Skip to main content
Top
Published in: Immunologic Research 2-3/2019

01-06-2019 | Arterial Occlusive Disease | Review

RGC-32 and diseases: the first 20 years

Authors: Sonia I. Vlaicu, Alexandru Tatomir, Freidrich Anselmo, Dallas Boodhoo, Romeo Chira, Violeta Rus, Horea Rus

Published in: Immunologic Research | Issue 2-3/2019

Login to get access

Abstract

The response gene to complement (RGC)-32 acts as a cell cycle regulator and mediator of TGF-β effects. However, recent studies have revealed other functions for RGC-32 in diverse processes such as cellular migration, differentiation, and fibrosis. In addition to its induction by complement activation and the C5b-9 terminal complement complex, RGC-32 expression is also stimulated by growth factors, hormones, and cytokines. RGC-32 is induced by TGF-β through Smad3 and RhoA signaling and plays an important role in cell differentiation. In particular, RGC-32 is essential for the differentiation of Th17 cells. RGC-32−/− mice display an attenuated experimental autoimmune encephalomyelitis phenotype that is accompanied by decreased central nervous system inflammation and reductions in IL-17- and GM-CSF-producing CD4+ T cells. Accumulating evidence has drawn attention to the deregulated expression of RGC-32 in human cancers, atherogenesis, metabolic disorders, and autoimmune disease. Furthermore, RGC-32 is a potential therapeutic target in multiple sclerosis and other Th17-mediated autoimmune diseases. A better understanding of the mechanism(s) by which RGC-32 contributes to the pathogenesis of all these diseases will provide new insights into its therapeutic potential.
Literature
1.
go back to reference Badea TC, Niculescu FI, Soane L, Shin ML, Rus H. Molecular cloning and characterization of RGC-32, a novel gene induced by complement activation in oligodendrocytes. J Biol Chem. 1998;273:26977–81.CrossRefPubMed Badea TC, Niculescu FI, Soane L, Shin ML, Rus H. Molecular cloning and characterization of RGC-32, a novel gene induced by complement activation in oligodendrocytes. J Biol Chem. 1998;273:26977–81.CrossRefPubMed
2.
go back to reference Badea T, Niculescu F, Soane L, Fosbrink M, Sorana H, Rus V, et al. RGC-32 increases p34CDC2 kinase activity and entry of aortic smooth muscle cells into S-phase. J Biol Chem. 2002;277:502–8.CrossRefPubMed Badea T, Niculescu F, Soane L, Fosbrink M, Sorana H, Rus V, et al. RGC-32 increases p34CDC2 kinase activity and entry of aortic smooth muscle cells into S-phase. J Biol Chem. 2002;277:502–8.CrossRefPubMed
3.
go back to reference Fosbrink M, Cudrici C, Niculescu F, Badea TC, David S, Shamsuddin A, et al. Overexpression of RGC-32 in colon cancer and other tumors. Exp Mol Pathol. 2005;78:116–22.CrossRefPubMed Fosbrink M, Cudrici C, Niculescu F, Badea TC, David S, Shamsuddin A, et al. Overexpression of RGC-32 in colon cancer and other tumors. Exp Mol Pathol. 2005;78:116–22.CrossRefPubMed
4.
go back to reference Li F, Luo Z, Huang W, Lu Q, Wilcox CS, Jose PA, et al. Response gene to complement 32, a novel regulator for transforming growth factor-beta-induced smooth muscle differentiation of neural crest cells. J Biol Chem. 2007;282:10133–7.CrossRefPubMed Li F, Luo Z, Huang W, Lu Q, Wilcox CS, Jose PA, et al. Response gene to complement 32, a novel regulator for transforming growth factor-beta-induced smooth muscle differentiation of neural crest cells. J Biol Chem. 2007;282:10133–7.CrossRefPubMed
5.
go back to reference Vlaicu SI, Cudrici C, Ito T, Fosbrink M, Tegla CA, Rus V, et al. Role of response gene to complement 32 in diseases. Arch Immunol Ther Exp. 2008;56:115–22.CrossRef Vlaicu SI, Cudrici C, Ito T, Fosbrink M, Tegla CA, Rus V, et al. Role of response gene to complement 32 in diseases. Arch Immunol Ther Exp. 2008;56:115–22.CrossRef
6.
go back to reference Niculescu F, Badea T, Rus H. Sublytic C5b-9 induces proliferation of human aortic smooth muscle cells: role of mitogen activated protein kinase and phosphatidylinositol 3-kinase. Atherosclerosis. 1999;142:47–56.CrossRefPubMed Niculescu F, Badea T, Rus H. Sublytic C5b-9 induces proliferation of human aortic smooth muscle cells: role of mitogen activated protein kinase and phosphatidylinositol 3-kinase. Atherosclerosis. 1999;142:47–56.CrossRefPubMed
7.
go back to reference Rus HG, Niculescu F, Shin ML. Sublytic complement attack induces cell cycle in oligodendrocytes. J Immunol. 1996;156:4892–900.PubMed Rus HG, Niculescu F, Shin ML. Sublytic complement attack induces cell cycle in oligodendrocytes. J Immunol. 1996;156:4892–900.PubMed
8.
go back to reference Fosbrink M, Cudrici C, Tegla CA, Soloviova K, Ito T, Vlaicu S, et al. Response gene to complement 32 is required for C5b-9 induced cell cycle activation in endothelial cells. Exp Mol Pathol. 2009;86:87–94.CrossRefPubMedPubMedCentral Fosbrink M, Cudrici C, Tegla CA, Soloviova K, Ito T, Vlaicu S, et al. Response gene to complement 32 is required for C5b-9 induced cell cycle activation in endothelial cells. Exp Mol Pathol. 2009;86:87–94.CrossRefPubMedPubMedCentral
9.
go back to reference Viemann D, Goebeler M, Schmid S, Klimmek K, Sorg C, Ludwig S, et al. Transcriptional profiling of IKK2/NF-kappa B- and p38 MAP kinase-dependent gene expression in TNF-alpha-stimulated primary human endothelial cells. Blood. 2004;103:3365–73.CrossRefPubMed Viemann D, Goebeler M, Schmid S, Klimmek K, Sorg C, Ludwig S, et al. Transcriptional profiling of IKK2/NF-kappa B- and p38 MAP kinase-dependent gene expression in TNF-alpha-stimulated primary human endothelial cells. Blood. 2004;103:3365–73.CrossRefPubMed
10.
go back to reference Vlaicu SI, Tegla CA, Cudrici CD, Fosbrink M, Nguyen V, Azimzadeh P, et al. Epigenetic modifications induced by RGC-32 in colon cancer. Exp Mol Pathol. 2010;88:67–76.CrossRefPubMed Vlaicu SI, Tegla CA, Cudrici CD, Fosbrink M, Nguyen V, Azimzadeh P, et al. Epigenetic modifications induced by RGC-32 in colon cancer. Exp Mol Pathol. 2010;88:67–76.CrossRefPubMed
11.
go back to reference Saigusa K, Imoto I, Tanikawa C, Aoyagi M, Ohno K, Nakamura Y, et al. RGC32, a novel p53-inducible gene, is located on centrosomes during mitosis and results in G2/M arrest. Oncogene. 2007;26:1110–21.CrossRefPubMed Saigusa K, Imoto I, Tanikawa C, Aoyagi M, Ohno K, Nakamura Y, et al. RGC32, a novel p53-inducible gene, is located on centrosomes during mitosis and results in G2/M arrest. Oncogene. 2007;26:1110–21.CrossRefPubMed
12.
go back to reference Schlick SN, Wood CD, Gunnell A, Webb HM, Khasnis S, Schepers A, et al. Upregulation of the cell-cycle regulator RGC-32 in Epstein-Barr virus-immortalized cells. PLoS One. 2011;6:e28638.CrossRefPubMedPubMedCentral Schlick SN, Wood CD, Gunnell A, Webb HM, Khasnis S, Schepers A, et al. Upregulation of the cell-cycle regulator RGC-32 in Epstein-Barr virus-immortalized cells. PLoS One. 2011;6:e28638.CrossRefPubMedPubMedCentral
13.
go back to reference Shen YL, Liu HJ, Sun L, Niu XL, Kuang XY, Wang P, et al. Response gene to complement 32 regulates the G2/M phase checkpoint during renal tubular epithelial cell repair. Cell Mol Biol Lett. 2016;21:19.CrossRefPubMedPubMedCentral Shen YL, Liu HJ, Sun L, Niu XL, Kuang XY, Wang P, et al. Response gene to complement 32 regulates the G2/M phase checkpoint during renal tubular epithelial cell repair. Cell Mol Biol Lett. 2016;21:19.CrossRefPubMedPubMedCentral
14.
go back to reference Tegla CA, Cudrici CD, Nguyen V, Danoff J, Kruszewski AM, Boodhoo D, et al. RGC-32 is a novel regulator of the T-lymphocyte cell cycle. Exp Mol Pathol. 2015;98:328–37.CrossRefPubMedPubMedCentral Tegla CA, Cudrici CD, Nguyen V, Danoff J, Kruszewski AM, Boodhoo D, et al. RGC-32 is a novel regulator of the T-lymphocyte cell cycle. Exp Mol Pathol. 2015;98:328–37.CrossRefPubMedPubMedCentral
15.
16.
go back to reference Huang WY, Xie W, Guo X, Li F, Jose PA, Chen SY. Smad2 and PEA3 cooperatively regulate transcription of response gene to complement 32 in TGF-beta-induced smooth muscle cell differentiation of neural crest cells. Am J Phys. 2011;301:C499–506.CrossRef Huang WY, Xie W, Guo X, Li F, Jose PA, Chen SY. Smad2 and PEA3 cooperatively regulate transcription of response gene to complement 32 in TGF-beta-induced smooth muscle cell differentiation of neural crest cells. Am J Phys. 2011;301:C499–506.CrossRef
17.
go back to reference Tegla CA, Cudrici CD, Azimzadeh P, Singh AK, Trippe R 3rd, Khan A, et al. Dual role of response gene to complement-32 in multiple sclerosis. Exp Mol Pathol. 2013;94:17–28.CrossRefPubMed Tegla CA, Cudrici CD, Azimzadeh P, Singh AK, Trippe R 3rd, Khan A, et al. Dual role of response gene to complement-32 in multiple sclerosis. Exp Mol Pathol. 2013;94:17–28.CrossRefPubMed
18.
go back to reference Tang R, Zhang G, Chen SY. Response gene to complement 32 protein promotes macrophage phagocytosis via activation of protein kinase C pathway. J Biol Chem. 2014;289:22715–22.CrossRefPubMedPubMedCentral Tang R, Zhang G, Chen SY. Response gene to complement 32 protein promotes macrophage phagocytosis via activation of protein kinase C pathway. J Biol Chem. 2014;289:22715–22.CrossRefPubMedPubMedCentral
19.
go back to reference Zhao P, Gao D, Wang Q, Song B, Shao Q, Sun J, et al. Response gene to complement 32 (RGC-32) expression on M2-polarized and tumor-associated macrophages is M-CSF-dependent and enhanced by tumor-derived IL-4. Cell Mol Immunol. 2015;12:692–9.CrossRefPubMed Zhao P, Gao D, Wang Q, Song B, Shao Q, Sun J, et al. Response gene to complement 32 (RGC-32) expression on M2-polarized and tumor-associated macrophages is M-CSF-dependent and enhanced by tumor-derived IL-4. Cell Mol Immunol. 2015;12:692–9.CrossRefPubMed
20.
go back to reference Santoni M, Cascinu S, Mills CD. Altering macrophage polarization in the tumor environment: the role of response gene to complement 32. Cell Mol Immunol. 2015;12:783–4.CrossRefPubMed Santoni M, Cascinu S, Mills CD. Altering macrophage polarization in the tumor environment: the role of response gene to complement 32. Cell Mol Immunol. 2015;12:783–4.CrossRefPubMed
21.
go back to reference Rus V, Nguyen V, Tatomir A, Lees JR, Mekala AP, Boodhoo D, et al. RGC-32 promotes Th17 cell differentiation and enhances experimental autoimmune encephalomyelitis. J Immunol. 2017;198:3869–77.CrossRefPubMedPubMedCentral Rus V, Nguyen V, Tatomir A, Lees JR, Mekala AP, Boodhoo D, et al. RGC-32 promotes Th17 cell differentiation and enhances experimental autoimmune encephalomyelitis. J Immunol. 2017;198:3869–77.CrossRefPubMedPubMedCentral
22.
go back to reference Vlaicu SI, Tatomir A, Boodhoo D, Ito T, Fosbrink M, Cudrici C, et al. RGC-32 is expressed in the human atherosclerotic arterial wall: role in C5b-9-induced cell proliferation and migration. Exp Mol Pathol. 2016;101:221–30.CrossRefPubMed Vlaicu SI, Tatomir A, Boodhoo D, Ito T, Fosbrink M, Cudrici C, et al. RGC-32 is expressed in the human atherosclerotic arterial wall: role in C5b-9-induced cell proliferation and migration. Exp Mol Pathol. 2016;101:221–30.CrossRefPubMed
23.
go back to reference Cui XB, Luan JN, Dong K, Chen S, Wang Y, Watford WT, et al. RGC-32 (response gene to complement 32) deficiency protects endothelial cells from inflammation and attenuates atherosclerosis. Arterioscler Thromb Vasc Biol. 2018;38:e36–47.PubMedPubMedCentral Cui XB, Luan JN, Dong K, Chen S, Wang Y, Watford WT, et al. RGC-32 (response gene to complement 32) deficiency protects endothelial cells from inflammation and attenuates atherosclerosis. Arterioscler Thromb Vasc Biol. 2018;38:e36–47.PubMedPubMedCentral
24.
go back to reference Wang JN, Shi N, Xie WB, Guo X, Chen SY. Response gene to complement 32 promotes vascular lesion formation through stimulation of smooth muscle cell proliferation and migration. Arterioscler Thromb Vasc Biol. 2011;31:e19–26.PubMedPubMedCentral Wang JN, Shi N, Xie WB, Guo X, Chen SY. Response gene to complement 32 promotes vascular lesion formation through stimulation of smooth muscle cell proliferation and migration. Arterioscler Thromb Vasc Biol. 2011;31:e19–26.PubMedPubMedCentral
25.
go back to reference Vlaicu S, Tatomir A, Boodhoo D, Tegla C, Rus V, Rus H. RGC-32 mediates extracellular matrix production in human atherosclerotic lesions [abstract]. Atherosclerosis. 2018;275:e125.CrossRef Vlaicu S, Tatomir A, Boodhoo D, Tegla C, Rus V, Rus H. RGC-32 mediates extracellular matrix production in human atherosclerotic lesions [abstract]. Atherosclerosis. 2018;275:e125.CrossRef
26.
go back to reference Tang JM, Shi N, Dong K, Brown SA, Coleman AE, Boegehold MA, et al. Response gene to complement 32 maintains blood pressure homeostasis by regulating alpha-adrenergic receptor expression. Circ Res. 2018;123:1080–90.CrossRefPubMed Tang JM, Shi N, Dong K, Brown SA, Coleman AE, Boegehold MA, et al. Response gene to complement 32 maintains blood pressure homeostasis by regulating alpha-adrenergic receptor expression. Circ Res. 2018;123:1080–90.CrossRefPubMed
27.
28.
go back to reference Wang QJ, Song BF, Zhang YH, Ma YY, Shao QQ, Liu J, et al. Expression of RGC32 in human normal and preeclamptic placentas and its role in trophoblast cell invasion and migration. Placenta. 2015;36:350–6.CrossRefPubMed Wang QJ, Song BF, Zhang YH, Ma YY, Shao QQ, Liu J, et al. Expression of RGC32 in human normal and preeclamptic placentas and its role in trophoblast cell invasion and migration. Placenta. 2015;36:350–6.CrossRefPubMed
29.
go back to reference Sones JL, Merriam AA, Seffens A, Brown-Grant DA, Butler SD, Zhao AM, et al. Angiogenic factor imbalance precedes complement deposition in placentae of the BPH/5 model of preeclampsia. FASEB J. 2018;32:2574–86.CrossRefPubMedPubMedCentral Sones JL, Merriam AA, Seffens A, Brown-Grant DA, Butler SD, Zhao AM, et al. Angiogenic factor imbalance precedes complement deposition in placentae of the BPH/5 model of preeclampsia. FASEB J. 2018;32:2574–86.CrossRefPubMedPubMedCentral
30.
go back to reference Li B, Zhou W, Tang X, Wang W, Pan J, Tan M. Response gene to complement-32 promotes the imbalance of Treg/Th17 in patients with dilated cardiomyopathy. Cell Physiol Biochem. 2017;43:1515–25.CrossRefPubMed Li B, Zhou W, Tang X, Wang W, Pan J, Tan M. Response gene to complement-32 promotes the imbalance of Treg/Th17 in patients with dilated cardiomyopathy. Cell Physiol Biochem. 2017;43:1515–25.CrossRefPubMed
31.
go back to reference Caballero AE. Endothelial dysfunction in obesity and insulin resistance: a road to diabetes and heart disease. Obes Res. 2003;11:1278–89.CrossRefPubMed Caballero AE. Endothelial dysfunction in obesity and insulin resistance: a road to diabetes and heart disease. Obes Res. 2003;11:1278–89.CrossRefPubMed
32.
go back to reference Cui XB, Luan JN, Ye J, Chen SY. RGC32 deficiency protects against high-fat diet-induced obesity and insulin resistance in mice. J Endocrinol. 2015;224:127–37.CrossRefPubMed Cui XB, Luan JN, Ye J, Chen SY. RGC32 deficiency protects against high-fat diet-induced obesity and insulin resistance in mice. J Endocrinol. 2015;224:127–37.CrossRefPubMed
33.
go back to reference Guo S, Philbrick MJ, An X, Xu M, Wu J. Response gene to complement 32 (RGC-32) in endothelial cells is induced by glucose and helpful to maintain glucose homeostasis. Int J Clin Exp Med. 2014;7:2541–9.PubMedPubMedCentral Guo S, Philbrick MJ, An X, Xu M, Wu J. Response gene to complement 32 (RGC-32) in endothelial cells is induced by glucose and helpful to maintain glucose homeostasis. Int J Clin Exp Med. 2014;7:2541–9.PubMedPubMedCentral
34.
go back to reference Chen S, Mei X, Yin A, Yin H, Cui XB, Chen SY. Response gene to complement 32 suppresses adipose tissue thermogenic genes through inhibiting beta3-adrenergic receptor/mTORC1 signaling. FASEB J. 2018;32:4836–47.CrossRefPubMedPubMedCentral Chen S, Mei X, Yin A, Yin H, Cui XB, Chen SY. Response gene to complement 32 suppresses adipose tissue thermogenic genes through inhibiting beta3-adrenergic receptor/mTORC1 signaling. FASEB J. 2018;32:4836–47.CrossRefPubMedPubMedCentral
35.
go back to reference Gaggini M, Morelli M, Buzzigoli E, DeFronzo RA, Bugianesi E, Gastaldelli A. Non-alcoholic fatty liver disease (NAFLD) and its connection with insulin resistance, dyslipidemia, atherosclerosis and coronary heart disease. Nutrients. 2013;5:1544–60.CrossRefPubMedPubMedCentral Gaggini M, Morelli M, Buzzigoli E, DeFronzo RA, Bugianesi E, Gastaldelli A. Non-alcoholic fatty liver disease (NAFLD) and its connection with insulin resistance, dyslipidemia, atherosclerosis and coronary heart disease. Nutrients. 2013;5:1544–60.CrossRefPubMedPubMedCentral
37.
go back to reference Rubio A, Guruceaga E, Vazquez-Chantada M, Sandoval J, Martinez-Cruz LA, Segura V, et al. Identification of a gene-pathway associated with non-alcoholic steatohepatitis. J Hepatol. 2007;46:708–18.CrossRefPubMed Rubio A, Guruceaga E, Vazquez-Chantada M, Sandoval J, Martinez-Cruz LA, Segura V, et al. Identification of a gene-pathway associated with non-alcoholic steatohepatitis. J Hepatol. 2007;46:708–18.CrossRefPubMed
38.
go back to reference Watanabe A, Marumo T, Kawarazaki W, Nishimoto M, Ayuzawa N, Ueda K, et al. Aberrant DNA methylation of pregnane X receptor underlies metabolic gene alterations in the diabetic kidney. Am J Physiol Renal Physiol. 2018;314:F551–F60.CrossRefPubMed Watanabe A, Marumo T, Kawarazaki W, Nishimoto M, Ayuzawa N, Ueda K, et al. Aberrant DNA methylation of pregnane X receptor underlies metabolic gene alterations in the diabetic kidney. Am J Physiol Renal Physiol. 2018;314:F551–F60.CrossRefPubMed
39.
go back to reference Liao WL, Lin JM, Liu SP, Chen SY, Lin HJ, Wang YH, et al. Loss of response gene to complement 32 (RGC-32) in diabetic mouse retina is involved in retinopathy development. Int J Mol Sci. 2018;19:E3629.CrossRefPubMed Liao WL, Lin JM, Liu SP, Chen SY, Lin HJ, Wang YH, et al. Loss of response gene to complement 32 (RGC-32) in diabetic mouse retina is involved in retinopathy development. Int J Mol Sci. 2018;19:E3629.CrossRefPubMed
40.
go back to reference Sziksz E, Pap D, Lippai R, Beres NJ, Fekete A, Szabo AJ, et al. Fibrosis related inflammatory mediators: role of the IL-10 cytokine family. Mediat Inflamm. 2015;2015:764641.CrossRef Sziksz E, Pap D, Lippai R, Beres NJ, Fekete A, Szabo AJ, et al. Fibrosis related inflammatory mediators: role of the IL-10 cytokine family. Mediat Inflamm. 2015;2015:764641.CrossRef
42.
go back to reference Guo X, Jose PA, Chen SY. Response gene to complement 32 interacts with Smad3 to promote epithelial-mesenchymal transition of human renal tubular cells. Am J Phys. 2011;300:C1415–21.CrossRef Guo X, Jose PA, Chen SY. Response gene to complement 32 interacts with Smad3 to promote epithelial-mesenchymal transition of human renal tubular cells. Am J Phys. 2011;300:C1415–21.CrossRef
43.
go back to reference Huang WY, Li ZG, Rus H, Wang X, Jose PA, Chen SY. RGC-32 mediates transforming growth factor-beta-induced epithelial-mesenchymal transition in human renal proximal tubular cells. J Biol Chem. 2009;284:9426–32.CrossRefPubMedPubMedCentral Huang WY, Li ZG, Rus H, Wang X, Jose PA, Chen SY. RGC-32 mediates transforming growth factor-beta-induced epithelial-mesenchymal transition in human renal proximal tubular cells. J Biol Chem. 2009;284:9426–32.CrossRefPubMedPubMedCentral
44.
go back to reference Li Z, Xie WB, Escano CS, Asico LD, Xie Q, Jose PA, et al. Response gene to complement 32 is essential for fibroblast activation in renal fibrosis. J Biol Chem. 2011;286:41323–30.CrossRefPubMedPubMedCentral Li Z, Xie WB, Escano CS, Asico LD, Xie Q, Jose PA, et al. Response gene to complement 32 is essential for fibroblast activation in renal fibrosis. J Biol Chem. 2011;286:41323–30.CrossRefPubMedPubMedCentral
45.
go back to reference Niu XL, Kuang XY, Zhang ZG, Liu XG, Zhao ZH, Zhang X, et al. Expression of response gene to complement-32 in renal tissue of children with immunoglobulin A nephropathy. Scand J Urol Nephrol. 2011;45:371–6.CrossRefPubMed Niu XL, Kuang XY, Zhang ZG, Liu XG, Zhao ZH, Zhang X, et al. Expression of response gene to complement-32 in renal tissue of children with immunoglobulin A nephropathy. Scand J Urol Nephrol. 2011;45:371–6.CrossRefPubMed
46.
go back to reference Sun L, Shen YL, Liu HJ, Hu YJ, Kang YL, Huang WY. The expression of response gene to complement 32 on renal ischemia reperfusion injury in rat. Ren Fail. 2016;38:276–81.CrossRefPubMed Sun L, Shen YL, Liu HJ, Hu YJ, Kang YL, Huang WY. The expression of response gene to complement 32 on renal ischemia reperfusion injury in rat. Ren Fail. 2016;38:276–81.CrossRefPubMed
47.
go back to reference Liu H, Shen Y, Sun L, Kuang X, Zhang R, Zhang H, et al. Effects of response gene to complement 32 as a new biomarker in children with acute kidney injury. Zhonghua Er Ke Za Zhi. 2014;52:494–9.PubMed Liu H, Shen Y, Sun L, Kuang X, Zhang R, Zhang H, et al. Effects of response gene to complement 32 as a new biomarker in children with acute kidney injury. Zhonghua Er Ke Za Zhi. 2014;52:494–9.PubMed
48.
go back to reference Wang XY, Li SN, Zhu HF, Hu ZY, Zhong Y, Gu CS, et al. RGC32 induces epithelial-mesenchymal transition by activating the Smad/Sip1 signaling pathway in CRC. Sci Rep. 2017;7:46078.CrossRefPubMedPubMedCentral Wang XY, Li SN, Zhu HF, Hu ZY, Zhong Y, Gu CS, et al. RGC32 induces epithelial-mesenchymal transition by activating the Smad/Sip1 signaling pathway in CRC. Sci Rep. 2017;7:46078.CrossRefPubMedPubMedCentral
49.
go back to reference Cho H, Lim BJ, Kang ES, Choi JS, Kim JH. Molecular characterization of a new ovarian cancer cell line, YDOV-151, established from mucinous cystadenocarcinoma. Tohoku J Exp Med. 2009;218:129–39.CrossRefPubMed Cho H, Lim BJ, Kang ES, Choi JS, Kim JH. Molecular characterization of a new ovarian cancer cell line, YDOV-151, established from mucinous cystadenocarcinoma. Tohoku J Exp Med. 2009;218:129–39.CrossRefPubMed
50.
go back to reference Donninger H, Bonome T, Radonovich M, Pise-Masison CA, Brady J, Shih JH, et al. Whole genome expression profiling of advance stage papillary serous ovarian cancer reveals activated pathways. Oncogene. 2004;23:8065–77.CrossRefPubMed Donninger H, Bonome T, Radonovich M, Pise-Masison CA, Brady J, Shih JH, et al. Whole genome expression profiling of advance stage papillary serous ovarian cancer reveals activated pathways. Oncogene. 2004;23:8065–77.CrossRefPubMed
51.
go back to reference Eskandari-Nasab E, Hashemi M, Rafighdoost F. Promoter methylation and mRNA expression of response gene to complement 32 in breast carcinoma. J Cancer Epidemiol. 2016:7680523. Eskandari-Nasab E, Hashemi M, Rafighdoost F. Promoter methylation and mRNA expression of response gene to complement 32 in breast carcinoma. J Cancer Epidemiol. 2016:7680523.
52.
go back to reference Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell. 2003;3:537–49.CrossRefPubMed Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell. 2003;3:537–49.CrossRefPubMed
53.
go back to reference Hahn A. Differentielle Genexpression der gene APR-1, B56, RGC32 und SIAT-8A bei kutanen T-Zell-Lymphomen [Dissertation]. Heidelberg: Ruprecht-Karls-Universität Heidelberg Fakultät für Klinische Medizin Mannheim; 2006. Hahn A. Differentielle Genexpression der gene APR-1, B56, RGC32 und SIAT-8A bei kutanen T-Zell-Lymphomen [Dissertation]. Heidelberg: Ruprecht-Karls-Universität Heidelberg Fakultät für Klinische Medizin Mannheim; 2006.
54.
go back to reference Schlick S. Investigating the role of RGC-32 in cell cycle disruption by EBV EBNA 3C [Dissertation]. Sussex: School of Life Sciences, University of Sussex; 2010. Schlick S. Investigating the role of RGC-32 in cell cycle disruption by EBV EBNA 3C [Dissertation]. Sussex: School of Life Sciences, University of Sussex; 2010.
55.
go back to reference Rasiah K. The identification of novel biomarkers in the development and progression of early prostate Cancer [Dissertation]. New South Wales: University of New South Wales; 2006. Rasiah K. The identification of novel biomarkers in the development and progression of early prostate Cancer [Dissertation]. New South Wales: University of New South Wales; 2006.
56.
go back to reference Demeure MJ, Coan KE, Grant CS, Komorowski RA, Stephan E, Sinari S, et al. PTTG1 overexpression in adrenocortical cancer is associated with poor survival and represents a potential therapeutic target. Surgery. 2013;154:1405–16.CrossRefPubMedPubMedCentral Demeure MJ, Coan KE, Grant CS, Komorowski RA, Stephan E, Sinari S, et al. PTTG1 overexpression in adrenocortical cancer is associated with poor survival and represents a potential therapeutic target. Surgery. 2013;154:1405–16.CrossRefPubMedPubMedCentral
57.
58.
go back to reference Bredel M, Bredel C, Juric D, Duran GE, Yu RX, Harsh GR, et al. Tumor necrosis factor-alpha-induced protein 3 as a putative regulator of nuclear factor-kappaB-mediated resistance to O6-alkylating agents in human glioblastomas. J Clin Oncol. 2006;24:274–87.CrossRefPubMed Bredel M, Bredel C, Juric D, Duran GE, Yu RX, Harsh GR, et al. Tumor necrosis factor-alpha-induced protein 3 as a putative regulator of nuclear factor-kappaB-mediated resistance to O6-alkylating agents in human glioblastomas. J Clin Oncol. 2006;24:274–87.CrossRefPubMed
59.
go back to reference Hu YJ, Zhou Q, Li ZY, Feng D, Sun L, Shen YL, et al. Renal proteomic analysis of RGC-32 knockout mice reveals the potential mechanism of RGC-32 in regulating cell cycle. Am J Transl Res. 2018;10:847–56.PubMedPubMedCentral Hu YJ, Zhou Q, Li ZY, Feng D, Sun L, Shen YL, et al. Renal proteomic analysis of RGC-32 knockout mice reveals the potential mechanism of RGC-32 in regulating cell cycle. Am J Transl Res. 2018;10:847–56.PubMedPubMedCentral
60.
go back to reference Chandran UR, Ma C, Dhir R, Bisceglia M, Lyons-Weiler M, Liang W, et al. Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process. BMC Cancer. 2007;7:64.CrossRefPubMedPubMedCentral Chandran UR, Ma C, Dhir R, Bisceglia M, Lyons-Weiler M, Liang W, et al. Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process. BMC Cancer. 2007;7:64.CrossRefPubMedPubMedCentral
61.
go back to reference Zhu L, Qin H, Li PY, Xu SN, Pang HF, Zhao HZ, et al. Response gene to complement-32 enhances metastatic phenotype by mediating transforming growth factor beta-induced epithelial-mesenchymal transition in human pancreatic cancer cell line BxPC-3. J Exp Clin Cancer Res. 2012;31:29.CrossRefPubMedPubMedCentral Zhu L, Qin H, Li PY, Xu SN, Pang HF, Zhao HZ, et al. Response gene to complement-32 enhances metastatic phenotype by mediating transforming growth factor beta-induced epithelial-mesenchymal transition in human pancreatic cancer cell line BxPC-3. J Exp Clin Cancer Res. 2012;31:29.CrossRefPubMedPubMedCentral
62.
go back to reference Xu R, Shang C, Zhao J, Han Y, Liu J, Chen K, et al. Knockdown of response gene to complement 32 (RGC32) induces apoptosis and inhibits cell growth, migration, and invasion in human lung cancer cells. Mol Cell Biochem. 2014;394:109–18.CrossRefPubMed Xu R, Shang C, Zhao J, Han Y, Liu J, Chen K, et al. Knockdown of response gene to complement 32 (RGC32) induces apoptosis and inhibits cell growth, migration, and invasion in human lung cancer cells. Mol Cell Biochem. 2014;394:109–18.CrossRefPubMed
63.
go back to reference Brocard M, Khasnis S, Wood CD, Shannon-Lowe C, West MJ. Pumilio directs deadenylation-associated translational repression of the cyclin-dependent kinase 1 activator RGC-32. Nucleic Acids Res. 2018;46:3707–25.CrossRefPubMedPubMedCentral Brocard M, Khasnis S, Wood CD, Shannon-Lowe C, West MJ. Pumilio directs deadenylation-associated translational repression of the cyclin-dependent kinase 1 activator RGC-32. Nucleic Acids Res. 2018;46:3707–25.CrossRefPubMedPubMedCentral
64.
go back to reference Lu Y, Hu XB. C5a stimulates the proliferation of breast cancer cells via Akt-dependent RGC-32 gene activation. Oncol Rep. 2014;32:2817–23.CrossRefPubMed Lu Y, Hu XB. C5a stimulates the proliferation of breast cancer cells via Akt-dependent RGC-32 gene activation. Oncol Rep. 2014;32:2817–23.CrossRefPubMed
65.
go back to reference Kovacevic Z, Fu D, Richardson DR. The iron-regulated metastasis suppressor, Ndrg-1: identification of novel molecular targets. Biochim Biophys Acta. 2008;1783:1981–92.CrossRefPubMed Kovacevic Z, Fu D, Richardson DR. The iron-regulated metastasis suppressor, Ndrg-1: identification of novel molecular targets. Biochim Biophys Acta. 2008;1783:1981–92.CrossRefPubMed
66.
go back to reference Mercier PL, Bachvarova M, Plante M, Gregoire J, Renaud MC, Ghani K, et al. Characterization of DOK1, a candidate tumor suppressor gene, in epithelial ovarian cancer. Mol Oncol. 2011;5:438–53.CrossRefPubMedPubMedCentral Mercier PL, Bachvarova M, Plante M, Gregoire J, Renaud MC, Ghani K, et al. Characterization of DOK1, a candidate tumor suppressor gene, in epithelial ovarian cancer. Mol Oncol. 2011;5:438–53.CrossRefPubMedPubMedCentral
67.
go back to reference Li L, Li W. Epithelial-mesenchymal transition in human cancer: comprehensive reprogramming of metabolism, epigenetics, and differentiation. Pharmacol Ther. 2015;150:33–46.CrossRefPubMed Li L, Li W. Epithelial-mesenchymal transition in human cancer: comprehensive reprogramming of metabolism, epigenetics, and differentiation. Pharmacol Ther. 2015;150:33–46.CrossRefPubMed
68.
go back to reference Tian J, Xu C, Yang MH, Li ZG. Overexpression of response gene to complement-32 promotes cytoskeleton reorganization in SW480 cell line. Nan Fang Yi Ke Da Xue Xue Bao. 2011;31:1179–82.PubMed Tian J, Xu C, Yang MH, Li ZG. Overexpression of response gene to complement-32 promotes cytoskeleton reorganization in SW480 cell line. Nan Fang Yi Ke Da Xue Xue Bao. 2011;31:1179–82.PubMed
69.
go back to reference Sun Q, Yao X, Ning Y, Zhang W, Zhou G, Dong Y. Overexpression of response gene to complement 32 (RGC32) promotes cell invasion and induces epithelial-mesenchymal transition in lung cancer cells via the NF-kappaB signaling pathway. Tumour Biol. 2013;34:2995–3002.CrossRefPubMed Sun Q, Yao X, Ning Y, Zhang W, Zhou G, Dong Y. Overexpression of response gene to complement 32 (RGC32) promotes cell invasion and induces epithelial-mesenchymal transition in lung cancer cells via the NF-kappaB signaling pathway. Tumour Biol. 2013;34:2995–3002.CrossRefPubMed
70.
go back to reference Ito Y, Bae SC, Chuang LS. The RUNX family: developmental regulators in cancer. Nat Rev Cancer. 2015;15:81–95.CrossRefPubMed Ito Y, Bae SC, Chuang LS. The RUNX family: developmental regulators in cancer. Nat Rev Cancer. 2015;15:81–95.CrossRefPubMed
72.
go back to reference Tanaka T, Takada H, Nomura A, Ohga S, Shibata R, Hara T. Distinct gene expression patterns of peripheral blood cells in hyper-IgE syndrome. Clin Exp Immunol. 2005;140:524–31.CrossRefPubMedPubMedCentral Tanaka T, Takada H, Nomura A, Ohga S, Shibata R, Hara T. Distinct gene expression patterns of peripheral blood cells in hyper-IgE syndrome. Clin Exp Immunol. 2005;140:524–31.CrossRefPubMedPubMedCentral
73.
go back to reference Kruszewski AM, Rao G, Tatomir A, Hewes D, Tegla CA, Cudrici CD, et al. RGC-32 as a potential biomarker of relapse and response to treatment with glatiramer acetate in multiple sclerosis. Exp Mol Pathol. 2015;99:498–505.CrossRefPubMedPubMedCentral Kruszewski AM, Rao G, Tatomir A, Hewes D, Tegla CA, Cudrici CD, et al. RGC-32 as a potential biomarker of relapse and response to treatment with glatiramer acetate in multiple sclerosis. Exp Mol Pathol. 2015;99:498–505.CrossRefPubMedPubMedCentral
74.
go back to reference Lopatinskaya L, van Boxel-Dezaire AH, Barkhof F, Polman CH, Lucas CJ, Nagelkerken L. The development of clinical activity in relapsing-remitting MS is associated with a decrease of FasL mRNA and an increase of Fas mRNA in peripheral blood. J Neuroimmunol. 2003;138:123–31.CrossRefPubMed Lopatinskaya L, van Boxel-Dezaire AH, Barkhof F, Polman CH, Lucas CJ, Nagelkerken L. The development of clinical activity in relapsing-remitting MS is associated with a decrease of FasL mRNA and an increase of Fas mRNA in peripheral blood. J Neuroimmunol. 2003;138:123–31.CrossRefPubMed
75.
go back to reference Tegla CA, Azimzadeh P, Andrian-Albescu M, Martin A, Cudrici CD, Trippe R 3rd, et al. SIRT1 is decreased during relapses in patients with multiple sclerosis. Exp Mol Pathol. 2014;96:139–48.CrossRefPubMed Tegla CA, Azimzadeh P, Andrian-Albescu M, Martin A, Cudrici CD, Trippe R 3rd, et al. SIRT1 is decreased during relapses in patients with multiple sclerosis. Exp Mol Pathol. 2014;96:139–48.CrossRefPubMed
76.
go back to reference Anderson MA, Ao Y, Sofroniew MV. Heterogeneity of reactive astrocytes. Neurosci Lett. 2014;565:23–9.CrossRefPubMed Anderson MA, Ao Y, Sofroniew MV. Heterogeneity of reactive astrocytes. Neurosci Lett. 2014;565:23–9.CrossRefPubMed
77.
go back to reference Pekny M, Pekna M. Reactive gliosis in the pathogenesis of CNS diseases. Biochim Biophys Acta. 2016;1862:483–91.CrossRefPubMed Pekny M, Pekna M. Reactive gliosis in the pathogenesis of CNS diseases. Biochim Biophys Acta. 2016;1862:483–91.CrossRefPubMed
79.
go back to reference Tatomir A, Tegla CA, Martin A, Boodhoo D, Nguyen V, Sugarman AJ, et al. RGC-32 regulates reactive astrocytosis and extracellular matrix deposition in experimental autoimmune encephalomyelitis. Immunol Res. 2018;66:445–61.CrossRefPubMedPubMedCentral Tatomir A, Tegla CA, Martin A, Boodhoo D, Nguyen V, Sugarman AJ, et al. RGC-32 regulates reactive astrocytosis and extracellular matrix deposition in experimental autoimmune encephalomyelitis. Immunol Res. 2018;66:445–61.CrossRefPubMedPubMedCentral
80.
go back to reference Rus V, Tatomir A, Nguyen V, Rus H. Response gene to complement-32 expression is upregulated in lupus T cells and promotes IL-17A expression [abstract]. J Immunol. 2018;200(Suppl 1):45.11. Rus V, Tatomir A, Nguyen V, Rus H. Response gene to complement-32 expression is upregulated in lupus T cells and promotes IL-17A expression [abstract]. J Immunol. 2018;200(Suppl 1):45.11.
81.
go back to reference Talpos-Caia A, Nguyen V, Tatomir A, Sung SS, Papadimitriou J, Atamas S, et al. Response gene to complement-32 promotes kidney damage in immune complex –mediated glomerulonephritis [abstract]. Arthritis Rheumatol. 2018;70(Suppl 10). Talpos-Caia A, Nguyen V, Tatomir A, Sung SS, Papadimitriou J, Atamas S, et al. Response gene to complement-32 promotes kidney damage in immune complex –mediated glomerulonephritis [abstract]. Arthritis Rheumatol. 2018;70(Suppl 10).
82.
go back to reference Sun C, Chen SY. RGC32 promotes bleomycin-induced systemic sclerosis in a murine disease model by modulating classically activated macrophage function. J Immunol. 2018;200:2777–85.CrossRefPubMedPubMedCentral Sun C, Chen SY. RGC32 promotes bleomycin-induced systemic sclerosis in a murine disease model by modulating classically activated macrophage function. J Immunol. 2018;200:2777–85.CrossRefPubMedPubMedCentral
83.
go back to reference Atamas S, Rus V, Lockatell V, Rus H, Luzina I. Antifibrotic regulation by response gene to complement 32 protein [abstract]. Arthritis Rheumatol. 2018;70(suppl 10). Atamas S, Rus V, Lockatell V, Rus H, Luzina I. Antifibrotic regulation by response gene to complement 32 protein [abstract]. Arthritis Rheumatol. 2018;70(suppl 10).
84.
go back to reference Chen YJ, Chang WA, Wu LY, Hsu YL, Chen CH, Kuo PL. Systematic analysis of differential expression profile in rheumatoid arthritis chondrocytes using next-generation sequencing and bioinformatics approaches. Int J Med Sci. 2018;15:1129–42.CrossRefPubMedPubMedCentral Chen YJ, Chang WA, Wu LY, Hsu YL, Chen CH, Kuo PL. Systematic analysis of differential expression profile in rheumatoid arthritis chondrocytes using next-generation sequencing and bioinformatics approaches. Int J Med Sci. 2018;15:1129–42.CrossRefPubMedPubMedCentral
85.
go back to reference Kim HJ, Jang J, Lee EH, Jung S, Roh JY, Jung Y. Decreased expression of response gene to complement 32 in psoriasis and its association with reduced M2 macrophage polarization. J Dermatol. 2019;46:166–8.CrossRefPubMed Kim HJ, Jang J, Lee EH, Jung S, Roh JY, Jung Y. Decreased expression of response gene to complement 32 in psoriasis and its association with reduced M2 macrophage polarization. J Dermatol. 2019;46:166–8.CrossRefPubMed
Metadata
Title
RGC-32 and diseases: the first 20 years
Authors
Sonia I. Vlaicu
Alexandru Tatomir
Freidrich Anselmo
Dallas Boodhoo
Romeo Chira
Violeta Rus
Horea Rus
Publication date
01-06-2019
Publisher
Springer US
Published in
Immunologic Research / Issue 2-3/2019
Print ISSN: 0257-277X
Electronic ISSN: 1559-0755
DOI
https://doi.org/10.1007/s12026-019-09080-0

Other articles of this Issue 2-3/2019

Immunologic Research 2-3/2019 Go to the issue