Skip to main content
Top
Published in: Journal of Neuroinflammation 1/2012

Open Access 01-12-2012 | Research

Brain leukocyte infiltration initiated by peripheral inflammation or experimental autoimmune encephalomyelitis occurs through pathways connected to the CSF-filled compartments of the forebrain and midbrain

Authors: Charlotte Schmitt, Nathalie Strazielle, Jean-François Ghersi-Egea

Published in: Journal of Neuroinflammation | Issue 1/2012

Login to get access

Abstract

Background

Cerebrospinal fluid (CSF) has been considered as a preferential pathway of circulation for immune cells during neuroimmune surveillance. In order to evaluate the involvement of CSF-filled spaces in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis, we performed a time-course analysis of immune cell association with the CSF-containing ventricles, velae, and cisterns in two active models of this disease.

Methods

Guinea-pig spinal cord homogenate-induced EAE in rat and myelin oligodendrocyte glycoprotein-induced EAE in mouse were used. Leukocyte distribution and phenotypes were investigated by immunohistochemistry in serial sections of brain areas of interest, as well as in CSF withdrawn from rat. Immune cells associated with the choroid plexuses were quantified.

Results

Freund’s adjuvant-induced peripheral inflammation in the absence of brain antigen led to a subtle but definite increase in the number of myeloid cells in the extraventricular CSF spaces. In both rats and mice, EAE was characterized by a sustained and initial infiltration of lymphocytes and monocytes within forebrain/midbrain fluid-filled compartments such as the velum interpositum and ambient cisterns, and certain basal cisterns. Leukocytes further infiltrated periventricular and pericisternal parenchymal areas, along perivascular spaces or following a downward CSF-to-tissue gradient. Cells quantified in CSF sampled from rats included lymphocytes and neutrophils. The distinctive pattern of cell distribution suggests that both the choroid plexus and the vessels lying in the velae and cisterns are gates for early leukocyte entry in the central nervous system. B-cell infiltration observed in the mouse model was restricted to CSF-filled extraventricular compartments.

Conclusion

These results identified distinctive velae and cisterns of the forebrain and midbrain as preferential sites of immune cell homing following peripheral and early central inflammation and point to a role of CSF in directing brain invasion by immune cells during EAE.
Appendix
Available only for authorised users
Literature
1.
go back to reference Baxter AG: The origin and application of experimental autoimmune encephalomyelitis. Nat Rev Immunol 2007, 7:904–912.CrossRefPubMed Baxter AG: The origin and application of experimental autoimmune encephalomyelitis. Nat Rev Immunol 2007, 7:904–912.CrossRefPubMed
2.
go back to reference Lassmann H: Experimental models of multiple sclerosis. Rev Neurol (Paris) 2007, 163:651–655.CrossRef Lassmann H: Experimental models of multiple sclerosis. Rev Neurol (Paris) 2007, 163:651–655.CrossRef
3.
go back to reference Giunti D, Borsellino G, Benelli R, Marchese M, Capello E, Valle MT, Pedemonte E, Noonan D, Albini A, Bernardi G, Mancardi GL, Battistini L, Uccelli A: Phenotypic and functional analysis of T cells homing into the CSF of subjects with inflammatory diseases of the CNS. J Leukoc Biol 2003, 73:584–590.CrossRefPubMed Giunti D, Borsellino G, Benelli R, Marchese M, Capello E, Valle MT, Pedemonte E, Noonan D, Albini A, Bernardi G, Mancardi GL, Battistini L, Uccelli A: Phenotypic and functional analysis of T cells homing into the CSF of subjects with inflammatory diseases of the CNS. J Leukoc Biol 2003, 73:584–590.CrossRefPubMed
4.
go back to reference Charo IF, Ransohoff RM: The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 2006, 354:610–621.CrossRefPubMed Charo IF, Ransohoff RM: The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 2006, 354:610–621.CrossRefPubMed
5.
go back to reference Allen IV, Kirk J: The anatomical and molecular pathology of multiple sclerosis. In Molecular biology of multiple sclerosis. Edited by: Russell WC. Wiley and Sons, Chichester; 1997:9–22. Allen IV, Kirk J: The anatomical and molecular pathology of multiple sclerosis. In Molecular biology of multiple sclerosis. Edited by: Russell WC. Wiley and Sons, Chichester; 1997:9–22.
6.
go back to reference Kutzelnigg A, Lucchinetti CF, Stadelmann C, Brück W, Rauschka H, Bergmann M, Schmidbauer M, Parisi JE, Lassmann H: Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 2005, 128:2705–2712.CrossRefPubMed Kutzelnigg A, Lucchinetti CF, Stadelmann C, Brück W, Rauschka H, Bergmann M, Schmidbauer M, Parisi JE, Lassmann H: Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 2005, 128:2705–2712.CrossRefPubMed
7.
go back to reference Brown DA, Sawchenko PE: Time course and distribution of inflammatory and neurodegenerative events suggest structural bases for the pathogenesis of experimental autoimmune encephalomyelitis. J Comp Neurol 2007, 502:236–260.CrossRef Brown DA, Sawchenko PE: Time course and distribution of inflammatory and neurodegenerative events suggest structural bases for the pathogenesis of experimental autoimmune encephalomyelitis. J Comp Neurol 2007, 502:236–260.CrossRef
8.
go back to reference Ransohoff RM, Kivisäkk P, Kidd G: Three or more routes for leukocyte migration into the central nervous system. Nat Rev Immunol 2003, 3:569–581.CrossRefPubMed Ransohoff RM, Kivisäkk P, Kidd G: Three or more routes for leukocyte migration into the central nervous system. Nat Rev Immunol 2003, 3:569–581.CrossRefPubMed
9.
go back to reference Kivisakk P, Mahad DJ, Callahan MK, Trebst C, Tucky B, Wei T, Wu L, Baekkevold ES, Lassmann H, Staugaitis SM, Campbell JJ, Ransohoff RM: Human cerebrospinal fluid central memory CD4+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. Proc Natl Acad Sci U S A 2003, 100:8389–8394.CrossRefPubMedPubMedCentral Kivisakk P, Mahad DJ, Callahan MK, Trebst C, Tucky B, Wei T, Wu L, Baekkevold ES, Lassmann H, Staugaitis SM, Campbell JJ, Ransohoff RM: Human cerebrospinal fluid central memory CD4+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. Proc Natl Acad Sci U S A 2003, 100:8389–8394.CrossRefPubMedPubMedCentral
10.
go back to reference Reboldi A, Coisne C, Baumjohann D, Benvenuto F, Bottinelli D, Lira S, Uccelli A, Lanzavecchia A, Engelhardt B, Sallusto F: C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol 2009, 10:514–523.CrossRefPubMed Reboldi A, Coisne C, Baumjohann D, Benvenuto F, Bottinelli D, Lira S, Uccelli A, Lanzavecchia A, Engelhardt B, Sallusto F: C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol 2009, 10:514–523.CrossRefPubMed
11.
go back to reference Bartholomäus I, Kawakami N, Odoardi F, Schläger C, Miljkovic D, Ellwart JW, Klinkert WEF, Flügel-Koch C, Issekutz TB, Wekerle H, Flügel A: Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 2009, 462:94–98.CrossRefPubMed Bartholomäus I, Kawakami N, Odoardi F, Schläger C, Miljkovic D, Ellwart JW, Klinkert WEF, Flügel-Koch C, Issekutz TB, Wekerle H, Flügel A: Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 2009, 462:94–98.CrossRefPubMed
12.
go back to reference Ghersi-Egea JF, Finnegan W, Chen JL, Fenstermacher JD: Rapid distribution of intraventricularly administered sucrose into cerebrospinal fluid cisterns via subarachnoid velae in rat. Neuroscience 1996, 75:1271–1288.CrossRefPubMed Ghersi-Egea JF, Finnegan W, Chen JL, Fenstermacher JD: Rapid distribution of intraventricularly administered sucrose into cerebrospinal fluid cisterns via subarachnoid velae in rat. Neuroscience 1996, 75:1271–1288.CrossRefPubMed
13.
go back to reference Ghersi-Egea JF, Gorevic PD, Ghiso J, Frangione B, Patlak CS, Fenstermacher JD: Fate of cerebrospinal fluid-borne amyloid beta-peptide: rapid clearance into blood and appreciable accumulation by cerebral arteries. J Neurochem 1996, 67:880–883.CrossRefPubMed Ghersi-Egea JF, Gorevic PD, Ghiso J, Frangione B, Patlak CS, Fenstermacher JD: Fate of cerebrospinal fluid-borne amyloid beta-peptide: rapid clearance into blood and appreciable accumulation by cerebral arteries. J Neurochem 1996, 67:880–883.CrossRefPubMed
14.
go back to reference Proescholdt MG, Hutto B, Brady LS, Herkenham M: Studies of cerebrospinal fluid flow and penetration into brain following lateral ventricle and cisterna magna injections of the tracer [14 C]inulin in rat. Neuroscience 2000, 95:577–592.CrossRefPubMed Proescholdt MG, Hutto B, Brady LS, Herkenham M: Studies of cerebrospinal fluid flow and penetration into brain following lateral ventricle and cisterna magna injections of the tracer [14 C]inulin in rat. Neuroscience 2000, 95:577–592.CrossRefPubMed
15.
go back to reference Gazzin S, Strazielle N, Schmitt C, Fevre-Montange M, Ostrow JD, Tiribelli C, Ghersi-Egea J-F: Differential expression of the multidrug resistance-related proteins ABCb1 and ABCc1 between blood–brain interfaces. J Comp Neurol 2008, 510:497–507.CrossRefPubMed Gazzin S, Strazielle N, Schmitt C, Fevre-Montange M, Ostrow JD, Tiribelli C, Ghersi-Egea J-F: Differential expression of the multidrug resistance-related proteins ABCb1 and ABCc1 between blood–brain interfaces. J Comp Neurol 2008, 510:497–507.CrossRefPubMed
16.
go back to reference D'Mello C, Le T, Swain MG: Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factoralpha signaling during peripheral organ inflammation. J Neurosci 2009, 29:2089–2102.CrossRefPubMed D'Mello C, Le T, Swain MG: Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factoralpha signaling during peripheral organ inflammation. J Neurosci 2009, 29:2089–2102.CrossRefPubMed
17.
go back to reference Rummel C, Inoue W, Poole S, Luheshi GN: Leptin regulates leukocyte recruitment into the brain following systemic LPS-induced inflammation. Mol Psychiatry 2010, 15:523–534.CrossRefPubMed Rummel C, Inoue W, Poole S, Luheshi GN: Leptin regulates leukocyte recruitment into the brain following systemic LPS-induced inflammation. Mol Psychiatry 2010, 15:523–534.CrossRefPubMed
18.
go back to reference Schneider C, Schuetz G, Zollner TM: Acute neuroinflammation in Lewis rats - a model for acute multiple sclerosis relapses. J Neuroimmunol 2009, 213:84–90.CrossRefPubMed Schneider C, Schuetz G, Zollner TM: Acute neuroinflammation in Lewis rats - a model for acute multiple sclerosis relapses. J Neuroimmunol 2009, 213:84–90.CrossRefPubMed
19.
go back to reference Sufianov AA, Sufianova GZ, Iakimov IA: Microsurgical study of the interpeduncular cistern and its communication with adjoining cisterns. Childs Nerv Syst 2009, 25:301–308.CrossRefPubMed Sufianov AA, Sufianova GZ, Iakimov IA: Microsurgical study of the interpeduncular cistern and its communication with adjoining cisterns. Childs Nerv Syst 2009, 25:301–308.CrossRefPubMed
20.
go back to reference Nagata S, Rhoton AL, Barry M: Microsurgical anatomy of the choroidal fissure. Surg Neurol 1988, 30:3–59.CrossRefPubMed Nagata S, Rhoton AL, Barry M: Microsurgical anatomy of the choroidal fissure. Surg Neurol 1988, 30:3–59.CrossRefPubMed
21.
go back to reference Qi ST, Fan J, Zhang XA, Pan J: Reinvestigation of the ambient cistern and its related arachnoid membranes: an anatomical study. J Neurosurg 2011, 115:171–178.CrossRefPubMed Qi ST, Fan J, Zhang XA, Pan J: Reinvestigation of the ambient cistern and its related arachnoid membranes: an anatomical study. J Neurosurg 2011, 115:171–178.CrossRefPubMed
22.
go back to reference Tubbs RS, Louis RG, Wartmann CT, Loukas M, Shoja MM, Apaydin N, Oakes WJ: The velum interpositum revisited and redefined. Surg Radiol Anat 2008, 30:131–135.CrossRefPubMed Tubbs RS, Louis RG, Wartmann CT, Loukas M, Shoja MM, Apaydin N, Oakes WJ: The velum interpositum revisited and redefined. Surg Radiol Anat 2008, 30:131–135.CrossRefPubMed
23.
go back to reference Szmydynger-Chodobska J, Strazielle N, Gandy JR, Keefe TH, Zink BJ, Ghersi-Egea JF, Chodobski A: Posttraumatic invasion of monocytes across the blood-cerebrospinal fluid barrier. J Cereb Blood Flow Metab 2011, 32:93–104.CrossRefPubMedPubMedCentral Szmydynger-Chodobska J, Strazielle N, Gandy JR, Keefe TH, Zink BJ, Ghersi-Egea JF, Chodobski A: Posttraumatic invasion of monocytes across the blood-cerebrospinal fluid barrier. J Cereb Blood Flow Metab 2011, 32:93–104.CrossRefPubMedPubMedCentral
24.
go back to reference Thibeault I, Laflamme N, Rivest S: Regulation of the gene encoding the monocyte chemoattractant protein 1 (MCP-1) in the mouse and rat brain in response to circulating LPS and proinflammatory cytokines. J Comp Neurol 2001, 434:461–477.CrossRefPubMed Thibeault I, Laflamme N, Rivest S: Regulation of the gene encoding the monocyte chemoattractant protein 1 (MCP-1) in the mouse and rat brain in response to circulating LPS and proinflammatory cytokines. J Comp Neurol 2001, 434:461–477.CrossRefPubMed
25.
go back to reference Piccio L, Rossi B, Scarpini E, Laudanna C, Giagulli C, Issekutz AC, Vestweber D, Butcher EC, Constantin G: Molecular mechanisms involved in lymphocyte recruitment in inflamed brain microvessels: critical roles for P-selectin glycoprotein ligand-1 and heterotrimeric G(i)-linked receptors. J Immunol 2002, 168:1940–1949.CrossRefPubMed Piccio L, Rossi B, Scarpini E, Laudanna C, Giagulli C, Issekutz AC, Vestweber D, Butcher EC, Constantin G: Molecular mechanisms involved in lymphocyte recruitment in inflamed brain microvessels: critical roles for P-selectin glycoprotein ligand-1 and heterotrimeric G(i)-linked receptors. J Immunol 2002, 168:1940–1949.CrossRefPubMed
26.
go back to reference Nataf S, Strazielle N, Hatterer E, Mouchiroud G, Belin MF, Ghersi-Egea JF: Rat choroid plexuses contain myeloid progenitors capable of differentiation toward macrophage or dendritic cell phenotypes. Glia 2006, 54:160–171.CrossRefPubMed Nataf S, Strazielle N, Hatterer E, Mouchiroud G, Belin MF, Ghersi-Egea JF: Rat choroid plexuses contain myeloid progenitors capable of differentiation toward macrophage or dendritic cell phenotypes. Glia 2006, 54:160–171.CrossRefPubMed
27.
go back to reference Carrithers MD, Visintin I, Viret C, Janeway CS: Role of genetic background in P selectin-dependent immune surveillance of the central nervous system. J Neuroimmunol 2002, 129:51–57.CrossRefPubMed Carrithers MD, Visintin I, Viret C, Janeway CS: Role of genetic background in P selectin-dependent immune surveillance of the central nervous system. J Neuroimmunol 2002, 129:51–57.CrossRefPubMed
28.
go back to reference Mensah-Brown EP, Shahin A, Al Shamisi M, Lukic ML: Early influx of macrophages determines susceptibility to experimental allergic encephalomyelitis in Dark Agouti (DA) rats. J Neuroimmunol 2011, 232:68–74.CrossRefPubMed Mensah-Brown EP, Shahin A, Al Shamisi M, Lukic ML: Early influx of macrophages determines susceptibility to experimental allergic encephalomyelitis in Dark Agouti (DA) rats. J Neuroimmunol 2011, 232:68–74.CrossRefPubMed
29.
go back to reference Tran EH, Hoekstra K, van Rooijen N, Dijkstra CD, Owens T: Immune invasion of the central nervous system parenchyma and experimental allergic encephalomyelitis, but not leukocyte extravasation from blood, are prevented in macrophage-depleted mice. J Immunol 1998, 161:3767–3775.PubMed Tran EH, Hoekstra K, van Rooijen N, Dijkstra CD, Owens T: Immune invasion of the central nervous system parenchyma and experimental allergic encephalomyelitis, but not leukocyte extravasation from blood, are prevented in macrophage-depleted mice. J Immunol 1998, 161:3767–3775.PubMed
30.
31.
go back to reference Kivisäkk P, Imitola J, Rasmussen S, Elyaman W, Zhu B, Ransohoff RM, Khoury SJ: Localizing central nervous system immune surveillance: meningeal antigen-presenting cells activate T cells during experimental autoimmune encephalomyelitis. Ann Neurol 2009, 65:457–469.CrossRefPubMedPubMedCentral Kivisäkk P, Imitola J, Rasmussen S, Elyaman W, Zhu B, Ransohoff RM, Khoury SJ: Localizing central nervous system immune surveillance: meningeal antigen-presenting cells activate T cells during experimental autoimmune encephalomyelitis. Ann Neurol 2009, 65:457–469.CrossRefPubMedPubMedCentral
32.
go back to reference Matyszak MK, Lawson LJ, Perry VH, Gordon S: Stromal macrophages of the choroid plexus situated at an interface between the brain and peripheral immune system constitutively express major histocompatibility class II antigens. J Neuroimmunol 1992, 40:173–181.CrossRefPubMed Matyszak MK, Lawson LJ, Perry VH, Gordon S: Stromal macrophages of the choroid plexus situated at an interface between the brain and peripheral immune system constitutively express major histocompatibility class II antigens. J Neuroimmunol 1992, 40:173–181.CrossRefPubMed
33.
go back to reference Serot JM, Foliguet B, Bene MC, Faure GC: Ultrastructural and immunohistological evidence for dendritic-like cells within human choroid plexus epithelium. Neuroreport 1997, 8:1995–1998.CrossRefPubMed Serot JM, Foliguet B, Bene MC, Faure GC: Ultrastructural and immunohistological evidence for dendritic-like cells within human choroid plexus epithelium. Neuroreport 1997, 8:1995–1998.CrossRefPubMed
34.
go back to reference McColl SR, Staykova MA, Wozniak A, Fordham S, Bruce J, Willenborg DO: Treatment with anti-granulocyte antibodies inhibits the effector phase of experimental autoimmune encephalomyelitis. J Immunol 1998, 161:6421–6426.PubMed McColl SR, Staykova MA, Wozniak A, Fordham S, Bruce J, Willenborg DO: Treatment with anti-granulocyte antibodies inhibits the effector phase of experimental autoimmune encephalomyelitis. J Immunol 1998, 161:6421–6426.PubMed
35.
go back to reference Chabas D, Ness J, Belman A, Yeh EA, Kuntz N, Gorman MP, Strober JB, De Kouchkovsky I, McCulloch C, Chitnis T, Rodriguez M, Weinstock-Guttman B, Krupp LB, Waubant E, US Network of Pediatric MS Centers of Excellence: Younger children with MS have a distinct CSF inflammatory profile at disease onset. Neurology 2010, 74:399–405.CrossRefPubMedPubMedCentral Chabas D, Ness J, Belman A, Yeh EA, Kuntz N, Gorman MP, Strober JB, De Kouchkovsky I, McCulloch C, Chitnis T, Rodriguez M, Weinstock-Guttman B, Krupp LB, Waubant E, US Network of Pediatric MS Centers of Excellence: Younger children with MS have a distinct CSF inflammatory profile at disease onset. Neurology 2010, 74:399–405.CrossRefPubMedPubMedCentral
36.
go back to reference Magliozzi R, Howell O, Vora A, Serafini B, Nicholas R, Puopolo M, Reynolds R, Aloisi F: Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 2007, 130:1089–1104.CrossRefPubMed Magliozzi R, Howell O, Vora A, Serafini B, Nicholas R, Puopolo M, Reynolds R, Aloisi F: Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 2007, 130:1089–1104.CrossRefPubMed
37.
go back to reference Brochet B, Deloire MS, Touil T, Anne O, Caille JM, Dousset V, Petry KG: Early macrophage MRI of inflammatory lesions predicts lesion severity and disease development in relapsing EAE. NeuroImage 2006, 32:266–274.CrossRefPubMed Brochet B, Deloire MS, Touil T, Anne O, Caille JM, Dousset V, Petry KG: Early macrophage MRI of inflammatory lesions predicts lesion severity and disease development in relapsing EAE. NeuroImage 2006, 32:266–274.CrossRefPubMed
38.
go back to reference Lorentzen JC, Issazadeh S, Storch M, Mustafa MI, Lassman H, Linington C, Klareskog L, Olsson T: Protracted, relapsing and demyelinating experimental autoimmune encephalomyelitis in DA rats immunized with syngeneic spinal cord and incomplete Freund's adjuvant. J Neuroimmunol 1995, 63:193–205.CrossRefPubMed Lorentzen JC, Issazadeh S, Storch M, Mustafa MI, Lassman H, Linington C, Klareskog L, Olsson T: Protracted, relapsing and demyelinating experimental autoimmune encephalomyelitis in DA rats immunized with syngeneic spinal cord and incomplete Freund's adjuvant. J Neuroimmunol 1995, 63:193–205.CrossRefPubMed
Metadata
Title
Brain leukocyte infiltration initiated by peripheral inflammation or experimental autoimmune encephalomyelitis occurs through pathways connected to the CSF-filled compartments of the forebrain and midbrain
Authors
Charlotte Schmitt
Nathalie Strazielle
Jean-François Ghersi-Egea
Publication date
01-12-2012
Publisher
BioMed Central
Published in
Journal of Neuroinflammation / Issue 1/2012
Electronic ISSN: 1742-2094
DOI
https://doi.org/10.1186/1742-2094-9-187

Other articles of this Issue 1/2012

Journal of Neuroinflammation 1/2012 Go to the issue