heur YH, Daniel EM, Galati AJ, Wagner SA: Inhibitory effects of phenethyl isothiocyanate on N-nitrosobenzylmethylamine carcinogenesis in the rat esophagus. Cancer Res 1991, 51: 2063–2068.PubMed
17.
go back to reference Chung FL, Conaway CC, Rao CV, Reddy BS: Chemoprevention of colonic aberrant crypt foci in Fischer rats by sulforaphane and phenethyl isothiocyanate. Carcinogenesis 2000, 21: 2287–2291. 10.1093/carcin/21.12.2287PubMedCrossRef Chung FL, Conaway CC, Rao CV, Reddy BS: Chemoprevention of colonic aberrant crypt foci in Fischer rats by sulforaphane and phenethyl isothiocyanate. Carcinogenesis 2000, 21: 2287–2291. 10.1093/carcin/21.12.2287PubMedCrossRef
18.
go back to reference Muller FL, Liu Y, Van Remmen H: Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem 2004, 279: 49064–49073. 10.1074/jbc.M407715200PubMedCrossRef Muller FL, Liu Y, Van Remmen H: Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem 2004, 279: 49064–49073. 10.1074/jbc.M407715200PubMedCrossRef
19.
go back to reference Chou TC: Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 2010, 70: 440–446. 10.1158/0008-5472.CAN-09-1947PubMedCrossRef Chou TC: Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 2010, 70: 440–446. 10.1158/0008-5472.CAN-09-1947PubMedCrossRef
20.
go back to reference Salpeter SR, Greyber E, Pasternak GA, Salpeter EE: Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. Cochrane Database Syst Rev 2010, 14: CD002967. Salpeter SR, Greyber E, Pasternak GA, Salpeter EE: Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. Cochrane Database Syst Rev 2010, 14: CD002967.
21.
go back to reference Chung FL, Morse MA, Eklind KI, Lewis J: Quantitation of human uptake of the anticarcinogen phenethyl isothiocyanate after a watercress meal. Cancer Epidemiol Biomarkers Prev 1992, 1: 383–388.PubMed Chung FL, Morse MA, Eklind KI, Lewis J: Quantitation of human uptake of the anticarcinogen phenethyl isothiocyanate after a watercress meal. Cancer Epidemiol Biomarkers Prev 1992, 1: 383–388.PubMed
22.
go back to reference Zakikhani M, Blouin MJ, Piura E, Pollak MN: Metformin and rapamycin have distinct effects on the AKT pathway and proliferation in breast cancer cells. Breast Cancer Res Treat 2010, 123: 271–279. 10.1007/s10549-010-0763-9PubMedCrossRef Zakikhani M, Blouin MJ, Piura E, Pollak MN: Metformin and rapamycin have distinct effects on the AKT pathway and proliferation in breast cancer cells. Breast Cancer Res Treat 2010, 123: 271–279. 10.1007/s10549-010-0763-9PubMedCrossRef
23.
go back to reference Zhuang Y, Miskimins WK: Cell cycle arrest in Metformin treated breast cancer cells involves activation of AMPK, downregulation of cyclin D1, and requires p27Kip1 or p21Cip1. J Mol Signal 2008, 3: 18. 10.1186/1750-2187-3-18PubMedCentralPubMedCrossRef Zhuang Y, Miskimins WK: Cell cycle arrest in Metformin treated breast cancer cells involves activation of AMPK, downregulation of cyclin D1, and requires p27Kip1 or p21Cip1. J Mol Signal 2008, 3: 18. 10.1186/1750-2187-3-18PubMedCentralPubMedCrossRef
24.
go back to reference Lam TK, Ruczinski I, Helzlsouer KJ, Shugart YY, Caulfield LE, Alberg AJ: Cruciferous Vegetable Intake and Lung Cancer Risk: A Nested Case–control Study Matched on Cigarette Smoking. Cancer Epidemiol Biomarkers Prev 2010, 19: 2534–2540. 10.1158/1055-9965.EPI-10-0475PubMedCentralPubMedCrossRef Lam TK, Ruczinski I, Helzlsouer KJ, Shugart YY, Caulfield LE, Alberg AJ: Cruciferous Vegetable Intake and Lung Cancer Risk: A Nested Case–control Study Matched on Cigarette Smoking. Cancer Epidemiol Biomarkers Prev 2010, 19: 2534–2540. 10.1158/1055-9965.EPI-10-0475PubMedCentralPubMedCrossRef
25.
go back to reference Bae EJ, Cho MJ, Kim SG: Metformin prevents an adaptive increase in GSH and induces apoptosis under the conditions of GSH deficiency in H4IIE cells. J Toxicol Environ Health A 2007, 70: 1371–1380. 10.1080/15287390701434430PubMedCrossRef Bae EJ, Cho MJ, Kim SG: Metformin prevents an adaptive increase in GSH and induces apoptosis under the conditions of GSH deficiency in H4IIE cells. J Toxicol Environ Health A 2007, 70: 1371–1380. 10.1080/15287390701434430PubMedCrossRef
Metadata
Title
Metformin and phenethyl isothiocyanate combined treatment in vitro is cytotoxic to ovarian cancer cultures
Authors
Daniel K Chan
W Keith Miskimins
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Ovarian Research / Issue 1/2012
Electronic ISSN: 1757-2215
DOI
https://doi.org/10.1186/1757-2215-5-19

Other articles of this Issue 1/2012

Journal of Ovarian Research 1/2012 Go to the issue