Skip to main content
Top
Published in: International Journal of Hematology 4/2010

01-11-2010 | Original Article

Artesunate inhibiting angiogenesis induced by human myeloma RPMI8226 cells

Authors: Hao Chen, Liang Shi, Xiaoyang Yang, Shihui Li, Xiaoling Guo, Ling Pan

Published in: International Journal of Hematology | Issue 4/2010

Login to get access

Abstract

Multiple myeloma (MM) remains an incurable plasma cell disorder to date; therefore, new biologically target-based therapies are in urgent demand. Our previous studies showed that the antimalarial artesunate (ART) possessed anti-myeloma effect by inhibiting proliferation and inducing apoptosis of myeloma cells. The present study evaluated the effect of ART on human myeloma cell-induced angiogenesis and elucidated its mechanism. The human umbilical vein endothelial cells (HUVECs) migration test, aortic sprouting in fibrin gel in vitro and chicken chorioallantoic membrane (CAM) neovascularization in vivo model were used to examine the effect of ART on angiogenesis induced by human myeloma cells. The results showed that ART could inhibit HUVECs migration, even at a lower concentration (3 μmol/l, P < 0.01, compared with the result of control group), and suppress efficiently the angiogenic ability of myeloma RPMI8226 cells in a dose-dependent pattern (3–12 μmol/l, P < 0.05). The levels of VEGF and Ang-1 in the conditioned medium (CM) were quantified by enzyme-linked immunosorbent assay (ELISA). The results confirmed that 3 μmol/l ART could significantly decrease VEGF and Ang-1 secretion by RPMI8226 cells (P < 0.05), which correlated well with the reduction of angiogenesis induced by myeloma RPMI8226 cells. The present study also showed that ART downregulated the expression of VEGF and Ang-1 in RPMI8226 cells and reduced the activation of extracellular signal-regulated kinase 1 (ERK1) as well. Therefore, ART can block ERK1/2 activation, downregulate VEGF and Ang-1 expression and inhibit angiogenesis induced by human multiple myeloma RPMI8226 cells. Combined with our previous published data, results from the present study indicate that ART possesses potential anti-myeloma effect.
Literature
1.
go back to reference Raab MS, Podar K, Breitkreutz I, Richardson PG, Anderson KC. Multiple myeloma. Lancet. 2009;374:324–39.CrossRefPubMed Raab MS, Podar K, Breitkreutz I, Richardson PG, Anderson KC. Multiple myeloma. Lancet. 2009;374:324–39.CrossRefPubMed
2.
go back to reference Sezer O, Niemoller K, Eucker J, Jakob C, Kaufmann O, Zavrski I, et al. Bone marrow microvessel density is a prognostic factor for survival in patients with multiple myeloma. Ann Hematol. 2000;79:574–7.CrossRefPubMed Sezer O, Niemoller K, Eucker J, Jakob C, Kaufmann O, Zavrski I, et al. Bone marrow microvessel density is a prognostic factor for survival in patients with multiple myeloma. Ann Hematol. 2000;79:574–7.CrossRefPubMed
3.
4.
go back to reference Rajkumar SV, Leong T, Roche PC, Fonseca R, Dispenzieri A, Lacy MQ, et al. Prognostic value of bone marrow angiogenesis in multiple myeloma. Clin Cancer Res. 2000;6:3111–6.PubMed Rajkumar SV, Leong T, Roche PC, Fonseca R, Dispenzieri A, Lacy MQ, et al. Prognostic value of bone marrow angiogenesis in multiple myeloma. Clin Cancer Res. 2000;6:3111–6.PubMed
5.
go back to reference Thurston G. Complementary actions of VEGF and angiopoietin-1 on blood vessel growth and leakage. J Anat. 2002;200:575–80.CrossRefPubMed Thurston G. Complementary actions of VEGF and angiopoietin-1 on blood vessel growth and leakage. J Anat. 2002;200:575–80.CrossRefPubMed
6.
go back to reference Bellamy WT. Expression of vascular endothelial growth factor and its receptors in multiple myeloma and other hematopoietic malignancies. Semin Oncol. 2001;28:551–9.CrossRefPubMed Bellamy WT. Expression of vascular endothelial growth factor and its receptors in multiple myeloma and other hematopoietic malignancies. Semin Oncol. 2001;28:551–9.CrossRefPubMed
7.
go back to reference Markovic O, Marisavljevic D, Cemerikic V, Vidovic A, Perunicic M, Todorovic M, et al. Expression of VEGF and microvessel density in patients with multiple myeloma: clinical and prognostic significance. Med Oncol. 2008;25:451–7.CrossRefPubMed Markovic O, Marisavljevic D, Cemerikic V, Vidovic A, Perunicic M, Todorovic M, et al. Expression of VEGF and microvessel density in patients with multiple myeloma: clinical and prognostic significance. Med Oncol. 2008;25:451–7.CrossRefPubMed
8.
go back to reference Podar K, Anderson KC. Inhibition of VEGF signaling pathways in multiple myeloma and other malignancies. Cell Cycle. 2007;6:538–42.PubMed Podar K, Anderson KC. Inhibition of VEGF signaling pathways in multiple myeloma and other malignancies. Cell Cycle. 2007;6:538–42.PubMed
9.
go back to reference Liu XH, Bai CG, Yuan Y, Gong DJ, Huang SD. Angiopoietin-1 targeted RNA interference suppresses angiogenesis and tumor growth of esophageal cancer. World J Gastroenterol. 2008;14:1575–81.CrossRefPubMed Liu XH, Bai CG, Yuan Y, Gong DJ, Huang SD. Angiopoietin-1 targeted RNA interference suppresses angiogenesis and tumor growth of esophageal cancer. World J Gastroenterol. 2008;14:1575–81.CrossRefPubMed
10.
go back to reference Machein MR, Knedla A, Knoth R, Wagner S, Neuschl E, Plate KH. Angiopoietin-1 promotes tumor angiogenesis in a rat glioma model. Am J Pathol. 2004;165:1557–70.PubMed Machein MR, Knedla A, Knoth R, Wagner S, Neuschl E, Plate KH. Angiopoietin-1 promotes tumor angiogenesis in a rat glioma model. Am J Pathol. 2004;165:1557–70.PubMed
11.
go back to reference Shim WS, Teh M, Bapna A, Kim I, Koh GY, Mack PO, et al. Angiopoietin-1 promotes tumor angiogenesis and tumor vessel plasticity of human cervical cancer in mice. Exp Cell Res. 2002;279:299–309.CrossRefPubMed Shim WS, Teh M, Bapna A, Kim I, Koh GY, Mack PO, et al. Angiopoietin-1 promotes tumor angiogenesis and tumor vessel plasticity of human cervical cancer in mice. Exp Cell Res. 2002;279:299–309.CrossRefPubMed
12.
go back to reference Giuliani N, Lunghi P, Morandi F, Colla S, Bonomini S, Hojden M, et al. Downmodulation of ERK protein kinase activity inhibits VEGF secretion by human myeloma cells and myeloma-induced angiogenesis. Leukemia. 2004;18:628–35.CrossRefPubMed Giuliani N, Lunghi P, Morandi F, Colla S, Bonomini S, Hojden M, et al. Downmodulation of ERK protein kinase activity inhibits VEGF secretion by human myeloma cells and myeloma-induced angiogenesis. Leukemia. 2004;18:628–35.CrossRefPubMed
13.
go back to reference Klayman DL. Qinghaosu (artemisinin): the antimalarial drug from China. Science. 1985;228:1049–55.CrossRefPubMed Klayman DL. Qinghaosu (artemisinin): the antimalarial drug from China. Science. 1985;228:1049–55.CrossRefPubMed
14.
go back to reference Woerdenbag HJ, Pras N, van Uden W, Wallart TE, Beekman AC, Lugt CB. Progress in the research of artemisinin-related antimalarials: an update. Pharm World Sci. 1994;16:169–80.CrossRefPubMed Woerdenbag HJ, Pras N, van Uden W, Wallart TE, Beekman AC, Lugt CB. Progress in the research of artemisinin-related antimalarials: an update. Pharm World Sci. 1994;16:169–80.CrossRefPubMed
15.
go back to reference Price RN. Artemisinin drugs: novel antimalarial agents. Expert Opin Investig Drugs. 2000;9:1815–27.CrossRefPubMed Price RN. Artemisinin drugs: novel antimalarial agents. Expert Opin Investig Drugs. 2000;9:1815–27.CrossRefPubMed
16.
go back to reference Hien TT, Phu NH, Mai NT, Chau TT, Trang TT, Loc PP, et al. An open randomized comparison of intravenous and intramuscular artesunate in severe falciparum malaria. Trans R Soc Trop Med Hyg. 1992;86:584–5.CrossRefPubMed Hien TT, Phu NH, Mai NT, Chau TT, Trang TT, Loc PP, et al. An open randomized comparison of intravenous and intramuscular artesunate in severe falciparum malaria. Trans R Soc Trop Med Hyg. 1992;86:584–5.CrossRefPubMed
17.
go back to reference Efferth T, Romero MR, Wolf DG, Stamminger T, Marin JG, Marschall M. The antiviral activities of artemisinin and artesunate. Clin Infect Dis. 2008;47:804–11.CrossRefPubMed Efferth T, Romero MR, Wolf DG, Stamminger T, Marin JG, Marschall M. The antiviral activities of artemisinin and artesunate. Clin Infect Dis. 2008;47:804–11.CrossRefPubMed
18.
go back to reference Dhingra V, Vishweshwar Rao K, Lakshmi Narasu M. Current status of artemisinin and its derivatives as antimalarial drugs. Life Sci. 2000;66:279–300.CrossRefPubMed Dhingra V, Vishweshwar Rao K, Lakshmi Narasu M. Current status of artemisinin and its derivatives as antimalarial drugs. Life Sci. 2000;66:279–300.CrossRefPubMed
19.
go back to reference He RR, Zhou HJ. Progress in research on the anti-tumor effect of artesunate. Chin J Integr Med. 2008;14:312–6.CrossRefPubMed He RR, Zhou HJ. Progress in research on the anti-tumor effect of artesunate. Chin J Integr Med. 2008;14:312–6.CrossRefPubMed
20.
go back to reference Efferth T, Briehl MM, Tome ME. Role of antioxidant genes for the activity of artesunate against tumor cells. Int J Oncol. 2003;23:1231–5.PubMed Efferth T, Briehl MM, Tome ME. Role of antioxidant genes for the activity of artesunate against tumor cells. Int J Oncol. 2003;23:1231–5.PubMed
21.
go back to reference Zhou HJ, Wang WQ, Wu GD, Lee J, Li A. Artesunate inhibits angiogenesis and downregulates vascular endothelial growth factor expression in chronic myeloid leukemia K562 cells. Vascul Pharmacol. 2007;47:131–8.CrossRefPubMed Zhou HJ, Wang WQ, Wu GD, Lee J, Li A. Artesunate inhibits angiogenesis and downregulates vascular endothelial growth factor expression in chronic myeloid leukemia K562 cells. Vascul Pharmacol. 2007;47:131–8.CrossRefPubMed
22.
go back to reference Dell’Eva R, Pfeffer U, Vene R, Anfosso L, Forlani A, Albini A, et al. Inhibition of angiogenesis in vivo and growth of Kaposi’s sarcoma xenograft tumors by the anti-malarial artesunate. Biochem Pharmacol. 2004;68:2359–66.CrossRefPubMed Dell’Eva R, Pfeffer U, Vene R, Anfosso L, Forlani A, Albini A, et al. Inhibition of angiogenesis in vivo and growth of Kaposi’s sarcoma xenograft tumors by the anti-malarial artesunate. Biochem Pharmacol. 2004;68:2359–66.CrossRefPubMed
23.
go back to reference Li SH, Xue F, Cheng ZY, Yang XY, Wang SY, Pan L, et al. Effect of artesunate on inhibiting proliferation and inducing apoptosis of SP2/0 myeloma cells through affecting NFkappaB p65. Int J Hematol. 2009;90:513–21.CrossRefPubMed Li SH, Xue F, Cheng ZY, Yang XY, Wang SY, Pan L, et al. Effect of artesunate on inhibiting proliferation and inducing apoptosis of SP2/0 myeloma cells through affecting NFkappaB p65. Int J Hematol. 2009;90:513–21.CrossRefPubMed
24.
go back to reference Kini AR, Peterson LA, Tallman MS, Lingen MW. Angiogenesis in acute promyelocytic leukemia: induction by vascular endothelial growth factor and inhibition by all-trans retinoic acid. Blood. 2001;97:3919–24.CrossRefPubMed Kini AR, Peterson LA, Tallman MS, Lingen MW. Angiogenesis in acute promyelocytic leukemia: induction by vascular endothelial growth factor and inhibition by all-trans retinoic acid. Blood. 2001;97:3919–24.CrossRefPubMed
25.
go back to reference Nicosia RF, Ottinetti A. Growth of microvessels in serum-free matrix culture of rat aorta. A quantitative assay of angiogenesis in vitro. Lab Investig. 1990;63:115–22.PubMed Nicosia RF, Ottinetti A. Growth of microvessels in serum-free matrix culture of rat aorta. A quantitative assay of angiogenesis in vitro. Lab Investig. 1990;63:115–22.PubMed
26.
go back to reference Ribatti D, De Falco G, Nico B, Ria R, Crivellato E, Vacca A. In vivo time-course of the angiogenic response induced by multiple myeloma plasma cells in the chick embryo chorioallantoic membrane. J Anat. 2003;203:323–8.CrossRefPubMed Ribatti D, De Falco G, Nico B, Ria R, Crivellato E, Vacca A. In vivo time-course of the angiogenic response induced by multiple myeloma plasma cells in the chick embryo chorioallantoic membrane. J Anat. 2003;203:323–8.CrossRefPubMed
27.
28.
go back to reference Efferth T, Dunstan H, Sauerbrey A, Miyachi H, Chitambar CR. The anti-malarial artesunate is also active against cancer. Int J Oncol. 2001;18:767–73.PubMed Efferth T, Dunstan H, Sauerbrey A, Miyachi H, Chitambar CR. The anti-malarial artesunate is also active against cancer. Int J Oncol. 2001;18:767–73.PubMed
29.
go back to reference Chen HH, Zhou HJ, Wu GD, Luo XE. Inhibitory effects of artesunate on angiogenesis and on expressions of vascular endothelial growth factor and VEGF receptor KDR/flk-1. Pharmacology. 2004;71:1–9.CrossRefPubMed Chen HH, Zhou HJ, Wu GD, Luo XE. Inhibitory effects of artesunate on angiogenesis and on expressions of vascular endothelial growth factor and VEGF receptor KDR/flk-1. Pharmacology. 2004;71:1–9.CrossRefPubMed
30.
go back to reference Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature. 2000;407:242–8.CrossRefPubMed Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J. Vascular-specific growth factors and blood vessel formation. Nature. 2000;407:242–8.CrossRefPubMed
31.
go back to reference Holash J, Wiegand SJ, Yancopoulos GD. New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene. 1999;18:5356–62.CrossRefPubMed Holash J, Wiegand SJ, Yancopoulos GD. New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene. 1999;18:5356–62.CrossRefPubMed
32.
go back to reference Suri C, McClain J, Thurston G, McDonald DM, Zhou H, Oldmixon EH, et al. Increased vascularization in mice overexpressing angiopoietin-1. Science. 1998;282:468–71.CrossRefPubMed Suri C, McClain J, Thurston G, McDonald DM, Zhou H, Oldmixon EH, et al. Increased vascularization in mice overexpressing angiopoietin-1. Science. 1998;282:468–71.CrossRefPubMed
33.
go back to reference Uneda S, Matsuno F, Sonoki T, Tniguchi L, Kawano F, Hata H. Expressions of vascular endothelial growth factor and angiopoietin-2 in myeloma cells. Haematologica. 2003;88:113–5.PubMed Uneda S, Matsuno F, Sonoki T, Tniguchi L, Kawano F, Hata H. Expressions of vascular endothelial growth factor and angiopoietin-2 in myeloma cells. Haematologica. 2003;88:113–5.PubMed
34.
go back to reference Giuliani N, Colla S, Morandi F, Rizzoli V. Angiopoietin-1 and myeloma-induced angiogenesis. Leuk Lymphoma. 2005;46:29–33.CrossRefPubMed Giuliani N, Colla S, Morandi F, Rizzoli V. Angiopoietin-1 and myeloma-induced angiogenesis. Leuk Lymphoma. 2005;46:29–33.CrossRefPubMed
35.
go back to reference Fragoso R, Elias AP, Dias S. Autocrine VEGF loops, signaling pathways, and acute leukemia regulation. Leuk Lymphoma. 2007;48:481–8.CrossRefPubMed Fragoso R, Elias AP, Dias S. Autocrine VEGF loops, signaling pathways, and acute leukemia regulation. Leuk Lymphoma. 2007;48:481–8.CrossRefPubMed
36.
go back to reference Chinoy MR, Graybill MM, Miller SA, Lang CM, Kauffman GL. Angiopoietin-1 and VEGF in vascular development and angiogenesis in hypoplastic lungs. Am J Physiol Lung Cell Mol Physiol. 2002;283:L60–6.PubMed Chinoy MR, Graybill MM, Miller SA, Lang CM, Kauffman GL. Angiopoietin-1 and VEGF in vascular development and angiogenesis in hypoplastic lungs. Am J Physiol Lung Cell Mol Physiol. 2002;283:L60–6.PubMed
37.
go back to reference Le Gouill S, Podar K, Amiot M, Hideshima T, Chauhan D, Ishitsuka K, et al. VEGF induces Mcl-1 up-regulation and protects multiple myeloma cells against apoptosis. Blood. 2004;104:2886–92.CrossRefPubMed Le Gouill S, Podar K, Amiot M, Hideshima T, Chauhan D, Ishitsuka K, et al. VEGF induces Mcl-1 up-regulation and protects multiple myeloma cells against apoptosis. Blood. 2004;104:2886–92.CrossRefPubMed
Metadata
Title
Artesunate inhibiting angiogenesis induced by human myeloma RPMI8226 cells
Authors
Hao Chen
Liang Shi
Xiaoyang Yang
Shihui Li
Xiaoling Guo
Ling Pan
Publication date
01-11-2010
Publisher
Springer Japan
Published in
International Journal of Hematology / Issue 4/2010
Print ISSN: 0925-5710
Electronic ISSN: 1865-3774
DOI
https://doi.org/10.1007/s12185-010-0697-3

Other articles of this Issue 4/2010

International Journal of Hematology 4/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine