Skip to main content
Top
Published in: High Blood Pressure & Cardiovascular Prevention 5/2023

19-09-2023 | Arterial Diseases | Original article

Epicardial Fat Volume as a Good Predictor for Multivessel Coronary Artery Disease

Authors: Eman S. EL Shahawy, Asmaa A. Hassan, Mohamed S. EL Shahawy

Published in: High Blood Pressure & Cardiovascular Prevention | Issue 5/2023

Login to get access

Abstract

Introduction

Epicardial adipose tissue may have an important role in the pathogenesis of coronary artery disease (CAD).

Aim

We aimed to study the association between epicardial fat volume (EFV) and presence of obstructive as well as multivessel CAD.

Methods

A total of 87 adult subjects with suspected CAD who underwent both quantified by multidetector computerized tomography (MDCT) and Invasive Coronary Angiography (ICA) were enrolled in this observational study. EVF was measured by MDCT by calculating the sum of cross- sectional areas of fat multiplied by slice thickness. EFV measurement and its association with the presence of obstructive CAD (defined as coronary artery stenosis > 70%) was evaluated.

Results

Overall, 89.6% patients had obstructive CAD with higher EFV as compared to 10.3% patients with non-obstructive CAD (57 ± 20.14 cm3 vs. 44 ± 7.4 cm3; P < 0.001). Furthermore, EFV was significantly increased in group II as compared with group I (74 ± 24.3 ml vs. 53 ± 16.2 ml; P < 0.003). On the hand, the coronary calcium score (CAC) was insignificantly increased in group II as compared with group I (486.1 vs. 211.2; P = 0.10). Multivariate analysis revealed that, EFV might be an independent risk factor for not only the presence of obstructive CAD (odds ratio [OR], 1.062; 95% CI 1.018– 1.108; P < 0.005) but also in predicting multivessel disease affection.

Conclusions

Our results demonstrated that, EFV was significantly increased not only with obstructive CAD, independent of other traditional risk factors and CAC score, but also it can be considered a good predictor of multivessel disease occurrence.
Literature
2.
go back to reference Gabriela B, Miksztowicz V, Morales C, Barchuk M. Epicardial adipose tissue in cardiovascular disease. Adv Exp Med Biol. 2019;1127:131–43.CrossRef Gabriela B, Miksztowicz V, Morales C, Barchuk M. Epicardial adipose tissue in cardiovascular disease. Adv Exp Med Biol. 2019;1127:131–43.CrossRef
3.
go back to reference Monti CB, Codari M, de Cecco CN, Secchi F, Sardanelli F, Stillman AE. Novel imaging biomarkers: epicardial adipose tissue evaluation. Br J Radiol. 2020;93:20190770.CrossRefPubMed Monti CB, Codari M, de Cecco CN, Secchi F, Sardanelli F, Stillman AE. Novel imaging biomarkers: epicardial adipose tissue evaluation. Br J Radiol. 2020;93:20190770.CrossRefPubMed
4.
go back to reference Corradi D, Maestri R, Callegari S. The ventricular epicardial fat is related to the myocardial mass in normal, ischemic and hypertrophic hearts. Cardio vasc Pathol. 2004;13(6):313–6.CrossRef Corradi D, Maestri R, Callegari S. The ventricular epicardial fat is related to the myocardial mass in normal, ischemic and hypertrophic hearts. Cardio vasc Pathol. 2004;13(6):313–6.CrossRef
5.
go back to reference Moore KL, Persaud TVN. The developing human. Clinically oriented embryology. 7th ed. Philadelphia (PA): WB Saunders; 2003. Moore KL, Persaud TVN. The developing human. Clinically oriented embryology. 7th ed. Philadelphia (PA): WB Saunders; 2003.
6.
go back to reference Vishal V, Blythe H, Wood EG, Sandhar B, Sarker SJ, Balmforth D, et al. Obesity and diabetes are major risk factors for epicardial adipose tissue inflammation. JCI Insight. 2021;6:16. Vishal V, Blythe H, Wood EG, Sandhar B, Sarker SJ, Balmforth D, et al. Obesity and diabetes are major risk factors for epicardial adipose tissue inflammation. JCI Insight. 2021;6:16.
7.
go back to reference McLaughlin T, Schnittger I, Nagy A, Zanley E, Xu Y, Song Y, et al. Relationship between coronary atheroma, epicardial adipose tissue inflammation, and adipocyte differentiation across the human myocardial bridge. J Am Heart Assoc. 2021;10:e021003 [CrossRef].CrossRefPubMedPubMedCentral McLaughlin T, Schnittger I, Nagy A, Zanley E, Xu Y, Song Y, et al. Relationship between coronary atheroma, epicardial adipose tissue inflammation, and adipocyte differentiation across the human myocardial bridge. J Am Heart Assoc. 2021;10:e021003 [CrossRef].CrossRefPubMedPubMedCentral
8.
go back to reference Gruzdeva OV, Dyleva YA, Belik EV, Sinitsky MY, Stase AN, Kokov AN, et al. Relationship between epicardial and coronary adipose tissue and the expression of adiponectin, leptin, and interleukin 6 in patients with coronary artery disease. J Pers Med. 2022;12:129 [CrossRef].CrossRefPubMedPubMedCentral Gruzdeva OV, Dyleva YA, Belik EV, Sinitsky MY, Stase AN, Kokov AN, et al. Relationship between epicardial and coronary adipose tissue and the expression of adiponectin, leptin, and interleukin 6 in patients with coronary artery disease. J Pers Med. 2022;12:129 [CrossRef].CrossRefPubMedPubMedCentral
10.
go back to reference Sade LE, Eroglu S, Bozbaş H, Ozbiçer S, Hayran M, Haberal A, et al. Relation between epicardial fat thickness and coronary flow reserve in women with chest pain and angiographically normal coronary arteries. Atherosclerosis. 2009;204:580–5.CrossRefPubMed Sade LE, Eroglu S, Bozbaş H, Ozbiçer S, Hayran M, Haberal A, et al. Relation between epicardial fat thickness and coronary flow reserve in women with chest pain and angiographically normal coronary arteries. Atherosclerosis. 2009;204:580–5.CrossRefPubMed
11.
go back to reference Sacks HS, Fain JN, Cheema P, Bahouth SW, Garrett E, Wolf RY, et al. Inflammatory genes in epicardial fat contiguous with coronary atherosclerosis in the metabolic syndrome and type2 diabetes: changes associated with pioglitazone. Diabetes Care. 2011;34:730–3.CrossRefPubMedPubMedCentral Sacks HS, Fain JN, Cheema P, Bahouth SW, Garrett E, Wolf RY, et al. Inflammatory genes in epicardial fat contiguous with coronary atherosclerosis in the metabolic syndrome and type2 diabetes: changes associated with pioglitazone. Diabetes Care. 2011;34:730–3.CrossRefPubMedPubMedCentral
12.
go back to reference Ayton SL, Gulsin GS, McCann GP, Moss AJ. Epicardial adipose tissue in obesity-related cardiac dysfunction. Heart. 2022;108:339–44 [CrossRef] [PubMed].CrossRefPubMed Ayton SL, Gulsin GS, McCann GP, Moss AJ. Epicardial adipose tissue in obesity-related cardiac dysfunction. Heart. 2022;108:339–44 [CrossRef] [PubMed].CrossRefPubMed
13.
go back to reference Konwerski MG, Asecka A, Opolski G, Grabowski M, Mazurek T. Role of epicardial adipose tissue in cardiovascular diseases: a review. Biology. 2022;11:355 [CrossRef] [PubMed].CrossRefPubMedPubMedCentral Konwerski MG, Asecka A, Opolski G, Grabowski M, Mazurek T. Role of epicardial adipose tissue in cardiovascular diseases: a review. Biology. 2022;11:355 [CrossRef] [PubMed].CrossRefPubMedPubMedCentral
14.
go back to reference Fitzgibbons TP, Czech MP. Epicardial and perivascular adipose tissues and their influence on cardiovascular disease: basic mechanisms and clinical associations. J Am Heart Assoc. 2014;3:e000582.CrossRefPubMedPubMedCentral Fitzgibbons TP, Czech MP. Epicardial and perivascular adipose tissues and their influence on cardiovascular disease: basic mechanisms and clinical associations. J Am Heart Assoc. 2014;3:e000582.CrossRefPubMedPubMedCentral
15.
go back to reference Hirata Y, Tabata M, Kurobe H, Motoki T, Akaike M, Nishio C, et al. Coronary atherosclerosis is associated with macrophage polarization in epicardial adipose tissue. J Am Coll Cardiol. 2011;58:248–55.CrossRefPubMed Hirata Y, Tabata M, Kurobe H, Motoki T, Akaike M, Nishio C, et al. Coronary atherosclerosis is associated with macrophage polarization in epicardial adipose tissue. J Am Coll Cardiol. 2011;58:248–55.CrossRefPubMed
16.
go back to reference Paolo Raggi S, Zona R, Scaglioni C, Stentarelli G, Ligabue G, Besutti, et al. Epicardial adipose tissue and coronary artery calcium predict incident myocardial infarction and death in HIV-infected patients. J Cardiovasc Comput Tomogr. 2015;9(6):553–8.CrossRefPubMed Paolo Raggi S, Zona R, Scaglioni C, Stentarelli G, Ligabue G, Besutti, et al. Epicardial adipose tissue and coronary artery calcium predict incident myocardial infarction and death in HIV-infected patients. J Cardiovasc Comput Tomogr. 2015;9(6):553–8.CrossRefPubMed
17.
go back to reference You S, Sun JS, Park SY, Baek Y, Kang DK. Relationship between indexed epicardial fat volume and coronary plaque volume assessed by cardiac multidetector CT. Med. 2016;95(27):e4164.CrossRef You S, Sun JS, Park SY, Baek Y, Kang DK. Relationship between indexed epicardial fat volume and coronary plaque volume assessed by cardiac multidetector CT. Med. 2016;95(27):e4164.CrossRef
18.
go back to reference Iwasaki K, Urabe N, Kitagawa A, Nagao T. The association of epicardial fat volume with coronary characteristics and clinical outcome. Int J Cardiovasc Imaging. 2018;34(2):301–9.CrossRefPubMed Iwasaki K, Urabe N, Kitagawa A, Nagao T. The association of epicardial fat volume with coronary characteristics and clinical outcome. Int J Cardiovasc Imaging. 2018;34(2):301–9.CrossRefPubMed
20.
go back to reference Guglielmo M, Lin A, Dey D, Baggiano A, Fusini L, Muscogiuri G, Pontone G. Epicardial fat and coronary artery disease: role of cardiac imaging. Atherosclerosis. 2021;321:30–8 [CrossRef].CrossRefPubMed Guglielmo M, Lin A, Dey D, Baggiano A, Fusini L, Muscogiuri G, Pontone G. Epicardial fat and coronary artery disease: role of cardiac imaging. Atherosclerosis. 2021;321:30–8 [CrossRef].CrossRefPubMed
27.
go back to reference van Lennep HWOR, Westerveld HT, Zwinderman AH, van Lennep JER, Bruins Slot H, Erkelens DW, et al. Differential effect of female gender on coronary artery disease and peripheral artery disease. Neth Heart J. 2002;10(12):500–5.PubMedPubMedCentral van Lennep HWOR, Westerveld HT, Zwinderman AH, van Lennep JER, Bruins Slot H, Erkelens DW, et al. Differential effect of female gender on coronary artery disease and peripheral artery disease. Neth Heart J. 2002;10(12):500–5.PubMedPubMedCentral
28.
go back to reference Khurana R, Yadav A, Buxi TBS, Sawhney JPS, Rawat KS, Samarjit S, Ghuman. Correlation of epicardial fat quantification with severity of coronary artery disease: a study in indian population. Indian Heart J. 2018;70(Suppl 3):140-S145.CrossRef Khurana R, Yadav A, Buxi TBS, Sawhney JPS, Rawat KS, Samarjit S, Ghuman. Correlation of epicardial fat quantification with severity of coronary artery disease: a study in indian population. Indian Heart J. 2018;70(Suppl 3):140-S145.CrossRef
29.
go back to reference Sinha SK, Thakur R, Jha MJ, Goel A, Kumar V, Kumar A, et al. Epicardial adipose tissue thickness and its association with the presence and severity of coronary artery disease in clinical setting: a cross-sectional observational study. J Clin Med Res. 2016;8:410–9.CrossRefPubMedPubMedCentral Sinha SK, Thakur R, Jha MJ, Goel A, Kumar V, Kumar A, et al. Epicardial adipose tissue thickness and its association with the presence and severity of coronary artery disease in clinical setting: a cross-sectional observational study. J Clin Med Res. 2016;8:410–9.CrossRefPubMedPubMedCentral
32.
go back to reference Rajani R, Haim Shmilovich R, Nakazato R, Nakanishi Y, Otaki VY, Cheng, et al. Features assessed by coronary CT angiography. J Cardiovasc Comput Tomogr. 2013;7(2):125–32.CrossRefPubMedPubMedCentral Rajani R, Haim Shmilovich R, Nakazato R, Nakanishi Y, Otaki VY, Cheng, et al. Features assessed by coronary CT angiography. J Cardiovasc Comput Tomogr. 2013;7(2):125–32.CrossRefPubMedPubMedCentral
33.
go back to reference Aslanabadi N, Salehi R, Tarzamni M, Javadrashid A, et al. Epicardial and pericardial fat volume correlate with the severity of coronary artery stenosis. J Cardiovasc Thorac Res. 2014;6(4):235–9.CrossRefPubMedPubMedCentral Aslanabadi N, Salehi R, Tarzamni M, Javadrashid A, et al. Epicardial and pericardial fat volume correlate with the severity of coronary artery stenosis. J Cardiovasc Thorac Res. 2014;6(4):235–9.CrossRefPubMedPubMedCentral
34.
go back to reference Djaberi R, Schuijf JD, van Werkhoven JM. Relation of epicardial adipose tissue to coronary atherosclerosis. Am J Cardiol. 2008;102:1602–7.CrossRefPubMed Djaberi R, Schuijf JD, van Werkhoven JM. Relation of epicardial adipose tissue to coronary atherosclerosis. Am J Cardiol. 2008;102:1602–7.CrossRefPubMed
35.
go back to reference Tanami Y, Jinzaki M, Kishi S, Matheson M, Vavere AL, Rochitte CE, et al. Lack of association between epicardial fat volume and extent of coronary artery calcification, severity of coronary artery disease, or presence of myocardial perfusion abnormalities in a diverse, symptomatic patient population: results from the CORE320 multicenter study. Circ Cardiovasc Imaging. 2015;8:e002676.CrossRefPubMedPubMedCentral Tanami Y, Jinzaki M, Kishi S, Matheson M, Vavere AL, Rochitte CE, et al. Lack of association between epicardial fat volume and extent of coronary artery calcification, severity of coronary artery disease, or presence of myocardial perfusion abnormalities in a diverse, symptomatic patient population: results from the CORE320 multicenter study. Circ Cardiovasc Imaging. 2015;8:e002676.CrossRefPubMedPubMedCentral
37.
go back to reference Harada K, Amano T, Uetani T, et al. Cardiac 64-multislice computed tomography reveals increased epicardial fat volume in patients with acute coronary syndrome. Am J Cardiol. 2011;108:1119–23.CrossRefPubMed Harada K, Amano T, Uetani T, et al. Cardiac 64-multislice computed tomography reveals increased epicardial fat volume in patients with acute coronary syndrome. Am J Cardiol. 2011;108:1119–23.CrossRefPubMed
Metadata
Title
Epicardial Fat Volume as a Good Predictor for Multivessel Coronary Artery Disease
Authors
Eman S. EL Shahawy
Asmaa A. Hassan
Mohamed S. EL Shahawy
Publication date
19-09-2023
Publisher
Springer International Publishing
Published in
High Blood Pressure & Cardiovascular Prevention / Issue 5/2023
Print ISSN: 1120-9879
Electronic ISSN: 1179-1985
DOI
https://doi.org/10.1007/s40292-023-00590-5

Other articles of this Issue 5/2023

High Blood Pressure & Cardiovascular Prevention 5/2023 Go to the issue