Skip to main content
Top
Published in: Cardiovascular Drugs and Therapy 3/2023

15-06-2022 | Arterial Occlusive Disease | Original Article

Silencing METTL3 Stabilizes Atherosclerotic Plaques by Regulating the Phenotypic Transformation of Vascular Smooth Muscle Cells via the miR-375-3p/PDK1 Axis

Authors: Jingquan Chen, Kun Lai, Xi Yong, Hongshun Yin, Zhilong Chen, Haifei Wang, Kai Chen, Jianghua Zheng

Published in: Cardiovascular Drugs and Therapy | Issue 3/2023

Login to get access

Abstract

Purpose

Atherosclerosis (AS) is a primary cause of cardiovascular diseases. This study investigated the mechanism of methyltransferase-like 3 (METTL3) in AS plaques via modulating the phenotypic transformation of vascular smooth muscle cells (VSMCs).

Methods

AS mouse models and MOVAS cell models were established through high-fat diet and the treatment of ox-LDL, respectively. METTL3 expression in AS models was detected via RT-qPCR and Western blot. The AS plaques, lipid deposition, and collagen fibers were examined via histological staining. The levels of Ly-6c, α-SMA, and OPN were examined via Western blot. The blood lipid indexes in mouse aortic tissues were determined using kits. The proliferation and migration of MOVAS cells were detected via CCK-8 and Transwell assays. The m6A modification level of mRNA was quantified. The binding relationship between pri-miR-375 and DGCR8, and the enrichment of m6A on pri-miR-375 were detected via RIP. The binding relationship between miR-375-3p and 3-phosphoinositide-dependent protein kinase-1 (PDK1) was verified via dual-luciferase assay. Joint experiments were designed to investigate the role of miR-375-3P/PDK1 in the phenotypic transformation of VSMCs.

Results

METTL3 was highly expressed in AS. Silencing METTL3 alleviated AS progression and stabilized AS plaques in mice, and limited the phenotypic transformation of VSMCs induced by ox-LDL. Silencing METTL3 inhibited m6A level and decreased the binding of DGCR8 to pri-miR-375 and further limited miR-375-3p expression. miR-375-3p targeted PDK1 transcription. miR-375-3p upregulation or PDK1 downregulation facilitated the phenotypic transformation of VSMCs.

Conclusion

METTL3-mediated m6A modification promoted VSMC phenotype transformation and made AS plaques more vulnerable via the miR-375-3p/PDK1 axis.
Literature
1.
go back to reference Chen L, Zheng J, Xue Q, Zhao Y. YKL-40 promotes the progress of atherosclerosis independent of lipid metabolism in apolipoprotein E(-/-) mice fed a high-fat diet. Heart Vessels. 2019;34:1874–81.PubMedCrossRef Chen L, Zheng J, Xue Q, Zhao Y. YKL-40 promotes the progress of atherosclerosis independent of lipid metabolism in apolipoprotein E(-/-) mice fed a high-fat diet. Heart Vessels. 2019;34:1874–81.PubMedCrossRef
2.
go back to reference Souilhol C, Harmsen MC, Evans PC, Krenning G. Endothelial-mesenchymal transition in atherosclerosis. Cardiovasc Res. 2018;114:565–77.PubMedCrossRef Souilhol C, Harmsen MC, Evans PC, Krenning G. Endothelial-mesenchymal transition in atherosclerosis. Cardiovasc Res. 2018;114:565–77.PubMedCrossRef
3.
go back to reference Mao Y, Liu XQ, Song Y, et al. Fibroblast growth factor-2/platelet-derived growth factor enhances atherosclerotic plaque stability. J Cell Mol Med. 2020;24:1128–40.PubMedCrossRef Mao Y, Liu XQ, Song Y, et al. Fibroblast growth factor-2/platelet-derived growth factor enhances atherosclerotic plaque stability. J Cell Mol Med. 2020;24:1128–40.PubMedCrossRef
4.
go back to reference Pan J, Cai Y, Liu M, Li Z. Role of vascular smooth muscle cell phenotypic switching in plaque progression: a hybrid modeling study. J Theor Biol. 2021;526:110794.PubMedCrossRef Pan J, Cai Y, Liu M, Li Z. Role of vascular smooth muscle cell phenotypic switching in plaque progression: a hybrid modeling study. J Theor Biol. 2021;526:110794.PubMedCrossRef
5.
go back to reference Wang X, Li H, Zhang Y, et al. Suppression of miR-4463 promotes phenotypic switching in VSMCs treated with Ox-LDL. Cell Tissue Res. 2021;383:1155–65.PubMedCrossRef Wang X, Li H, Zhang Y, et al. Suppression of miR-4463 promotes phenotypic switching in VSMCs treated with Ox-LDL. Cell Tissue Res. 2021;383:1155–65.PubMedCrossRef
6.
go back to reference Jian D, Wang Y, Jian L, et al. METTL14 aggravates endothelial inflammation and atherosclerosis by increasing FOXO1 N6-methyladeosine modifications. Theranostics. 2020;10:8939–56.PubMedPubMedCentralCrossRef Jian D, Wang Y, Jian L, et al. METTL14 aggravates endothelial inflammation and atherosclerosis by increasing FOXO1 N6-methyladeosine modifications. Theranostics. 2020;10:8939–56.PubMedPubMedCentralCrossRef
7.
8.
go back to reference Wu R, Jiang D, Wang Y, Wang X. N (6)-Methyladenosine (m(6)A) methylation in mRNA with a dynamic and reversible epigenetic modification. Mol Biotechnol. 2016;58:450–9.PubMedCrossRef Wu R, Jiang D, Wang Y, Wang X. N (6)-Methyladenosine (m(6)A) methylation in mRNA with a dynamic and reversible epigenetic modification. Mol Biotechnol. 2016;58:450–9.PubMedCrossRef
9.
go back to reference Tang C, Klukovich R, Peng H, et al. ALKBH5-dependent m6A demethylation controls splicing and stability of long 3'-UTR mRNAs in male germ cells. Proc Natl Acad Sci U S A. 2018;115:E325–33.PubMedCrossRef Tang C, Klukovich R, Peng H, et al. ALKBH5-dependent m6A demethylation controls splicing and stability of long 3'-UTR mRNAs in male germ cells. Proc Natl Acad Sci U S A. 2018;115:E325–33.PubMedCrossRef
10.
go back to reference Lin S, Choe J, Du P, Triboulet R, Gregory RI. The m(6)A methyltransferase METTL3 promotes translation in human cancer cells. Mol Cell. 2016;62:335–45.PubMedPubMedCentralCrossRef Lin S, Choe J, Du P, Triboulet R, Gregory RI. The m(6)A methyltransferase METTL3 promotes translation in human cancer cells. Mol Cell. 2016;62:335–45.PubMedPubMedCentralCrossRef
11.
go back to reference Quiles-Jimenez A, Gregersen I, Leal M, de Sousa M, et al. N6-methyladenosine in RNA of atherosclerotic plaques: an epitranscriptomic signature of human carotid atherosclerosis. Biochem Biophys Res Commun. 2020;533:631–7.PubMedCrossRef Quiles-Jimenez A, Gregersen I, Leal M, de Sousa M, et al. N6-methyladenosine in RNA of atherosclerotic plaques: an epitranscriptomic signature of human carotid atherosclerosis. Biochem Biophys Res Commun. 2020;533:631–7.PubMedCrossRef
12.
go back to reference Han R, Luo J, Wang L, Li L, Zheng H. miR-33a-5p Suppresses ox-LDL-stimulated calcification of vascular smooth muscle cells by targeting METTL3. Cardiovasc Toxicol. 2021;21:737–46.PubMedCrossRef Han R, Luo J, Wang L, Li L, Zheng H. miR-33a-5p Suppresses ox-LDL-stimulated calcification of vascular smooth muscle cells by targeting METTL3. Cardiovasc Toxicol. 2021;21:737–46.PubMedCrossRef
13.
go back to reference Correia de Sousa M, Gjorgjieva M, Dolicka D, Sobolewski C, Foti M. Deciphering miRNAs' action through miRNA editing. Int J Mol Sci 2019;20:6249. Correia de Sousa M, Gjorgjieva M, Dolicka D, Sobolewski C, Foti M. Deciphering miRNAs' action through miRNA editing. Int J Mol Sci 2019;20:6249.
14.
go back to reference Ren K, Zhu X, Zheng Z, et al. MicroRNA-24 aggravates atherosclerosis by inhibiting selective lipid uptake from HDL cholesterol via the post-transcriptional repression of scavenger receptor class B type I. Atherosclerosis. 2018;270:57–67.PubMedCrossRef Ren K, Zhu X, Zheng Z, et al. MicroRNA-24 aggravates atherosclerosis by inhibiting selective lipid uptake from HDL cholesterol via the post-transcriptional repression of scavenger receptor class B type I. Atherosclerosis. 2018;270:57–67.PubMedCrossRef
15.
go back to reference Liu M, Tao G, Liu Q, Liu K, Yang X. MicroRNA let-7g alleviates atherosclerosis via the targeting of LOX-1 in vitro and in vivo. Int J Mol Med. 2017;40:57–64.PubMedPubMedCentralCrossRef Liu M, Tao G, Liu Q, Liu K, Yang X. MicroRNA let-7g alleviates atherosclerosis via the targeting of LOX-1 in vitro and in vivo. Int J Mol Med. 2017;40:57–64.PubMedPubMedCentralCrossRef
16.
go back to reference Yin Y, Cheng Z, Fu X, Ji S. MicroRNA-375-3p is implicated in carotid artery stenosis by promoting the cell proliferation and migration of vascular smooth muscle cells. BMC Cardiovasc Disord. 2021;21:518.PubMedPubMedCentralCrossRef Yin Y, Cheng Z, Fu X, Ji S. MicroRNA-375-3p is implicated in carotid artery stenosis by promoting the cell proliferation and migration of vascular smooth muscle cells. BMC Cardiovasc Disord. 2021;21:518.PubMedPubMedCentralCrossRef
17.
go back to reference Wang H, Yuan J, Dang X, et al. Mettl14-mediated m6A modification modulates neuron apoptosis during the repair of spinal cord injury by regulating the transformation from pri-mir-375 to miR-375. Cell Biosci. 2021;11:52.PubMedPubMedCentralCrossRef Wang H, Yuan J, Dang X, et al. Mettl14-mediated m6A modification modulates neuron apoptosis during the repair of spinal cord injury by regulating the transformation from pri-mir-375 to miR-375. Cell Biosci. 2021;11:52.PubMedPubMedCentralCrossRef
18.
go back to reference Hu B, Zhang Y, Deng T, et al. PDPK1 regulates autophagosome biogenesis by binding to PIK3C3. Autophagy. 2021;17:2166–83.PubMedCrossRef Hu B, Zhang Y, Deng T, et al. PDPK1 regulates autophagosome biogenesis by binding to PIK3C3. Autophagy. 2021;17:2166–83.PubMedCrossRef
19.
go back to reference Li Y, Yang C, Zhang L, Yang P. MicroRNA-210 induces endothelial cell apoptosis by directly targeting PDK1 in the setting of atherosclerosis. Cell Mol Biol Lett. 2017;22:3.PubMedPubMedCentralCrossRef Li Y, Yang C, Zhang L, Yang P. MicroRNA-210 induces endothelial cell apoptosis by directly targeting PDK1 in the setting of atherosclerosis. Cell Mol Biol Lett. 2017;22:3.PubMedPubMedCentralCrossRef
20.
go back to reference Jones-Bolin S. Guidelines for the care and use of laboratory animals in biomedical research. Curr Protoc Pharmacol. 2012;Appendix 4:Appendix 4B.PubMed Jones-Bolin S. Guidelines for the care and use of laboratory animals in biomedical research. Curr Protoc Pharmacol. 2012;Appendix 4:Appendix 4B.PubMed
21.
go back to reference Sun H, Feng J, Ma Y, et al. Down-regulation of microRNA-342-5p or Up-regulation of Wnt3a Inhibits Angiogenesis and Maintains Atherosclerotic Plaque Stability in Atherosclerosis Mice. Nanoscale Res Lett. 2021;16:165.PubMedPubMedCentralCrossRef Sun H, Feng J, Ma Y, et al. Down-regulation of microRNA-342-5p or Up-regulation of Wnt3a Inhibits Angiogenesis and Maintains Atherosclerotic Plaque Stability in Atherosclerosis Mice. Nanoscale Res Lett. 2021;16:165.PubMedPubMedCentralCrossRef
22.
go back to reference Zhou F, Tan Y, Chen XH, et al. Atorvastatin improves plaque stability in diabetic atherosclerosis through the RAGE pathway. Eur Rev Med Pharmacol Sci. 2018;22:1142–9.PubMed Zhou F, Tan Y, Chen XH, et al. Atorvastatin improves plaque stability in diabetic atherosclerosis through the RAGE pathway. Eur Rev Med Pharmacol Sci. 2018;22:1142–9.PubMed
23.
go back to reference Lin Y, Chen Y, Zhu N, et al. Hydrogen sulfide inhibits development of atherosclerosis through up-regulating protein S-nitrosylation. Biomed Pharmacother. 2016;83:466–76.PubMedCrossRef Lin Y, Chen Y, Zhu N, et al. Hydrogen sulfide inhibits development of atherosclerosis through up-regulating protein S-nitrosylation. Biomed Pharmacother. 2016;83:466–76.PubMedCrossRef
24.
go back to reference Han Z, Guan Y, Liu B, et al. MicroRNA-99a-5p alleviates atherosclerosis via regulating Homeobox A1. Life Sci. 2019;232:116664.PubMedCrossRef Han Z, Guan Y, Liu B, et al. MicroRNA-99a-5p alleviates atherosclerosis via regulating Homeobox A1. Life Sci. 2019;232:116664.PubMedCrossRef
25.
go back to reference Wang G, Zhu Y, Li K, et al. Curcumin-mediated photodynamic therapy inhibits the phenotypic transformation, migration, and foaming of oxidized low-density lipoprotein-treated vascular smooth muscle cells by promoting autophagy. J Cardiovasc Pharmacol. 2021;78:308–18.PubMedPubMedCentralCrossRef Wang G, Zhu Y, Li K, et al. Curcumin-mediated photodynamic therapy inhibits the phenotypic transformation, migration, and foaming of oxidized low-density lipoprotein-treated vascular smooth muscle cells by promoting autophagy. J Cardiovasc Pharmacol. 2021;78:308–18.PubMedPubMedCentralCrossRef
26.
go back to reference Wu X, Zheng X, Cheng J, Zhang K, Ma C. LncRNA TUG1 regulates proliferation and apoptosis by regulating miR-148b/IGF2 axis in ox-LDL-stimulated VSMC and HUVEC. Life Sci. 2020;243:117287.PubMedCrossRef Wu X, Zheng X, Cheng J, Zhang K, Ma C. LncRNA TUG1 regulates proliferation and apoptosis by regulating miR-148b/IGF2 axis in ox-LDL-stimulated VSMC and HUVEC. Life Sci. 2020;243:117287.PubMedCrossRef
27.
go back to reference Sun B, Cao Q, Meng M, Wang X. MicroRNA-186-5p serves as a diagnostic biomarker in atherosclerosis and regulates vascular smooth muscle cell proliferation and migration. Cell Mol Biol Lett. 2020;25:27.PubMedPubMedCentralCrossRef Sun B, Cao Q, Meng M, Wang X. MicroRNA-186-5p serves as a diagnostic biomarker in atherosclerosis and regulates vascular smooth muscle cell proliferation and migration. Cell Mol Biol Lett. 2020;25:27.PubMedPubMedCentralCrossRef
28.
go back to reference Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42:D92–7.PubMedCrossRef Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42:D92–7.PubMedCrossRef
29.
go back to reference Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife 2015;4:e05005. Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife 2015;4:e05005.
30.
31.
go back to reference Tian S, Cao Y, Wang J, et al. The miR-378c-Samd1 circuit promotes phenotypic modulation of vascular smooth muscle cells and foam cells formation in atherosclerosis lesions. Sci Rep. 2021;11:10548.PubMedPubMedCentralCrossRef Tian S, Cao Y, Wang J, et al. The miR-378c-Samd1 circuit promotes phenotypic modulation of vascular smooth muscle cells and foam cells formation in atherosclerosis lesions. Sci Rep. 2021;11:10548.PubMedPubMedCentralCrossRef
32.
go back to reference Dorn LE, Lasman L, Chen J, et al. The N(6)-methyladenosine mRNA methylase METTL3 controls cardiac homeostasis and hypertrophy. Circulation. 2019;139:533–45.PubMedCrossRef Dorn LE, Lasman L, Chen J, et al. The N(6)-methyladenosine mRNA methylase METTL3 controls cardiac homeostasis and hypertrophy. Circulation. 2019;139:533–45.PubMedCrossRef
33.
go back to reference Chen W, Li X, Guo S, et al. Tanshinone IIA harmonizes the crosstalk of autophagy and polarization in macrophages via miR-375/KLF4 pathway to attenuate atherosclerosis. Int Immunopharmacol. 2019;70:486–97.PubMedCrossRef Chen W, Li X, Guo S, et al. Tanshinone IIA harmonizes the crosstalk of autophagy and polarization in macrophages via miR-375/KLF4 pathway to attenuate atherosclerosis. Int Immunopharmacol. 2019;70:486–97.PubMedCrossRef
34.
go back to reference Rognoni A, Cavallino C, Veia A, et al. Pathophysiology of atherosclerotic plaque development. Cardiovasc Hematol Agents Med Chem. 2015;13:10–3.PubMedCrossRef Rognoni A, Cavallino C, Veia A, et al. Pathophysiology of atherosclerotic plaque development. Cardiovasc Hematol Agents Med Chem. 2015;13:10–3.PubMedCrossRef
35.
go back to reference Liu YX, Yuan PZ, Wu JH, Hu B. Lipid accumulation and novel insight into vascular smooth muscle cells in atherosclerosis. J Mol Med (Berl). 2021;99:1511–26.PubMedCrossRef Liu YX, Yuan PZ, Wu JH, Hu B. Lipid accumulation and novel insight into vascular smooth muscle cells in atherosclerosis. J Mol Med (Berl). 2021;99:1511–26.PubMedCrossRef
36.
go back to reference Chen YS, Ouyang XP, Yu XH, et al. N6-Adenosine methylation (m(6)A) RNA modification: an emerging role in cardiovascular diseases. J Cardiovasc Transl Res. 2021;14:857–72.PubMedCrossRef Chen YS, Ouyang XP, Yu XH, et al. N6-Adenosine methylation (m(6)A) RNA modification: an emerging role in cardiovascular diseases. J Cardiovasc Transl Res. 2021;14:857–72.PubMedCrossRef
37.
go back to reference Chen Z, Ichetovkin M, Kurtz M, et al. Cholesterol in human atherosclerotic plaque is a marker for underlying disease state and plaque vulnerability. Lipids Health Dis. 2010;9:61.PubMedPubMedCentralCrossRef Chen Z, Ichetovkin M, Kurtz M, et al. Cholesterol in human atherosclerotic plaque is a marker for underlying disease state and plaque vulnerability. Lipids Health Dis. 2010;9:61.PubMedPubMedCentralCrossRef
38.
go back to reference Authors/Task Force M, Guidelines ESCCfP, Societies ESCNC. ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Atherosclerosis. 2019;290:140–205.CrossRef Authors/Task Force M, Guidelines ESCCfP, Societies ESCNC. ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Atherosclerosis. 2019;290:140–205.CrossRef
39.
go back to reference Melendez QM, Krishnaji ST, Wooten CJ, Lopez D. Hypercholesterolemia: the role of PCSK9. Arch Biochem Biophys. 2017;625-626:39–53.PubMedCrossRef Melendez QM, Krishnaji ST, Wooten CJ, Lopez D. Hypercholesterolemia: the role of PCSK9. Arch Biochem Biophys. 2017;625-626:39–53.PubMedCrossRef
40.
go back to reference Ference BA, Ginsberg HN, Graham I, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2017;38:2459–72.PubMedPubMedCentralCrossRef Ference BA, Ginsberg HN, Graham I, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2017;38:2459–72.PubMedPubMedCentralCrossRef
41.
go back to reference Won KB, Lee BK, Park HB, et al. Quantitative assessment of coronary plaque volume change related to triglyceride glucose index: The Progression of AtheRosclerotic PlAque DetermIned by Computed TomoGraphic Angiography IMaging (PARADIGM) registry. Cardiovasc Diabetol. 2020;19:113.PubMedPubMedCentralCrossRef Won KB, Lee BK, Park HB, et al. Quantitative assessment of coronary plaque volume change related to triglyceride glucose index: The Progression of AtheRosclerotic PlAque DetermIned by Computed TomoGraphic Angiography IMaging (PARADIGM) registry. Cardiovasc Diabetol. 2020;19:113.PubMedPubMedCentralCrossRef
42.
go back to reference Yu Z, Zheng X, Wang C, et al. The traditional Chinese medicine Hua Tuo Zai Zao Wan alleviates atherosclerosis by deactivation of inflammatory macrophages. Evid Based Complement Alternat Med. 2022;2022:2200662.PubMedPubMedCentral Yu Z, Zheng X, Wang C, et al. The traditional Chinese medicine Hua Tuo Zai Zao Wan alleviates atherosclerosis by deactivation of inflammatory macrophages. Evid Based Complement Alternat Med. 2022;2022:2200662.PubMedPubMedCentral
43.
go back to reference Chien CS, Li JY, Chien Y, et al. METTL3-dependent N(6)-methyladenosine RNA modification mediates the atherogenic inflammatory cascades in vascular endothelium. Proc Natl Acad Sci U S A 2021;118:e2025070118. Chien CS, Li JY, Chien Y, et al. METTL3-dependent N(6)-methyladenosine RNA modification mediates the atherogenic inflammatory cascades in vascular endothelium. Proc Natl Acad Sci U S A 2021;118:e2025070118.
44.
go back to reference Yu XH, Chen JJ, Deng WY, et al. Biochanin A mitigates atherosclerosis by inhibiting lipid accumulation and inflammatory response. Oxid Med Cell Longev. 2020;2020:8965047.PubMedPubMedCentralCrossRef Yu XH, Chen JJ, Deng WY, et al. Biochanin A mitigates atherosclerosis by inhibiting lipid accumulation and inflammatory response. Oxid Med Cell Longev. 2020;2020:8965047.PubMedPubMedCentralCrossRef
45.
go back to reference Zhong X, Yu J, Frazier K, et al. Circadian clock regulation of hepatic lipid metabolism by modulation of m(6)A mRNA methylation. Cell Rep. 2018;25:1816–1828 e1814.PubMedPubMedCentralCrossRef Zhong X, Yu J, Frazier K, et al. Circadian clock regulation of hepatic lipid metabolism by modulation of m(6)A mRNA methylation. Cell Rep. 2018;25:1816–1828 e1814.PubMedPubMedCentralCrossRef
46.
go back to reference Li Y, Zhang Q, Cui G, et al. m(6)A regulates liver metabolic disorders and hepatogenous diabetes. Genomics Proteomics Bioinformatics. 2020;18:371–83.PubMedPubMedCentralCrossRef Li Y, Zhang Q, Cui G, et al. m(6)A regulates liver metabolic disorders and hepatogenous diabetes. Genomics Proteomics Bioinformatics. 2020;18:371–83.PubMedPubMedCentralCrossRef
47.
go back to reference Yu W, Xiao L, Que Y, et al. Smooth muscle NADPH oxidase 4 promotes angiotensin II-induced aortic aneurysm and atherosclerosis by regulating osteopontin. Biochim Biophys Acta Mol Basis Dis. 2020;1866:165912.PubMedCrossRef Yu W, Xiao L, Que Y, et al. Smooth muscle NADPH oxidase 4 promotes angiotensin II-induced aortic aneurysm and atherosclerosis by regulating osteopontin. Biochim Biophys Acta Mol Basis Dis. 2020;1866:165912.PubMedCrossRef
48.
go back to reference Lok ZSY, Lyle AN. Osteopontin in vascular disease. Arterioscler Thromb Vasc Biol. 2019;39:613–22.PubMedCrossRef Lok ZSY, Lyle AN. Osteopontin in vascular disease. Arterioscler Thromb Vasc Biol. 2019;39:613–22.PubMedCrossRef
49.
go back to reference Chen L, DeWispelaere A, Dastvan F, et al. Smooth muscle-alpha actin inhibits vascular smooth muscle cell proliferation and migration by inhibiting Rac1 activity. PLoS One. 2016;11:e0155726.PubMedPubMedCentralCrossRef Chen L, DeWispelaere A, Dastvan F, et al. Smooth muscle-alpha actin inhibits vascular smooth muscle cell proliferation and migration by inhibiting Rac1 activity. PLoS One. 2016;11:e0155726.PubMedPubMedCentralCrossRef
50.
go back to reference Liu E, Shi S, Li J, et al. Farrerol maintains the contractile phenotype of VSMCs via inactivating the extracellular signal-regulated protein kinase 1/2 and p38 mitogen-activated protein kinase signaling. Mol Cell Biochem. 2020;475:249–60.PubMedCrossRef Liu E, Shi S, Li J, et al. Farrerol maintains the contractile phenotype of VSMCs via inactivating the extracellular signal-regulated protein kinase 1/2 and p38 mitogen-activated protein kinase signaling. Mol Cell Biochem. 2020;475:249–60.PubMedCrossRef
51.
go back to reference Chang X, Zhang B, Lihua L, Feng Z. T3 inhibits the calcification of vascular smooth muscle cells and the potential mechanism. Am J Transl Res. 2016;8:4694–704.PubMedPubMedCentral Chang X, Zhang B, Lihua L, Feng Z. T3 inhibits the calcification of vascular smooth muscle cells and the potential mechanism. Am J Transl Res. 2016;8:4694–704.PubMedPubMedCentral
52.
go back to reference Zhao K, Yang C, Zhang J, et al. METTL3 improves cardiomyocyte proliferation upon myocardial infarction via upregulating miR-17-3p in a DGCR8-dependent manner. Cell Death Discov. 2021;7:291.PubMedPubMedCentralCrossRef Zhao K, Yang C, Zhang J, et al. METTL3 improves cardiomyocyte proliferation upon myocardial infarction via upregulating miR-17-3p in a DGCR8-dependent manner. Cell Death Discov. 2021;7:291.PubMedPubMedCentralCrossRef
53.
go back to reference Qiu ZH, He J, Chai TC, et al. miR-145 attenuates phenotypic transformation of aortic vascular smooth muscle cells to prevent aortic dissection. J Clin Lab Anal. 2021;35:e23773.PubMedPubMedCentralCrossRef Qiu ZH, He J, Chai TC, et al. miR-145 attenuates phenotypic transformation of aortic vascular smooth muscle cells to prevent aortic dissection. J Clin Lab Anal. 2021;35:e23773.PubMedPubMedCentralCrossRef
54.
go back to reference Liu JT, Liu Z, Chen Y, et al. MicroRNA-29a involvement in phenotypic transformation of venous smooth muscle cells via ten-eleven translocation methylcytosinedioxygenase 1 in response to mechanical cyclic stretch. J Biomech Eng 2020;142:051009. Liu JT, Liu Z, Chen Y, et al. MicroRNA-29a involvement in phenotypic transformation of venous smooth muscle cells via ten-eleven translocation methylcytosinedioxygenase 1 in response to mechanical cyclic stretch. J Biomech Eng 2020;142:051009.
55.
go back to reference Lei L, Zhou C, Yang X, Li L. Down-regulation of microRNA-375 regulates adipokines and inhibits inflammatory cytokines by targeting AdipoR2 in non-alcoholic fatty liver disease. Clin Exp Pharmacol Physiol. 2018;45:819–31.PubMedCrossRef Lei L, Zhou C, Yang X, Li L. Down-regulation of microRNA-375 regulates adipokines and inhibits inflammatory cytokines by targeting AdipoR2 in non-alcoholic fatty liver disease. Clin Exp Pharmacol Physiol. 2018;45:819–31.PubMedCrossRef
56.
go back to reference Zhang Q, Xiao X, Zheng J, et al. Vildagliptin, a dipeptidyl peptidase-4 inhibitor, attenuated endothelial dysfunction through miRNAs in diabetic rats. Arch Med Sci. 2021;17:1378–87.PubMedCrossRef Zhang Q, Xiao X, Zheng J, et al. Vildagliptin, a dipeptidyl peptidase-4 inhibitor, attenuated endothelial dysfunction through miRNAs in diabetic rats. Arch Med Sci. 2021;17:1378–87.PubMedCrossRef
57.
go back to reference Wang Y, Cao W, Cui J, et al. Arterial wall stress induces phenotypic switching of arterial smooth muscle cells in vascular remodeling by activating the YAP/TAZ signaling pathway. Cell Physiol Biochem. 2018;51:842–53.PubMedCrossRef Wang Y, Cao W, Cui J, et al. Arterial wall stress induces phenotypic switching of arterial smooth muscle cells in vascular remodeling by activating the YAP/TAZ signaling pathway. Cell Physiol Biochem. 2018;51:842–53.PubMedCrossRef
Metadata
Title
Silencing METTL3 Stabilizes Atherosclerotic Plaques by Regulating the Phenotypic Transformation of Vascular Smooth Muscle Cells via the miR-375-3p/PDK1 Axis
Authors
Jingquan Chen
Kun Lai
Xi Yong
Hongshun Yin
Zhilong Chen
Haifei Wang
Kai Chen
Jianghua Zheng
Publication date
15-06-2022
Publisher
Springer US
Published in
Cardiovascular Drugs and Therapy / Issue 3/2023
Print ISSN: 0920-3206
Electronic ISSN: 1573-7241
DOI
https://doi.org/10.1007/s10557-022-07348-6

Other articles of this Issue 3/2023

Cardiovascular Drugs and Therapy 3/2023 Go to the issue