Skip to main content
Top
Published in: Chinese Medicine 1/2024

Open Access 01-12-2024 | Arterial Occlusive Disease | Research

Combination of mangiferin and T0901317 targeting autophagy promotes cholesterol efflux from macrophage foam cell in atherosclerosis

Authors: Qian Chen, Sijian Wang, Ruixia Bao, Dan Wang, Yuzheng Wu, Yi Zhang, Mengyang Liu, Tao Wang

Published in: Chinese Medicine | Issue 1/2024

Login to get access

Abstract

Background

The synthetic liver X receptor ligand (LXR) T0901317 (T0) has been reported to attenuate atherosclerosis (AS) without hyperglyceridemia due to innovative drug combination or nano-sized drug delivery. Given the key roles of mangiferin (MGF) in lipid metabolism and atherogenesis, it is critical to investigate progression of atherosclerotic lesion after combined treatment of MGF and T0.

Methods

Atherosclerotic plaque formation and hepatic lipid accumulation were compared in Apoe−/− mice among T0 and/or MGF treatment. The in vitro functions of MGF and T0 were analyzed by Oil-red O staining, cholesterol efflux assay, transmission electron microscopy and western blot analyses with or without acetylated low density lipoprotein.

Results

The combination therapy are effective regulators for atherosclerotic plaque formation in Apoe−/− mice, due to upregulation of ABCA1 and ABCG1 induced by LXR activation. Subsequently, we identified autophagy promoted by MGF and T0 treatment establishes a positive feedback loop that increases cholesterol efflux, resulted from LXRα activation. Under atherogenic conditions, the autophagy inhibitor CQ abolished the enhancement effect on cholesterol outflow of MGF and T0. Mechanically, MGF and T0 promotes LXRα and mTOR/AMPK signaling cascade in macrophage, and promotes AMPK signaling cascade in hepatocyte, leading to lipid metabolic homeostasis.

Conclusions

Altogether, our findings reveal that MGF and T0 engages in AS therapy without side effects by activating AMPK-dependent autophagy to promote macrophage cholesterol efflux, and MGF might serve as a natural compound to assist T0 in AS via targeting autophagy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hwang IC, Kim CH, Kim JY, Choi HM, Yoon YE, Cho GY. Rate of change in 10-year atherosclerotic cardiovascular disease risk and its implications for primary prevention. Hypertension. 2023;80(8):1697–706.CrossRefPubMed Hwang IC, Kim CH, Kim JY, Choi HM, Yoon YE, Cho GY. Rate of change in 10-year atherosclerotic cardiovascular disease risk and its implications for primary prevention. Hypertension. 2023;80(8):1697–706.CrossRefPubMed
3.
go back to reference Linton MF, Yancey PG, Tao H, Davies SS. HDL function and atherosclerosis: reactive dicarbonyls as promising targets of therapy. Circ Res. 2023;132(11):1521–45.CrossRefPubMed Linton MF, Yancey PG, Tao H, Davies SS. HDL function and atherosclerosis: reactive dicarbonyls as promising targets of therapy. Circ Res. 2023;132(11):1521–45.CrossRefPubMed
4.
go back to reference Tucker B, Ephraums J, King TW, Abburi K, Rye KA, Cochran BJ. Impact of impaired cholesterol homeostasis on neutrophils in atherosclerosis. Arterioscler Thromb Vasc Biol. 2023;43(5):618–27.CrossRefPubMed Tucker B, Ephraums J, King TW, Abburi K, Rye KA, Cochran BJ. Impact of impaired cholesterol homeostasis on neutrophils in atherosclerosis. Arterioscler Thromb Vasc Biol. 2023;43(5):618–27.CrossRefPubMed
5.
go back to reference Pownall HJ, Rosales C, Gillard BK, Gotto AM Jr. High-density lipoproteins, reverse cholesterol transport and atherogenesis. Nat Rev Cardiol. 2021;18(10):712–23.CrossRefPubMed Pownall HJ, Rosales C, Gillard BK, Gotto AM Jr. High-density lipoproteins, reverse cholesterol transport and atherogenesis. Nat Rev Cardiol. 2021;18(10):712–23.CrossRefPubMed
6.
go back to reference Plummer AM, Culbertson AT, Liao M. The ABCs of sterol transport. Annu Rev Physiol. 2021;83:153–81.CrossRefPubMed Plummer AM, Culbertson AT, Liao M. The ABCs of sterol transport. Annu Rev Physiol. 2021;83:153–81.CrossRefPubMed
7.
go back to reference Wang S, Yuan R, Liu M, Zhang Y, Jia B, Ruan J, Shen J, Zhang Y, Liu M, Wang T. Targeting autophagy in atherosclerosis: advances and therapeutic potential of natural bioactive compounds from herbal medicines and natural products. Biomed Pharmacother. 2022;155:113712.CrossRefPubMed Wang S, Yuan R, Liu M, Zhang Y, Jia B, Ruan J, Shen J, Zhang Y, Liu M, Wang T. Targeting autophagy in atherosclerosis: advances and therapeutic potential of natural bioactive compounds from herbal medicines and natural products. Biomed Pharmacother. 2022;155:113712.CrossRefPubMed
8.
go back to reference Ouimet M, Franklin V, Mak E, Liao X, Tabas I, Marcel YL. Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metab. 2011;13(6):655–67.CrossRefPubMedPubMedCentral Ouimet M, Franklin V, Mak E, Liao X, Tabas I, Marcel YL. Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metab. 2011;13(6):655–67.CrossRefPubMedPubMedCentral
9.
go back to reference Ramirez CM, Rotllan N, Vlassov AV, Davalos A, Li M, Goedeke L, Aranda JF, Cirera-Salinas D, Araldi E, Salerno A, et al. Control of cholesterol metabolism and plasma high-density lipoprotein levels by microRNA-144. Circ Res. 2013;112(12):1592–601.CrossRefPubMedPubMedCentral Ramirez CM, Rotllan N, Vlassov AV, Davalos A, Li M, Goedeke L, Aranda JF, Cirera-Salinas D, Araldi E, Salerno A, et al. Control of cholesterol metabolism and plasma high-density lipoprotein levels by microRNA-144. Circ Res. 2013;112(12):1592–601.CrossRefPubMedPubMedCentral
10.
go back to reference Wang G, Chen JJ, Deng WY, Ren K, Yin SH, Yu XH. CTRP12 ameliorates atherosclerosis by promoting cholesterol efflux and inhibiting inflammatory response via the miR-155-5p/LXRalpha pathway. Cell Death Dis. 2021;12(3):254.CrossRefPubMedPubMedCentral Wang G, Chen JJ, Deng WY, Ren K, Yin SH, Yu XH. CTRP12 ameliorates atherosclerosis by promoting cholesterol efflux and inhibiting inflammatory response via the miR-155-5p/LXRalpha pathway. Cell Death Dis. 2021;12(3):254.CrossRefPubMedPubMedCentral
12.
go back to reference Wang Y, Karmakar T, Ghosh N, Basak S, Gopal SN. Targeting mangiferin loaded N-succinyl chitosan-alginate grafted nanoparticles against atherosclerosis—a case study against diabetes mediated hyperlipidemia in rat. Food Chem. 2022;370:131376.CrossRefPubMed Wang Y, Karmakar T, Ghosh N, Basak S, Gopal SN. Targeting mangiferin loaded N-succinyl chitosan-alginate grafted nanoparticles against atherosclerosis—a case study against diabetes mediated hyperlipidemia in rat. Food Chem. 2022;370:131376.CrossRefPubMed
13.
go back to reference Wang M, Liang Y, Chen K, Wang M, Long X, Liu H, Sun Y, He B. The management of diabetes mellitus by mangiferin: advances and prospects. Nanoscale. 2022;14(6):2119–35.CrossRefPubMed Wang M, Liang Y, Chen K, Wang M, Long X, Liu H, Sun Y, He B. The management of diabetes mellitus by mangiferin: advances and prospects. Nanoscale. 2022;14(6):2119–35.CrossRefPubMed
14.
go back to reference Li J, Liu M, Yu H, Wang W, Han L, Chen Q, Ruan J, Wen S, Zhang Y, Wang T. Mangiferin improves hepatic lipid metabolism mainly through its metabolite-norathyriol by modulating SIRT-1/AMPK/SREBP-1c signaling. Front Pharmacol. 2018;9:201.CrossRefPubMedPubMedCentral Li J, Liu M, Yu H, Wang W, Han L, Chen Q, Ruan J, Wen S, Zhang Y, Wang T. Mangiferin improves hepatic lipid metabolism mainly through its metabolite-norathyriol by modulating SIRT-1/AMPK/SREBP-1c signaling. Front Pharmacol. 2018;9:201.CrossRefPubMedPubMedCentral
15.
go back to reference Na L, Zhang Q, Jiang S, Du S, Zhang W, Li Y, Sun C, Niu Y. Mangiferin supplementation improves serum lipid profiles in overweight patients with hyperlipidemia: a double-blind randomized controlled trial. Sci Rep. 2015;5:10344.CrossRefPubMedPubMedCentral Na L, Zhang Q, Jiang S, Du S, Zhang W, Li Y, Sun C, Niu Y. Mangiferin supplementation improves serum lipid profiles in overweight patients with hyperlipidemia: a double-blind randomized controlled trial. Sci Rep. 2015;5:10344.CrossRefPubMedPubMedCentral
16.
go back to reference Ren K, Li H, Zhou HF, Liang Y, Tong M, Chen L, Zheng XL, Zhao GJ. Mangiferin promotes macrophage cholesterol efflux and protects against atherosclerosis by augmenting the expression of ABCA1 and ABCG1. Aging. 2019;11(23):10992–1009.CrossRefPubMedPubMedCentral Ren K, Li H, Zhou HF, Liang Y, Tong M, Chen L, Zheng XL, Zhao GJ. Mangiferin promotes macrophage cholesterol efflux and protects against atherosclerosis by augmenting the expression of ABCA1 and ABCG1. Aging. 2019;11(23):10992–1009.CrossRefPubMedPubMedCentral
17.
go back to reference Davies JQ, Gordon S. Isolation and culture of murine macrophages. Methods Mol Biol. 2005;290:91–103.PubMed Davies JQ, Gordon S. Isolation and culture of murine macrophages. Methods Mol Biol. 2005;290:91–103.PubMed
18.
go back to reference Ma C, Zhang W, Yang X, Liu Y, Liu L, Feng K, Zhang X, Yang S, Sun L, Yu M, et al. Functional interplay between liver X receptor and AMP-activated protein kinase alpha inhibits atherosclerosis in apolipoprotein E-deficient mice - a new anti-atherogenic strategy. Br J Pharmacol. 2018;175(9):1486–503.CrossRefPubMedPubMedCentral Ma C, Zhang W, Yang X, Liu Y, Liu L, Feng K, Zhang X, Yang S, Sun L, Yu M, et al. Functional interplay between liver X receptor and AMP-activated protein kinase alpha inhibits atherosclerosis in apolipoprotein E-deficient mice - a new anti-atherogenic strategy. Br J Pharmacol. 2018;175(9):1486–503.CrossRefPubMedPubMedCentral
19.
go back to reference Wang SJ, Chen Q, Liu MY, Yu HY, Xu JQ, Wu JQ, Zhang Y, Wang T. Regulation effects of rosemary (Rosmarinus officinalis Linn.) on hepatic lipid metabolism in OA induced NAFLD rats. Food Funct. 2019;10(11):7356–65.CrossRefPubMed Wang SJ, Chen Q, Liu MY, Yu HY, Xu JQ, Wu JQ, Zhang Y, Wang T. Regulation effects of rosemary (Rosmarinus officinalis Linn.) on hepatic lipid metabolism in OA induced NAFLD rats. Food Funct. 2019;10(11):7356–65.CrossRefPubMed
20.
go back to reference Bao R, Chen Q, Li Z, Wang D, Wu Y, Liu M, Zhang Y, Wang T. Eurycomanol alleviates hyperuricemia by promoting uric acid excretion and reducing purine synthesis. Phytomedicine. 2022;96:153850.CrossRefPubMed Bao R, Chen Q, Li Z, Wang D, Wu Y, Liu M, Zhang Y, Wang T. Eurycomanol alleviates hyperuricemia by promoting uric acid excretion and reducing purine synthesis. Phytomedicine. 2022;96:153850.CrossRefPubMed
21.
go back to reference Douna H, Amersfoort J, Schaftenaar FH, Kroner MJ, Kiss MG, Slutter B, Depuydt MAC, Bernabe Kleijn MNA, Wezel A, Smeets HJ, et al. B- and T-lymphocyte attenuator stimulation protects against atherosclerosis by regulating follicular B cells. Cardiovasc Res. 2020;116(2):295–305.PubMed Douna H, Amersfoort J, Schaftenaar FH, Kroner MJ, Kiss MG, Slutter B, Depuydt MAC, Bernabe Kleijn MNA, Wezel A, Smeets HJ, et al. B- and T-lymphocyte attenuator stimulation protects against atherosclerosis by regulating follicular B cells. Cardiovasc Res. 2020;116(2):295–305.PubMed
22.
go back to reference Wen J, Ling R, Chen R, Zhang S, Dai Y, Zhang T, Guo F, Wang Q, Wang G, Jiang Y. Diversity of arterial cell and phenotypic heterogeneity induced by high-fat and high-cholesterol diet. Front Cell Dev Biol. 2023;11:971091.CrossRefPubMedPubMedCentral Wen J, Ling R, Chen R, Zhang S, Dai Y, Zhang T, Guo F, Wang Q, Wang G, Jiang Y. Diversity of arterial cell and phenotypic heterogeneity induced by high-fat and high-cholesterol diet. Front Cell Dev Biol. 2023;11:971091.CrossRefPubMedPubMedCentral
23.
go back to reference Lin HP, Singla B, Ahn W, Ghoshal P, Blahove M, Cherian-Shaw M, Chen A, Haller A, Hui DY, Dong K, et al. Receptor-independent fluid-phase macropinocytosis promotes arterial foam cell formation and atherosclerosis. Sci Transl Med. 2022;14(663):2376.CrossRef Lin HP, Singla B, Ahn W, Ghoshal P, Blahove M, Cherian-Shaw M, Chen A, Haller A, Hui DY, Dong K, et al. Receptor-independent fluid-phase macropinocytosis promotes arterial foam cell formation and atherosclerosis. Sci Transl Med. 2022;14(663):2376.CrossRef
25.
go back to reference Zhang X, Evans TD, Chen S, Sergin I, Stitham J, Jeong SJ, Rodriguez-Velez A, Yeh YS, Park A, Jung IH, et al. Loss of macrophage mTORC2 drives atherosclerosis via FoxO1 and IL-1beta signaling. Circ Res. 2023;133(3):200–19.CrossRefPubMed Zhang X, Evans TD, Chen S, Sergin I, Stitham J, Jeong SJ, Rodriguez-Velez A, Yeh YS, Park A, Jung IH, et al. Loss of macrophage mTORC2 drives atherosclerosis via FoxO1 and IL-1beta signaling. Circ Res. 2023;133(3):200–19.CrossRefPubMed
26.
go back to reference Nahon JE, Groeneveldt C, Geerling JJ, van Eck M, Hoekstra M. Inhibition of protein arginine methyltransferase 3 activity selectively impairs liver X receptor-driven transcription of hepatic lipogenic genes in vivo. Br J Pharmacol. 2018;175(15):3175–83.CrossRefPubMedPubMedCentral Nahon JE, Groeneveldt C, Geerling JJ, van Eck M, Hoekstra M. Inhibition of protein arginine methyltransferase 3 activity selectively impairs liver X receptor-driven transcription of hepatic lipogenic genes in vivo. Br J Pharmacol. 2018;175(15):3175–83.CrossRefPubMedPubMedCentral
27.
go back to reference Minami Y, Hoshino A, Higuchi Y, Hamaguchi M, Kaneko Y, Kirita Y, Taminishi S, Nishiji T, Taruno A, Fukui M, et al. Liver lipophagy ameliorates nonalcoholic steatohepatitis through extracellular lipid secretion. Nat Commun. 2023;14(1):4084.CrossRefPubMedPubMedCentral Minami Y, Hoshino A, Higuchi Y, Hamaguchi M, Kaneko Y, Kirita Y, Taminishi S, Nishiji T, Taruno A, Fukui M, et al. Liver lipophagy ameliorates nonalcoholic steatohepatitis through extracellular lipid secretion. Nat Commun. 2023;14(1):4084.CrossRefPubMedPubMedCentral
28.
go back to reference Guo Y, Yuan W, Yu B, Kuai R, Hu W, Morin EE, Garcia-Barrio MT, Zhang J, Moon JJ, Schwendeman A, et al. Synthetic high-density lipoprotein-mediated targeted delivery of liver X receptors agonist promotes atherosclerosis regression. EBioMedicine. 2018;28:225–33.CrossRefPubMed Guo Y, Yuan W, Yu B, Kuai R, Hu W, Morin EE, Garcia-Barrio MT, Zhang J, Moon JJ, Schwendeman A, et al. Synthetic high-density lipoprotein-mediated targeted delivery of liver X receptors agonist promotes atherosclerosis regression. EBioMedicine. 2018;28:225–33.CrossRefPubMed
29.
go back to reference Ma C, Feng K, Yang X, Yang Z, Wang Z, Shang Y, Fan G, Liu L, Yang S, Li X, et al. Targeting macrophage liver X receptors by hydrogel-encapsulated T0901317 reduces atherosclerosis without effect on hepatic lipogenesis. Br J Pharmacol. 2021;178(7):1620–38.CrossRefPubMed Ma C, Feng K, Yang X, Yang Z, Wang Z, Shang Y, Fan G, Liu L, Yang S, Li X, et al. Targeting macrophage liver X receptors by hydrogel-encapsulated T0901317 reduces atherosclerosis without effect on hepatic lipogenesis. Br J Pharmacol. 2021;178(7):1620–38.CrossRefPubMed
30.
go back to reference Feng K, Ma C, Liu Y, Yang X, Yang Z, Chen Y, Xu T, Yang C, Zhang S, Li Q, et al. Encapsulation of LXR ligand by D-Nap-GFFY hydrogel enhances anti-tumorigenic actions of LXR and removes LXR-induced lipogenesis. Theranostics. 2021;11(6):2634–54.CrossRefPubMedPubMedCentral Feng K, Ma C, Liu Y, Yang X, Yang Z, Chen Y, Xu T, Yang C, Zhang S, Li Q, et al. Encapsulation of LXR ligand by D-Nap-GFFY hydrogel enhances anti-tumorigenic actions of LXR and removes LXR-induced lipogenesis. Theranostics. 2021;11(6):2634–54.CrossRefPubMedPubMedCentral
31.
go back to reference Yuan W, Yu B, Yu M, Kuai R, Morin EE, Wang H, Hu D, Zhang J, Moon JJ, Chen YE, et al. Synthetic high-density lipoproteins delivering liver X receptor agonist prevent atherogenesis by enhancing reverse cholesterol transport. J Control Release. 2021;329:361–71.CrossRefPubMed Yuan W, Yu B, Yu M, Kuai R, Morin EE, Wang H, Hu D, Zhang J, Moon JJ, Chen YE, et al. Synthetic high-density lipoproteins delivering liver X receptor agonist prevent atherogenesis by enhancing reverse cholesterol transport. J Control Release. 2021;329:361–71.CrossRefPubMed
32.
33.
go back to reference Goldstein JL, Ho YK, Basu SK, Brown MS. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci USA. 1979;76(1):333–7.CrossRefPubMedPubMedCentral Goldstein JL, Ho YK, Basu SK, Brown MS. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci USA. 1979;76(1):333–7.CrossRefPubMedPubMedCentral
34.
go back to reference Yasuda T, Grillot D, Billheimer JT, Briand F, Delerive P, Huet S, Rader DJ. Tissue-specific liver X receptor activation promotes macrophage reverse cholesterol transport in vivo. Arterioscler Thromb Vasc Biol. 2010;30(4):781–6.CrossRefPubMedPubMedCentral Yasuda T, Grillot D, Billheimer JT, Briand F, Delerive P, Huet S, Rader DJ. Tissue-specific liver X receptor activation promotes macrophage reverse cholesterol transport in vivo. Arterioscler Thromb Vasc Biol. 2010;30(4):781–6.CrossRefPubMedPubMedCentral
35.
go back to reference Li X, Yeh V, Molteni V. Liver X receptor modulators: a review of recently patented compounds (2007–2009). Expert Opin Ther Pat. 2010;20(4):535–62.CrossRefPubMed Li X, Yeh V, Molteni V. Liver X receptor modulators: a review of recently patented compounds (2007–2009). Expert Opin Ther Pat. 2010;20(4):535–62.CrossRefPubMed
36.
go back to reference Giannarelli C, Cimmino G, Connolly TM, Ibanez B, Ruiz JM, Alique M, Zafar MU, Fuster V, Feuerstein G, Badimon JJ. Synergistic effect of liver X receptor activation and simvastatin on plaque regression and stabilization: an magnetic resonance imaging study in a model of advanced atherosclerosis. Eur Heart J. 2012;33(2):264–73.CrossRefPubMed Giannarelli C, Cimmino G, Connolly TM, Ibanez B, Ruiz JM, Alique M, Zafar MU, Fuster V, Feuerstein G, Badimon JJ. Synergistic effect of liver X receptor activation and simvastatin on plaque regression and stabilization: an magnetic resonance imaging study in a model of advanced atherosclerosis. Eur Heart J. 2012;33(2):264–73.CrossRefPubMed
37.
go back to reference Chen Y, Duan Y, Yang X, Sun L, Liu M, Wang Q, Ma X, Zhang W, Li X, Hu W, et al. Inhibition of ERK1/2 and activation of LXR synergistically reduce atherosclerotic lesions in ApoE-deficient mice. Arterioscler Thromb Vasc Biol. 2015;35(4):948–59.CrossRefPubMed Chen Y, Duan Y, Yang X, Sun L, Liu M, Wang Q, Ma X, Zhang W, Li X, Hu W, et al. Inhibition of ERK1/2 and activation of LXR synergistically reduce atherosclerotic lesions in ApoE-deficient mice. Arterioscler Thromb Vasc Biol. 2015;35(4):948–59.CrossRefPubMed
38.
go back to reference Pardo-Andreu GL, Paim BA, Castilho RF, Velho JA, Delgado R, Vercesi AE, Oliveira HC. Mangifera indica L. extract (Vimang) and its main polyphenol mangiferin prevent mitochondrial oxidative stress in atherosclerosis-prone hypercholesterolemic mouse. Pharmacol Res. 2008;57(5):332–8.CrossRefPubMed Pardo-Andreu GL, Paim BA, Castilho RF, Velho JA, Delgado R, Vercesi AE, Oliveira HC. Mangifera indica L. extract (Vimang) and its main polyphenol mangiferin prevent mitochondrial oxidative stress in atherosclerosis-prone hypercholesterolemic mouse. Pharmacol Res. 2008;57(5):332–8.CrossRefPubMed
Metadata
Title
Combination of mangiferin and T0901317 targeting autophagy promotes cholesterol efflux from macrophage foam cell in atherosclerosis
Authors
Qian Chen
Sijian Wang
Ruixia Bao
Dan Wang
Yuzheng Wu
Yi Zhang
Mengyang Liu
Tao Wang
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Chinese Medicine / Issue 1/2024
Electronic ISSN: 1749-8546
DOI
https://doi.org/10.1186/s13020-023-00876-9

Other articles of this Issue 1/2024

Chinese Medicine 1/2024 Go to the issue