Skip to main content
Top
Published in: Annals of Surgical Oncology 4/2014

01-12-2014 | Translational Research and Biomarkers

Arsenic Trioxide Inhibits CXCR4-Mediated Metastasis by Interfering miR-520h/PP2A/NF-κB Signaling in Cervical Cancer

Authors: Yi-Wen Chang, PhD, Min-Wei Chen, PhD, Ching-Feng Chiu, PhD, Chih-Chen Hong, PhD, Ching-Chia Cheng, MS, Michael Hsiao, PhD, Chi-An Chen, MD, Lin-Hung Wei, MD, PhD, Jen-Liang Su, PhD

Published in: Annals of Surgical Oncology | Special Issue 4/2014

Login to get access

Abstract

Background

Arsenic apparently affects numerous intracellular signal transduction pathways and causes many alterations leading to apoptosis and differentiation in malignant cells. We and others have demonstrated that arsenic inhibits the metastatic capacity of cancer cells. Here we present additional mechanistic studies to elucidate the potential of arsenic as a promising therapeutic inhibitor of metastasis.

Methods

The effects of arsenic trioxide (ATO) on human cervical cancer cell lines migration and invasion were observed by transwell assays. In experimental metastasis assays, cancer cells were injected into tail veins of severe combined immunodeficient mice for modeling metastasis. The mechanisms involved in ATO regulation of CXCR4 were analyzed by immunoblot, real-time polymerase chain reaction, and luciferase reporter assays. Immunohistochemistry was utilized to identify PP2A/C and CXCR4 protein expressions in human cervical cancer tissues.

Results

ATO inhibited CXCR4-mediated cervical cancer cell invasion in vitro and distant metastasis in vivo. We determined that ATO modulates the pivotal nuclear factor-kappa B (NF-κB)/CXCR4 signaling pathway that contributes to cancer metastasis. Substantiating our findings, we demonstrated that ATO activates PP2A/C activity by downregulating miR-520h, which results in IKK inactivation, IκB-dephosphorylation, NF-κB inactivation, and, subsequently, a reduction in CXCR4 expression. Furthermore, PP2A/C was reduced during cervical carcinogenesis, and the loss of PP2A/C expression was closely associated with the nodal status of cervical cancer patients.

Conclusions

Our results indicate a functional link between ATO-mediated PP2A/C regulation, CXCR4 expression, and tumor-suppressing ability. This information will be critical in realizing the potential for synergy between ATO and other anti-cancer agents, thus providing enhanced benefit in cancer therapy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Murphy PM, Baggiolini M, Charo IF, et al. International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev. 2000;52(1):145–176.PubMed Murphy PM, Baggiolini M, Charo IF, et al. International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol Rev. 2000;52(1):145–176.PubMed
3.
go back to reference Teicher BA, Fricker SP. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res. 2010;16(11):2927–2931.PubMedCrossRef Teicher BA, Fricker SP. CXCL12 (SDF-1)/CXCR4 pathway in cancer. Clin Cancer Res. 2010;16(11):2927–2931.PubMedCrossRef
4.
go back to reference Li YM, Pan Y, Wei Y, et al. Upregulation of CXCR4 is essential for HER2-mediated tumor metastasis. Cancer Cell. 2004;6(5):459–469.PubMedCrossRef Li YM, Pan Y, Wei Y, et al. Upregulation of CXCR4 is essential for HER2-mediated tumor metastasis. Cancer Cell. 2004;6(5):459–469.PubMedCrossRef
5.
go back to reference Muller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410(6824):50–56.PubMedCrossRef Muller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410(6824):50–56.PubMedCrossRef
6.
go back to reference Liang Z, Yoon Y, Votaw J, Goodman MM, Williams L, Shim H. Silencing of CXCR4 blocks breast cancer metastasis. Cancer Res. 2005;65(3):967–971.PubMedCentralPubMed Liang Z, Yoon Y, Votaw J, Goodman MM, Williams L, Shim H. Silencing of CXCR4 blocks breast cancer metastasis. Cancer Res. 2005;65(3):967–971.PubMedCentralPubMed
7.
go back to reference Scotton CJ, Wilson JL, Milliken D, Stamp G, Balkwill FR. Epithelial cancer cell migration: a role for chemokine receptors? Cancer Res. 2001;61(13):4961–4965.PubMed Scotton CJ, Wilson JL, Milliken D, Stamp G, Balkwill FR. Epithelial cancer cell migration: a role for chemokine receptors? Cancer Res. 2001;61(13):4961–4965.PubMed
8.
go back to reference Zhang JP, Lu WG, Ye F, Chen HZ, Zhou CY, Xie X. Study on CXCR4/SDF-1alpha axis in lymph node metastasis of cervical squamous cell carcinoma. Int J Gynecol Cancer. 2007;17(2):478–483.PubMedCrossRef Zhang JP, Lu WG, Ye F, Chen HZ, Zhou CY, Xie X. Study on CXCR4/SDF-1alpha axis in lymph node metastasis of cervical squamous cell carcinoma. Int J Gynecol Cancer. 2007;17(2):478–483.PubMedCrossRef
9.
go back to reference Peng SB, Peek V, Zhai Y, et al. Akt activation, but not extracellular signal-regulated kinase activation, is required for SDF-1alpha/CXCR4-mediated migration of epitheloid carcinoma cells. Mol Cancer Res. 2005;3(4):227–236.PubMed Peng SB, Peek V, Zhai Y, et al. Akt activation, but not extracellular signal-regulated kinase activation, is required for SDF-1alpha/CXCR4-mediated migration of epitheloid carcinoma cells. Mol Cancer Res. 2005;3(4):227–236.PubMed
10.
go back to reference Kodama J, Hasengaowa, Kusumoto T, et al. Association of CXCR4 and CCR7 chemokine receptor expression and lymph node metastasis in human cervical cancer. Ann Oncol. 2007;18(1):70–76.PubMedCrossRef Kodama J, Hasengaowa, Kusumoto T, et al. Association of CXCR4 and CCR7 chemokine receptor expression and lymph node metastasis in human cervical cancer. Ann Oncol. 2007;18(1):70–76.PubMedCrossRef
11.
go back to reference Bachelder RE, Wendt MA, Mercurio AM. Vascular endothelial growth factor promotes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR4. Cancer Res. 2002;62(24):7203–7206.PubMed Bachelder RE, Wendt MA, Mercurio AM. Vascular endothelial growth factor promotes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR4. Cancer Res. 2002;62(24):7203–7206.PubMed
12.
go back to reference Pouyssegur J, Dayan F, Mazure NM. Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature. 2006;441(7092):437–443.PubMedCrossRef Pouyssegur J, Dayan F, Mazure NM. Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature. 2006;441(7092):437–443.PubMedCrossRef
13.
go back to reference Staller P, Sulitkova J, Lisztwan J, Moch H, Oakeley EJ, Krek W. Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature. 2003;425(6955):307–311.PubMedCrossRef Staller P, Sulitkova J, Lisztwan J, Moch H, Oakeley EJ, Krek W. Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature. 2003;425(6955):307–311.PubMedCrossRef
15.
go back to reference Phillips RJ, Mestas J, Gharaee-Kermani M, et al. Epidermal growth factor and hypoxia-induced expression of CXC chemokine receptor 4 on non-small cell lung cancer cells is regulated by the phosphatidylinositol 3-kinase/PTEN/AKT/mammalian target of rapamycin signaling pathway and activation of hypoxia inducible factor-1alpha. J Biol Chem. 2005;280(23):22473–22481.PubMedCrossRef Phillips RJ, Mestas J, Gharaee-Kermani M, et al. Epidermal growth factor and hypoxia-induced expression of CXC chemokine receptor 4 on non-small cell lung cancer cells is regulated by the phosphatidylinositol 3-kinase/PTEN/AKT/mammalian target of rapamycin signaling pathway and activation of hypoxia inducible factor-1alpha. J Biol Chem. 2005;280(23):22473–22481.PubMedCrossRef
16.
go back to reference Fitzpatrick SF, Tambuwala MM, Bruning U, et al. An intact canonical NF-kappaB pathway is required for inflammatory gene expression in response to hypoxia. J Immunol. 2011;186(2):1091–1096.PubMedCrossRef Fitzpatrick SF, Tambuwala MM, Bruning U, et al. An intact canonical NF-kappaB pathway is required for inflammatory gene expression in response to hypoxia. J Immunol. 2011;186(2):1091–1096.PubMedCrossRef
17.
go back to reference Rius J, Guma M, Schachtrup C, et al. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature. 2008;453(7196):807–811.PubMedCentralPubMedCrossRef Rius J, Guma M, Schachtrup C, et al. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature. 2008;453(7196):807–811.PubMedCentralPubMedCrossRef
18.
go back to reference Huang S, Pettaway CA, Uehara H, Bucana CD, Fidler IJ. Blockade of NF-kappaB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene. 2001;20(31):4188–4197.PubMedCrossRef Huang S, Pettaway CA, Uehara H, Bucana CD, Fidler IJ. Blockade of NF-kappaB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene. 2001;20(31):4188–4197.PubMedCrossRef
19.
go back to reference Helbig G, Christopherson KW 2nd, Bhat-Nakshatri P, et al. NF-kappaB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J Biol Chem. 2003;278(24):21631–21638.PubMedCrossRef Helbig G, Christopherson KW 2nd, Bhat-Nakshatri P, et al. NF-kappaB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J Biol Chem. 2003;278(24):21631–21638.PubMedCrossRef
20.
go back to reference Kukreja P, Abdel-Mageed AB, Mondal D, Liu K, Agrawal KC. Up-regulation of CXCR4 expression in PC-3 cells by stromal-derived factor-1alpha (CXCL12) increases endothelial adhesion and transendothelial migration: role of MEK/ERK signaling pathway-dependent NF-kappaB activation. Cancer Res. 2005;65(21):9891–9898.PubMedCrossRef Kukreja P, Abdel-Mageed AB, Mondal D, Liu K, Agrawal KC. Up-regulation of CXCR4 expression in PC-3 cells by stromal-derived factor-1alpha (CXCL12) increases endothelial adhesion and transendothelial migration: role of MEK/ERK signaling pathway-dependent NF-kappaB activation. Cancer Res. 2005;65(21):9891–9898.PubMedCrossRef
21.
go back to reference Maroni P, Bendinelli P, Matteucci E, Desiderio MA. HGF induces CXCR4 and CXCL12-mediated tumor invasion through Ets1 and NF-kappaB. Carcinogenesis. 2007;28(2):267–279.PubMedCrossRef Maroni P, Bendinelli P, Matteucci E, Desiderio MA. HGF induces CXCR4 and CXCL12-mediated tumor invasion through Ets1 and NF-kappaB. Carcinogenesis. 2007;28(2):267–279.PubMedCrossRef
22.
go back to reference Wei LH, Lai KP, Chen CA, et al. Arsenic trioxide prevents radiation-enhanced tumor invasiveness and inhibits matrix metalloproteinase-9 through downregulation of nuclear factor kappaB. Oncogene. 2005;24(3):390–398.PubMedCrossRef Wei LH, Lai KP, Chen CA, et al. Arsenic trioxide prevents radiation-enhanced tumor invasiveness and inhibits matrix metalloproteinase-9 through downregulation of nuclear factor kappaB. Oncogene. 2005;24(3):390–398.PubMedCrossRef
23.
go back to reference Yu J, Qian H, Li Y, et al. Arsenic trioxide (As2O3) reduces the invasive and metastatic properties of cervical cancer cells in vitro and in vivo. Gynecol Oncol. 2007;106(2):400–406.PubMedCrossRef Yu J, Qian H, Li Y, et al. Arsenic trioxide (As2O3) reduces the invasive and metastatic properties of cervical cancer cells in vitro and in vivo. Gynecol Oncol. 2007;106(2):400–406.PubMedCrossRef
24.
go back to reference Zhang J, Wang B. Arsenic trioxide (As(2)O(3)) inhibits peritoneal invasion of ovarian carcinoma cells in vitro and in vivo. Gynecol Oncol. 2006;103(1):199–206.PubMedCrossRef Zhang J, Wang B. Arsenic trioxide (As(2)O(3)) inhibits peritoneal invasion of ovarian carcinoma cells in vitro and in vivo. Gynecol Oncol. 2006;103(1):199–206.PubMedCrossRef
25.
26.
27.
go back to reference Balabanian K, Lagane B, Infantino S, et al. The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J Biol Chem. 2005;280(42):35760–35766.PubMedCrossRef Balabanian K, Lagane B, Infantino S, et al. The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes. J Biol Chem. 2005;280(42):35760–35766.PubMedCrossRef
28.
go back to reference Sung B, Jhurani S, Ahn KS, et al. Zerumbone down-regulates chemokine receptor CXCR4 expression leading to inhibition of CXCL12-induced invasion of breast and pancreatic tumor cells. Cancer Res. 2008;68(21):8938–8944.PubMedCrossRef Sung B, Jhurani S, Ahn KS, et al. Zerumbone down-regulates chemokine receptor CXCR4 expression leading to inhibition of CXCL12-induced invasion of breast and pancreatic tumor cells. Cancer Res. 2008;68(21):8938–8944.PubMedCrossRef
29.
go back to reference Millward TA, Zolnierowicz S, Hemmings BA. Regulation of protein kinase cascades by protein phosphatase 2A. Trends Biochem Sci. 1999;24(5):186–191.PubMedCrossRef Millward TA, Zolnierowicz S, Hemmings BA. Regulation of protein kinase cascades by protein phosphatase 2A. Trends Biochem Sci. 1999;24(5):186–191.PubMedCrossRef
30.
go back to reference Yu YH, Chen HA, Chen PS, et al. MiR-520h-mediated FOXC2 regulation is critical for inhibition of lung cancer progression by resveratrol. Oncogene. 2013;32(4):431–443.PubMedCrossRef Yu YH, Chen HA, Chen PS, et al. MiR-520h-mediated FOXC2 regulation is critical for inhibition of lung cancer progression by resveratrol. Oncogene. 2013;32(4):431–443.PubMedCrossRef
31.
go back to reference Lin TH, Kuo HC, Chou FP, Lu FJ. Berberine enhances inhibition of glioma tumor cell migration and invasiveness mediated by arsenic trioxide. BMC Cancer. 2008;8:58.PubMedCentralPubMedCrossRef Lin TH, Kuo HC, Chou FP, Lu FJ. Berberine enhances inhibition of glioma tumor cell migration and invasiveness mediated by arsenic trioxide. BMC Cancer. 2008;8:58.PubMedCentralPubMedCrossRef
32.
go back to reference Cojoc M, Peitzsch C, Trautmann F, Polishchuk L, Telegeev GD, Dubrovska A. Emerging targets in cancer management: role of the CXCL12/CXCR4 axis. Onco Targets Ther. 2013;6:1347–1361.PubMedCentralPubMed Cojoc M, Peitzsch C, Trautmann F, Polishchuk L, Telegeev GD, Dubrovska A. Emerging targets in cancer management: role of the CXCL12/CXCR4 axis. Onco Targets Ther. 2013;6:1347–1361.PubMedCentralPubMed
33.
34.
go back to reference Kim HC, Choi KC, Choi HK, et al. HDAC3 selectively represses CREB3-mediated transcription and migration of metastatic breast cancer cells. Cell Mol Life Sci. 2010;67(20):3499–3510.PubMedCrossRef Kim HC, Choi KC, Choi HK, et al. HDAC3 selectively represses CREB3-mediated transcription and migration of metastatic breast cancer cells. Cell Mol Life Sci. 2010;67(20):3499–3510.PubMedCrossRef
35.
go back to reference Uchida D, Onoue T, Begum NM, et al. Vesnarinone downregulates CXCR4 expression via upregulation of Kruppel-like factor 2 in oral cancer cells. Mol Cancer. 2009;8:62.PubMedCentralPubMedCrossRef Uchida D, Onoue T, Begum NM, et al. Vesnarinone downregulates CXCR4 expression via upregulation of Kruppel-like factor 2 in oral cancer cells. Mol Cancer. 2009;8:62.PubMedCentralPubMedCrossRef
36.
go back to reference Roussel RR, Barchowsky A. Arsenic inhibits NF-kappaB-mediated gene transcription by blocking IkappaB kinase activity and IkappaBalpha phosphorylation and degradation. Arch Biochem Biophys. 2000;377(1):204–212.PubMedCrossRef Roussel RR, Barchowsky A. Arsenic inhibits NF-kappaB-mediated gene transcription by blocking IkappaB kinase activity and IkappaBalpha phosphorylation and degradation. Arch Biochem Biophys. 2000;377(1):204–212.PubMedCrossRef
37.
go back to reference Kapahi P, Takahashi T, Natoli G, et al. Inhibition of NF-kappa B activation by arsenite through reaction with a critical cysteine in the activation loop of Ikappa B kinase. J Biol Chem. 2000;275(46):36062–36066.PubMedCrossRef Kapahi P, Takahashi T, Natoli G, et al. Inhibition of NF-kappa B activation by arsenite through reaction with a critical cysteine in the activation loop of Ikappa B kinase. J Biol Chem. 2000;275(46):36062–36066.PubMedCrossRef
Metadata
Title
Arsenic Trioxide Inhibits CXCR4-Mediated Metastasis by Interfering miR-520h/PP2A/NF-κB Signaling in Cervical Cancer
Authors
Yi-Wen Chang, PhD
Min-Wei Chen, PhD
Ching-Feng Chiu, PhD
Chih-Chen Hong, PhD
Ching-Chia Cheng, MS
Michael Hsiao, PhD
Chi-An Chen, MD
Lin-Hung Wei, MD, PhD
Jen-Liang Su, PhD
Publication date
01-12-2014
Publisher
Springer US
Published in
Annals of Surgical Oncology / Issue Special Issue 4/2014
Print ISSN: 1068-9265
Electronic ISSN: 1534-4681
DOI
https://doi.org/10.1245/s10434-014-3812-5

Other articles of this Special Issue 4/2014

Annals of Surgical Oncology 4/2014 Go to the issue