Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 7/2008

01-07-2008 | Review Article

ARRONAX, a high-energy and high-intensity cyclotron for nuclear medicine

Authors: Ferid Haddad, Ludovic Ferrer, Arnaud Guertin, Thomas Carlier, Nathalie Michel, Jacques Barbet, Jean-François Chatal

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 7/2008

Login to get access

Abstract

Purpose

This study was aimed at establishing a list of radionuclides of interest for nuclear medicine that can be produced in a high-intensity and high-energy cyclotron.

Methods

We have considered both therapeutic and positron emission tomography radionuclides that can be produced using a high-energy and a high-intensity cyclotron such as ARRONAX, which will be operating in Nantes (France) by the end of 2008. Novel radionuclides or radionuclides of current limited availability have been selected according to the following criteria: emission of positrons, low-energy beta or alpha particles, stable or short half-life daughters, half-life between 3 h and 10 days or generator-produced, favourable dosimetry, production from stable isotopes with reasonable cross sections.

Results

Three radionuclides appear well suited to targeted radionuclide therapy using beta (67Cu, 47Sc) or alpha (211At) particles. Positron emitters allowing dosimetry studies prior to radionuclide therapy (64Cu, 124I, 44Sc), or that can be generator-produced (82Rb, 68Ga) or providing the opportunity of a new imaging modality (44Sc) are considered to have a great interest at short term whereas 86Y, 52Fe, 55Co, 76Br or 89Zr are considered to have a potential interest at middle term.

Conclusions

Several radionuclides not currently used in routine nuclear medicine or not available in sufficient amount for clinical research have been selected for future production. High-energy, high-intensity cyclotrons are necessary to produce some of the selected radionuclides and make possible future clinical developments in nuclear medicine. Associated with appropriate carriers, these radionuclides will respond to a maximum of unmet clinical needs.
Literature
1.
go back to reference Pentlow KS, Graham MC, Lambrecht RM, Cheung NK, Larson SM. Quantitative imaging of I-124 using positron emission tomography with applications to radioimmunodiagnosis and radioimmunotherapy. Med Phys 1991;18(3):357–66. May–Jun.PubMedCrossRef Pentlow KS, Graham MC, Lambrecht RM, Cheung NK, Larson SM. Quantitative imaging of I-124 using positron emission tomography with applications to radioimmunodiagnosis and radioimmunotherapy. Med Phys 1991;18(3):357–66. May–Jun.PubMedCrossRef
2.
go back to reference DeNardo SJ, DeNardo GL, Kukis DL, Shen S, Kroger LA, DeNardo DA, et al. 67Cu-2IT-BAT-Lym-1 pharmacokinetics, radiation dosimetry, toxicity and tumour regression in patients with lymphoma. J Nucl Med 1999;40(2):302–10, Feb.PubMed DeNardo SJ, DeNardo GL, Kukis DL, Shen S, Kroger LA, DeNardo DA, et al. 67Cu-2IT-BAT-Lym-1 pharmacokinetics, radiation dosimetry, toxicity and tumour regression in patients with lymphoma. J Nucl Med 1999;40(2):302–10, Feb.PubMed
3.
go back to reference Sgouros G, Kolbert KS, Sheikh A, Pentlow KS, Mun EF, Barth A, et al. Patient-specific dosimetry for 131I thyroid cancer therapy using 124I PET and 3-dimensional-internal dosimetry (3D-ID) software. J Nucl Med 2004;45(8):1366–72. Aug.PubMed Sgouros G, Kolbert KS, Sheikh A, Pentlow KS, Mun EF, Barth A, et al. Patient-specific dosimetry for 131I thyroid cancer therapy using 124I PET and 3-dimensional-internal dosimetry (3D-ID) software. J Nucl Med 2004;45(8):1366–72. Aug.PubMed
4.
go back to reference Barbet J, Chatal JF, Gauche F, Martino J. Which radionuclides will nuclear oncology need tomorrow? Eur J Nucl Med Mol Imaging 2006;33(6):627–30, Jun.PubMedCrossRef Barbet J, Chatal JF, Gauche F, Martino J. Which radionuclides will nuclear oncology need tomorrow? Eur J Nucl Med Mol Imaging 2006;33(6):627–30, Jun.PubMedCrossRef
5.
go back to reference Shankar LK, Hoffman JM, Bacharach S, Graham MM, Karp J, Lammertsma AA, et al. Consensus recommendations for the use of 18F-FDG PET as an indicator of therapeutic response in patients in National Cancer Institute Trials. J Nucl Med 2006;47:1059.PubMed Shankar LK, Hoffman JM, Bacharach S, Graham MM, Karp J, Lammertsma AA, et al. Consensus recommendations for the use of 18F-FDG PET as an indicator of therapeutic response in patients in National Cancer Institute Trials. J Nucl Med 2006;47:1059.PubMed
6.
go back to reference Verel I, Visser GW, van Dongen GA. The promise of immuno-PET in radioimmunotherapy. J Nucl Med 2005;46:164S–71S.PubMed Verel I, Visser GW, van Dongen GA. The promise of immuno-PET in radioimmunotherapy. J Nucl Med 2005;46:164S–71S.PubMed
7.
go back to reference Lee FT, Scott AM. Immuno-PET for tumor targeting. J Nucl Med 2003;44:1282–3.PubMed Lee FT, Scott AM. Immuno-PET for tumor targeting. J Nucl Med 2003;44:1282–3.PubMed
8.
go back to reference Goldenberg DM, Sharkey RM. Advances in cancer therapy with radiolabeled monoclonal antibodies. Q J Nucl Med Mol Imaging 2006;50(4):248–64, Dec.PubMed Goldenberg DM, Sharkey RM. Advances in cancer therapy with radiolabeled monoclonal antibodies. Q J Nucl Med Mol Imaging 2006;50(4):248–64, Dec.PubMed
9.
go back to reference de Jong M, Kwekkeboom D, Valkema R, Krenning EP. Radiolabelled peptides for tumour therapy: current status and future directions. Plenary lecture at the EANM 2002. Eur J Nucl Med Mol Imaging 2003;30(3):463–9, Mar.PubMed de Jong M, Kwekkeboom D, Valkema R, Krenning EP. Radiolabelled peptides for tumour therapy: current status and future directions. Plenary lecture at the EANM 2002. Eur J Nucl Med Mol Imaging 2003;30(3):463–9, Mar.PubMed
10.
go back to reference Goldenberg DM, Sharkey RM, Paganelli G, Barbet J, Chatal JF. Antibody pretargeting advances cancer radioimmunodetection and radioimmunotherapy. J Clin Oncol 2006;24(5):823–34. Feb 10.PubMedCrossRef Goldenberg DM, Sharkey RM, Paganelli G, Barbet J, Chatal JF. Antibody pretargeting advances cancer radioimmunodetection and radioimmunotherapy. J Clin Oncol 2006;24(5):823–34. Feb 10.PubMedCrossRef
11.
go back to reference Kolsky KL, Joshi V, Mausner LF, Srivastava SC. Radiochemical purification of no-carrier-added scandium-47 for radioimmunotherapy. Appl Radiat Isot 1998;49:1541–49.PubMedCrossRef Kolsky KL, Joshi V, Mausner LF, Srivastava SC. Radiochemical purification of no-carrier-added scandium-47 for radioimmunotherapy. Appl Radiat Isot 1998;49:1541–49.PubMedCrossRef
12.
go back to reference DeNardo GL, DeNardo SJ, Kukis DL, O'Donnell RT, Shen S, Goldstein DS, et al. Maximum tolerated dose of 67-Cu-2IT-BAT-LYM1 for fractionated radioimmunotherapy of non-Hodgkin's lymphoma: a pilot study. Anti Cancer Res 1998;18:2779–88. DeNardo GL, DeNardo SJ, Kukis DL, O'Donnell RT, Shen S, Goldstein DS, et al. Maximum tolerated dose of 67-Cu-2IT-BAT-LYM1 for fractionated radioimmunotherapy of non-Hodgkin's lymphoma: a pilot study. Anti Cancer Res 1998;18:2779–88.
13.
go back to reference Robinson S, Julyan PJ, Hastings DL, Zweit J. Performance of a block detector PET scanner in imaging non-pure positron emitters—modelling and experimental validation with 124I. Phys Med Biol 2004;49:5505.PubMedCrossRef Robinson S, Julyan PJ, Hastings DL, Zweit J. Performance of a block detector PET scanner in imaging non-pure positron emitters—modelling and experimental validation with 124I. Phys Med Biol 2004;49:5505.PubMedCrossRef
14.
go back to reference Williams HA, Robinson S, Julyan P, Zweit J, Hastings D. A comparison of PET imaging characteristics of various copper radioisotopes. Eur J Nucl Med 2005;32:1473.CrossRef Williams HA, Robinson S, Julyan P, Zweit J, Hastings D. A comparison of PET imaging characteristics of various copper radioisotopes. Eur J Nucl Med 2005;32:1473.CrossRef
15.
go back to reference Zimmermann K, Grönberg J, Honer M, Ametamey S, Schubiger PA, Novak-Hofer I. Targeting of renal carcinoma with 67/64Cu-labeled anti-L1-CAM antibody chCE7: selection of copper ligands and PET imaging. Nucl Med Biol 2003;30:417.PubMedCrossRef Zimmermann K, Grönberg J, Honer M, Ametamey S, Schubiger PA, Novak-Hofer I. Targeting of renal carcinoma with 67/64Cu-labeled anti-L1-CAM antibody chCE7: selection of copper ligands and PET imaging. Nucl Med Biol 2003;30:417.PubMedCrossRef
16.
go back to reference Philpott GW, Schwarz SW, Anderson CJ, Dehdashti F, Connett JM, Zinn ZR, et al. RadioimmunoPET: detection of colorectal carcinoma with positron-emitting copper-64-labeled monoclonal antibody. J Nucl Med 1995;36:1818.PubMed Philpott GW, Schwarz SW, Anderson CJ, Dehdashti F, Connett JM, Zinn ZR, et al. RadioimmunoPET: detection of colorectal carcinoma with positron-emitting copper-64-labeled monoclonal antibody. J Nucl Med 1995;36:1818.PubMed
17.
go back to reference Shen S, DeNardo GL, DeNardo SJ, Salako Q, Morris G, Banks D, et al. Dosimetric evaluation of copper-64 in copper-67-2IT-BAT-Lym-1 for radioimmunotherapy. J Nucl Med 1996;37:146.PubMed Shen S, DeNardo GL, DeNardo SJ, Salako Q, Morris G, Banks D, et al. Dosimetric evaluation of copper-64 in copper-67-2IT-BAT-Lym-1 for radioimmunotherapy. J Nucl Med 1996;37:146.PubMed
18.
go back to reference Dearling JL, Lewis JS, Mullen GE, Rae MT, Zweit J, Blower PJ. Design of hypoxia-targeting radiopharmaceuticals: selective uptake of copper-64 complexes in hypoxic cells in vitro. Eur J Nucl Med 1998;25:788.PubMedCrossRef Dearling JL, Lewis JS, Mullen GE, Rae MT, Zweit J, Blower PJ. Design of hypoxia-targeting radiopharmaceuticals: selective uptake of copper-64 complexes in hypoxic cells in vitro. Eur J Nucl Med 1998;25:788.PubMedCrossRef
19.
go back to reference Laforest R, Dehashti F, Lewis JS, Schwarz SW. Dosimetry of 60/61/62/64Cu-ATSM: a hypoxia imaging agent for PET. Eur J Nucl Med 2005;32:764.CrossRef Laforest R, Dehashti F, Lewis JS, Schwarz SW. Dosimetry of 60/61/62/64Cu-ATSM: a hypoxia imaging agent for PET. Eur J Nucl Med 2005;32:764.CrossRef
20.
go back to reference Hofmann M, Maecke H, Börner R, Weckesser E, Schöffski P, Oei L, et al. Biokinetics and imaging with the somatostatin receptor PET radioligand 68Ga-DOTATOC: preliminary data. Eur J Nucl Med 2001;28:1751.PubMedCrossRef Hofmann M, Maecke H, Börner R, Weckesser E, Schöffski P, Oei L, et al. Biokinetics and imaging with the somatostatin receptor PET radioligand 68Ga-DOTATOC: preliminary data. Eur J Nucl Med 2001;28:1751.PubMedCrossRef
21.
go back to reference Smith-Jones PM, Stolz B, Bruns C, Albert R, Reist HW, Fridrich R, et al. Gallium-67/gallium-68-[DFO]-octreotide—a potential radiopharmaceutical for PET imaging of somatostatin receptor-positive tumors: synthesis and radiolabeling in vitro and preliminary in vivo studies. J Nucl Med 1994;35:317.PubMed Smith-Jones PM, Stolz B, Bruns C, Albert R, Reist HW, Fridrich R, et al. Gallium-67/gallium-68-[DFO]-octreotide—a potential radiopharmaceutical for PET imaging of somatostatin receptor-positive tumors: synthesis and radiolabeling in vitro and preliminary in vivo studies. J Nucl Med 1994;35:317.PubMed
22.
go back to reference Henze M, Dimitrakopoulou-Strauss A, Milker-Zabel S, Schuhmacher J, Strauss LG, Doll J, et al. Characterization of 68Ga-DOTA-D-Phe1-Tyr3-octreotide kinetics in patients with meningiomas. J Nucl Med 2005;46(Suppl):763.PubMed Henze M, Dimitrakopoulou-Strauss A, Milker-Zabel S, Schuhmacher J, Strauss LG, Doll J, et al. Characterization of 68Ga-DOTA-D-Phe1-Tyr3-octreotide kinetics in patients with meningiomas. J Nucl Med 2005;46(Suppl):763.PubMed
23.
go back to reference Klivonyi G, Schuhmacher J, Patzelt E, Hauser H, Matys R, Moock M, et al. Gallium-68 chelate imaging of human colon carcinoma xenografts pretargeted with bispecific anti-CD44V6/anti-gallium chelate antibodies. J Nucl Med 1998;39:1769. Klivonyi G, Schuhmacher J, Patzelt E, Hauser H, Matys R, Moock M, et al. Gallium-68 chelate imaging of human colon carcinoma xenografts pretargeted with bispecific anti-CD44V6/anti-gallium chelate antibodies. J Nucl Med 1998;39:1769.
24.
go back to reference Schuhmacher J, Kaul S, Klivonyi G, Junkermann H, Magener A, Henze M, et al. Immunoscintigraphy with positron emission tomography: gallium-68 chelate imaging of breast cancer pretargeted with bispecific anti-MUC1/anti-Ga chelate antibodies. Cancer Res 2001;61:3712.PubMed Schuhmacher J, Kaul S, Klivonyi G, Junkermann H, Magener A, Henze M, et al. Immunoscintigraphy with positron emission tomography: gallium-68 chelate imaging of breast cancer pretargeted with bispecific anti-MUC1/anti-Ga chelate antibodies. Cancer Res 2001;61:3712.PubMed
25.
go back to reference Sanchez-Crespo A, Andreo P, Larsson SA. Positron flight in human tissues and its influence on PET image spatial resolution. Eur J Nucl Med Mol Imaging 2004;31:44.PubMedCrossRef Sanchez-Crespo A, Andreo P, Larsson SA. Positron flight in human tissues and its influence on PET image spatial resolution. Eur J Nucl Med Mol Imaging 2004;31:44.PubMedCrossRef
26.
go back to reference Maecke HR, Hofmann M, Haberkorn U. 68Ga-labeled peptides in tumor imaging. J Nucl Med 2005;46(Suppl):172S.PubMed Maecke HR, Hofmann M, Haberkorn U. 68Ga-labeled peptides in tumor imaging. J Nucl Med 2005;46(Suppl):172S.PubMed
27.
go back to reference Shea MJ, Wilson RA, deLandsheere CM, Deanfield JE, Watson IA, Kensett MJ, et al. Use of short and long-lived rubidium tracers for the study of transient ischemia. J Nucl Med 1987;28:989.PubMed Shea MJ, Wilson RA, deLandsheere CM, Deanfield JE, Watson IA, Kensett MJ, et al. Use of short and long-lived rubidium tracers for the study of transient ischemia. J Nucl Med 1987;28:989.PubMed
28.
go back to reference Anonymous. The strontium-82/rubidium-82 generator. Int J Rad Appl Instrum 1987;38(3):171–239. Anonymous. The strontium-82/rubidium-82 generator. Int J Rad Appl Instrum 1987;38(3):171–239.
29.
go back to reference Erdi Y, Macapinlac H, Larson S, Erdi A, Yeung H, Furhang E, et al. Radiation dose assessment for I-131 therapy of thyroid cancer using I-124 PET imaging. Clin Positron Imaging 1999;2:41.PubMedCrossRef Erdi Y, Macapinlac H, Larson S, Erdi A, Yeung H, Furhang E, et al. Radiation dose assessment for I-131 therapy of thyroid cancer using I-124 PET imaging. Clin Positron Imaging 1999;2:41.PubMedCrossRef
30.
go back to reference Eschmann MS, Reischl G, Bilger K, Kupferschleger J, Thelen MH, Dohmen BM, et al. Evaluation of dosimetry of radioiodine therapy in benign and malignant thyroid disorders by means of iodine-124 and PET. Eur J Nucl Med Mol Imaging 2002;29:760–7.PubMedCrossRef Eschmann MS, Reischl G, Bilger K, Kupferschleger J, Thelen MH, Dohmen BM, et al. Evaluation of dosimetry of radioiodine therapy in benign and malignant thyroid disorders by means of iodine-124 and PET. Eur J Nucl Med Mol Imaging 2002;29:760–7.PubMedCrossRef
31.
go back to reference Kenanova V, Olafsen T, Crow DM, Sundaresan G, Subbarayan M, Carter NH, et al. Tailoring the pharmacokinetics and positron emission tomography imaging properties of anti-carcinoembryonic antigen single-chain Fv-Fc antibody fragments. Cancer Res 2005;65:622.PubMed Kenanova V, Olafsen T, Crow DM, Sundaresan G, Subbarayan M, Carter NH, et al. Tailoring the pharmacokinetics and positron emission tomography imaging properties of anti-carcinoembryonic antigen single-chain Fv-Fc antibody fragments. Cancer Res 2005;65:622.PubMed
32.
go back to reference Sundaresan G, Yazaki PJ, Shively JE, Finn RD, Larson SM, Raubitschek AA, et al. 124I-labeled engineered anti-CEA minibodies and diabodies allow high-contrast, antigen-specific small-animal PET imaging of xenografts in athymic mice. J Nucl Med 2003;44:1962.PubMed Sundaresan G, Yazaki PJ, Shively JE, Finn RD, Larson SM, Raubitschek AA, et al. 124I-labeled engineered anti-CEA minibodies and diabodies allow high-contrast, antigen-specific small-animal PET imaging of xenografts in athymic mice. J Nucl Med 2003;44:1962.PubMed
33.
go back to reference Lee FT, Hall C, Rigopoulos A, Zweit J, Pathmaraj K, O'Keefe GJ, et al. Immuno-PET of human colon xenograft- bearing BALB/c nude mice using 124I-CDR-grafted humanized A33 monoclonal antibody. J Nucl Med 2001;42:764.PubMed Lee FT, Hall C, Rigopoulos A, Zweit J, Pathmaraj K, O'Keefe GJ, et al. Immuno-PET of human colon xenograft- bearing BALB/c nude mice using 124I-CDR-grafted humanized A33 monoclonal antibody. J Nucl Med 2001;42:764.PubMed
34.
go back to reference Keen HG, Dekker BA, Disley L, Hastings D, Lyons S, Reader AJ, et al. Imaging apoptosis in vivo using 124I-annexin V and PET. Nucl Med Biol 2005;32:395.PubMedCrossRef Keen HG, Dekker BA, Disley L, Hastings D, Lyons S, Reader AJ, et al. Imaging apoptosis in vivo using 124I-annexin V and PET. Nucl Med Biol 2005;32:395.PubMedCrossRef
35.
go back to reference Robinson MK, Doss M, Shaller C, Narayanan D, Marks JD, Adler LP, et al. Quantitative immuno-positron emission tomography imaging of HER2-positive tumor xenografts with an iodine-124 labeled anti-HER2 diabody. Cancer Res 2005;65:1471.PubMedCrossRef Robinson MK, Doss M, Shaller C, Narayanan D, Marks JD, Adler LP, et al. Quantitative immuno-positron emission tomography imaging of HER2-positive tumor xenografts with an iodine-124 labeled anti-HER2 diabody. Cancer Res 2005;65:1471.PubMedCrossRef
36.
go back to reference Shaul M, Abourbeh G, Jacobson O, Rozen Y, Laky D, Levitzki A, et al. Novel iodine-124 labeled EGFR inhibitors as potential PET agents for molecular imaging in cancer. Bioorg Med Chem 2004;12:3421.PubMedCrossRef Shaul M, Abourbeh G, Jacobson O, Rozen Y, Laky D, Levitzki A, et al. Novel iodine-124 labeled EGFR inhibitors as potential PET agents for molecular imaging in cancer. Bioorg Med Chem 2004;12:3421.PubMedCrossRef
37.
go back to reference IAEA. Optimization of production and quality control of therapeutic radionuclides and radiopharmaceuticals. IAEA-TECDOC-1114 1999. Vienna: IAEA; 1999. IAEA. Optimization of production and quality control of therapeutic radionuclides and radiopharmaceuticals. IAEA-TECDOC-1114 1999. Vienna: IAEA; 1999.
38.
go back to reference Sachdev DR, Yaffe L. Isomer ratios for the 44Ca(p,n)44m,gSc and 85Rb(p,n)85m,gSr reactions. Can J Phys 1969;47:1667. Sachdev DR, Yaffe L. Isomer ratios for the 44Ca(p,n)44m,gSc and 85Rb(p,n)85m,gSr reactions. Can J Phys 1969;47:1667.
39.
go back to reference Kurfess JD, Phlips BF (2001) Coincident Compton nuclear medical imager. In: Proceedings of the IEEE Nuclear Science Symposium conference, San Diego, California. Kurfess JD, Phlips BF (2001) Coincident Compton nuclear medical imager. In: Proceedings of the IEEE Nuclear Science Symposium conference, San Diego, California.
40.
go back to reference Kurfess JD, Johnson WN, Kroeger RA, Phlips BF, Wulf EA. Timing methods for depth determination in germanium strip detectors. Nucl Instr Meth A 2003;505:178.CrossRef Kurfess JD, Johnson WN, Kroeger RA, Phlips BF, Wulf EA. Timing methods for depth determination in germanium strip detectors. Nucl Instr Meth A 2003;505:178.CrossRef
41.
go back to reference Heppeler A, Froidevaux S, Eberle AN, Maecke HR. Receptor targeting for tumor localisation and therapy with radiopeptides. Curr Med Chem 2000;7:971.PubMed Heppeler A, Froidevaux S, Eberle AN, Maecke HR. Receptor targeting for tumor localisation and therapy with radiopeptides. Curr Med Chem 2000;7:971.PubMed
42.
go back to reference Rosch F, Herzog H, Stolz B, Brockmann J, Kohle M, Muhlensiepen H, et al. Uptake kinetics of the somatostatin receptor ligand 86YDOTA-DPhe1- Tyr3-octreotide (86YSMT487) using positron emission tomography in non-human primates and calculation of radiation doses of the 90Y-labelled analogue. Eur J Nucl Med 1999;26:358.PubMedCrossRef Rosch F, Herzog H, Stolz B, Brockmann J, Kohle M, Muhlensiepen H, et al. Uptake kinetics of the somatostatin receptor ligand 86YDOTA-DPhe1- Tyr3-octreotide (86YSMT487) using positron emission tomography in non-human primates and calculation of radiation doses of the 90Y-labelled analogue. Eur J Nucl Med 1999;26:358.PubMedCrossRef
43.
go back to reference Lundqvist H, Lubberink M, Tolmachev V, Lovqvist A, Sundin A, Beshara S, et al. Positron emission tomography and radioimmunotargeting general aspects. Acta Oncol 1999;38:335.PubMedCrossRef Lundqvist H, Lubberink M, Tolmachev V, Lovqvist A, Sundin A, Beshara S, et al. Positron emission tomography and radioimmunotargeting general aspects. Acta Oncol 1999;38:335.PubMedCrossRef
44.
go back to reference Wester HJ, Brockmann J, Rosch F, Wutz W, Herzog H, Smith-Jones P, et al. PET-pharmacokinetics of 18F-octreotide: a comparison with 67Ga-DFO- and 86Y-DTPA-octreotide. Nucl Med Biol 1997;24:275.PubMedCrossRef Wester HJ, Brockmann J, Rosch F, Wutz W, Herzog H, Smith-Jones P, et al. PET-pharmacokinetics of 18F-octreotide: a comparison with 67Ga-DFO- and 86Y-DTPA-octreotide. Nucl Med Biol 1997;24:275.PubMedCrossRef
45.
go back to reference Yoo J, Tang L, Perkins TA, Rowland DJ, Laforest R, Lewis, et al. Preparation of high specific activity (86)Y using a small biomedical cyclotron. Nucl Med Biol 2005;32:891.PubMedCrossRef Yoo J, Tang L, Perkins TA, Rowland DJ, Laforest R, Lewis, et al. Preparation of high specific activity (86)Y using a small biomedical cyclotron. Nucl Med Biol 2005;32:891.PubMedCrossRef
46.
go back to reference Buchholz HG, Herzog H, Förster GJ, Reber H, Nickel O, Rösch F, et al. PET imaging with yttrium-86: comparison of phantom measurements acquired with different PET scanners before and after applying background subtraction. Eur J Nucl Med Mol Imaging 2003;30:716.PubMed Buchholz HG, Herzog H, Förster GJ, Reber H, Nickel O, Rösch F, et al. PET imaging with yttrium-86: comparison of phantom measurements acquired with different PET scanners before and after applying background subtraction. Eur J Nucl Med Mol Imaging 2003;30:716.PubMed
47.
go back to reference Walrand S, Jamar F, Mathieu L, De Camps J, Lonneux M, Sibomana M, et al. Quantitation in PET using isotopes emitting prompt single gammas: application to yttrium-86. Eur J Nucl Med Mol Imaging 2003;30:354.PubMed Walrand S, Jamar F, Mathieu L, De Camps J, Lonneux M, Sibomana M, et al. Quantitation in PET using isotopes emitting prompt single gammas: application to yttrium-86. Eur J Nucl Med Mol Imaging 2003;30:354.PubMed
48.
go back to reference Beattie BJ, Finn RD, Rowland DJ, Pentlow KS. Quantitative imaging of bromine-76 and yttrium-86 with PET: a method for the removal of spurious activity introduced by cascade gamma rays. Med Phys 2003;30:2410.PubMedCrossRef Beattie BJ, Finn RD, Rowland DJ, Pentlow KS. Quantitative imaging of bromine-76 and yttrium-86 with PET: a method for the removal of spurious activity introduced by cascade gamma rays. Med Phys 2003;30:2410.PubMedCrossRef
49.
go back to reference Kull T, Ruckgaber J, Weller R, Reske S, Glatting G. Quantitative imaging of yttrium-86 PET with the ECAT EXACT HR+ in 2D mode. Cancer Biother Radiopharm 2004;19:482.PubMed Kull T, Ruckgaber J, Weller R, Reske S, Glatting G. Quantitative imaging of yttrium-86 PET with the ECAT EXACT HR+ in 2D mode. Cancer Biother Radiopharm 2004;19:482.PubMed
50.
go back to reference Herzog H, Rosch F, Stocklin G, Lueders C, Qaim SM, Feinendegen LE. Measurement of pharmacokinetics of yttrium-86 radiopharmaceuticals with PET and radiation dose calculation of analogous yttrium-90 radiotherapeutics. J Nucl Med 1993;34:2222.PubMed Herzog H, Rosch F, Stocklin G, Lueders C, Qaim SM, Feinendegen LE. Measurement of pharmacokinetics of yttrium-86 radiopharmaceuticals with PET and radiation dose calculation of analogous yttrium-90 radiotherapeutics. J Nucl Med 1993;34:2222.PubMed
51.
go back to reference Forster GJ, Engelbach MJ, Brockmann JJ, Reber HJ, Buchholz HG, Macke HR, et al. Preliminary data on biodistribution and dosimetry for therapy planning of somatostatin receptor positive tumours: comparison of (86)Y-DOTATOC and (111)In-DTPA-octreotide. Eur J Nucl Med 2001;28:1743.PubMedCrossRef Forster GJ, Engelbach MJ, Brockmann JJ, Reber HJ, Buchholz HG, Macke HR, et al. Preliminary data on biodistribution and dosimetry for therapy planning of somatostatin receptor positive tumours: comparison of (86)Y-DOTATOC and (111)In-DTPA-octreotide. Eur J Nucl Med 2001;28:1743.PubMedCrossRef
52.
go back to reference De Reuck J, Santens P, Strijckmans K, Lemahieu I, Lemahieu I. Cobalt-55 positron emission tomography in vascular dementia: significance of white matter changes. J Neurol Sci 2001;193:1.PubMedCrossRef De Reuck J, Santens P, Strijckmans K, Lemahieu I, Lemahieu I. Cobalt-55 positron emission tomography in vascular dementia: significance of white matter changes. J Neurol Sci 2001;193:1.PubMedCrossRef
53.
go back to reference Stevens H, Jansen HM, De Reuck J, Lemmerling M, Strijckmans K, Goethals P, et al. 55Co-PET in stroke: relation to bloodflow, oxygen metabolism and gadolinium-MRI. J Neurol Sci 1999;171:11.PubMedCrossRef Stevens H, Jansen HM, De Reuck J, Lemmerling M, Strijckmans K, Goethals P, et al. 55Co-PET in stroke: relation to bloodflow, oxygen metabolism and gadolinium-MRI. J Neurol Sci 1999;171:11.PubMedCrossRef
54.
go back to reference Jansen HM, Dierckx RA, Hew JM, Paans AM, Minderhoud JM, Korf J. Positron emission tomography in primary brain tumours using cobalt-55. Nucl Med Commun 1997;18:734.PubMedCrossRef Jansen HM, Dierckx RA, Hew JM, Paans AM, Minderhoud JM, Korf J. Positron emission tomography in primary brain tumours using cobalt-55. Nucl Med Commun 1997;18:734.PubMedCrossRef
55.
go back to reference Ellis BL, Sharma HL. Co, Fe and Ga chelates for cell labelling: a potential use in PET imaging? Nucl Med Commun 1999;20:1017.PubMedCrossRef Ellis BL, Sharma HL. Co, Fe and Ga chelates for cell labelling: a potential use in PET imaging? Nucl Med Commun 1999;20:1017.PubMedCrossRef
56.
go back to reference Karanikas G, Schmaljohann J, Rodrigues M, Chehne F, Granegger S, Sinzinger H. Examination of co-complexes for radiolabeling of platelets in positron emission tomographic studies. Thromb Res 1999;94:111.PubMedCrossRef Karanikas G, Schmaljohann J, Rodrigues M, Chehne F, Granegger S, Sinzinger H. Examination of co-complexes for radiolabeling of platelets in positron emission tomographic studies. Thromb Res 1999;94:111.PubMedCrossRef
57.
go back to reference Jansen HM, Knollema S, van der Duin LV, Willemsen AT, Wiersma A, Franssen EJ, et al. Pharmacokinetics and dosimetry of cobalt-55 and cobalt-57. J Nucl Med 1996;37:2082.PubMed Jansen HM, Knollema S, van der Duin LV, Willemsen AT, Wiersma A, Franssen EJ, et al. Pharmacokinetics and dosimetry of cobalt-55 and cobalt-57. J Nucl Med 1996;37:2082.PubMed
58.
go back to reference Zaman MR, Spellerberg S, Qaim SM. Production of 55Co via the 54Fe(d,n)-process and excitation functions of 54Fe(d,t)53Fe and 54Fe(d,α)52mMn reactions from threshold up to 13.8 MeV. Radiochim Acta 2003;91:105.CrossRef Zaman MR, Spellerberg S, Qaim SM. Production of 55Co via the 54Fe(d,n)-process and excitation functions of 54Fe(d,t)53Fe and 54Fe(d,α)52mMn reactions from threshold up to 13.8 MeV. Radiochim Acta 2003;91:105.CrossRef
60.
go back to reference Anger HO, Vandyke DC. Human bone marrow distribution shown in vivo by iron-52 and the positron scintillation camera. Science 1964;144:1587.PubMedCrossRef Anger HO, Vandyke DC. Human bone marrow distribution shown in vivo by iron-52 and the positron scintillation camera. Science 1964;144:1587.PubMedCrossRef
61.
62.
go back to reference Bailey DL, Young H, Bloomfield PM, Meikle SR, Glass D, Myers MJ, et al. ECAT ART—a continuously rotating PET camera: performance characteristics, initial clinical studies, and installation considerations in a nuclear medicine department. Eur J Nucl Med 1997;24:6.PubMedCrossRef Bailey DL, Young H, Bloomfield PM, Meikle SR, Glass D, Myers MJ, et al. ECAT ART—a continuously rotating PET camera: performance characteristics, initial clinical studies, and installation considerations in a nuclear medicine department. Eur J Nucl Med 1997;24:6.PubMedCrossRef
63.
go back to reference Zweit J, Downey S, Sharma H. A method for the production of iron-52 with a very low iron-55 contamination. Int J Rad Appl Instrum 1988;39:1197–201.CrossRef Zweit J, Downey S, Sharma H. A method for the production of iron-52 with a very low iron-55 contamination. Int J Rad Appl Instrum 1988;39:1197–201.CrossRef
64.
go back to reference Atcher RW, Friedman AM, Huizenga JR, Rayudu GV, Silverstein EA, Turner DA. Manganese-52m, a new short-lived, generator-produced radionuclide: a potential tracer for positron tomography. J Nucl Med 1980;21:565.PubMed Atcher RW, Friedman AM, Huizenga JR, Rayudu GV, Silverstein EA, Turner DA. Manganese-52m, a new short-lived, generator-produced radionuclide: a potential tracer for positron tomography. J Nucl Med 1980;21:565.PubMed
65.
go back to reference Lubberink M, Tolmachev V, Beshara S, Lundqvist H. Quantification aspects of patient studies with 52Fe in positron emission tomography. Appl Radiat Isot 1999;51(6):707–15, Dec.PubMedCrossRef Lubberink M, Tolmachev V, Beshara S, Lundqvist H. Quantification aspects of patient studies with 52Fe in positron emission tomography. Appl Radiat Isot 1999;51(6):707–15, Dec.PubMedCrossRef
66.
go back to reference Sundin J, Tolmachev V, Koziorowski J, Carlsson J, Lundqvist H, Welt S, et al. High yield direct 76Br-bromination of monoclonal antibodies using chloramine-T. Nucl Med Biol 1999;26:923.PubMedCrossRef Sundin J, Tolmachev V, Koziorowski J, Carlsson J, Lundqvist H, Welt S, et al. High yield direct 76Br-bromination of monoclonal antibodies using chloramine-T. Nucl Med Biol 1999;26:923.PubMedCrossRef
67.
go back to reference Lovqvist A, Sundin A, Ahlstrom H, Carlsson J, Lundqvist H. Pharmacokinetics and experimental PET imaging of a bromine-76-labeled monoclonal anti-CEA antibody. J Nucl Med 1997;38:395–401.PubMed Lovqvist A, Sundin A, Ahlstrom H, Carlsson J, Lundqvist H. Pharmacokinetics and experimental PET imaging of a bromine-76-labeled monoclonal anti-CEA antibody. J Nucl Med 1997;38:395–401.PubMed
68.
go back to reference Lu L, Samuelsson L, Bergstrom M, Sato K, Fasth KJ, Langstrom B. Rat studies comparing 11C-FMAU, 18F-FLT, and 76Br-BFU as proliferation markers. J Nucl Med 2002;43:1688–98.PubMed Lu L, Samuelsson L, Bergstrom M, Sato K, Fasth KJ, Langstrom B. Rat studies comparing 11C-FMAU, 18F-FLT, and 76Br-BFU as proliferation markers. J Nucl Med 2002;43:1688–98.PubMed
69.
go back to reference Meijs WE, Haisma HJ, Klok RP, Van Gog FB, Kievit E, Pinedo HM, et al. Zirconium-labeled monoclonal antibodies and their distribution in tumor-bearing nude mice. J Nucl Med 1997;38:112–8.PubMed Meijs WE, Haisma HJ, Klok RP, Van Gog FB, Kievit E, Pinedo HM, et al. Zirconium-labeled monoclonal antibodies and their distribution in tumor-bearing nude mice. J Nucl Med 1997;38:112–8.PubMed
70.
go back to reference Verel I, Visser GWM, Boellaard R, Boerman OC, Van Eerd J, Snow GB, et al. Quantitative 89Zr immuno-PET for in vivo scouting of 90Y-labeled monoclonal antibodies in xenograft-bearing nude mice. J Nucl Med 2003;44:1663.PubMed Verel I, Visser GWM, Boellaard R, Boerman OC, Van Eerd J, Snow GB, et al. Quantitative 89Zr immuno-PET for in vivo scouting of 90Y-labeled monoclonal antibodies in xenograft-bearing nude mice. J Nucl Med 2003;44:1663.PubMed
71.
go back to reference Mausner LF, Kolsky KL, Joshi V, Srivastava SC. Radionuclide development at BNL for nuclear medicine therapy. Appl Radiat Isot 1998;49:285–94.PubMedCrossRef Mausner LF, Kolsky KL, Joshi V, Srivastava SC. Radionuclide development at BNL for nuclear medicine therapy. Appl Radiat Isot 1998;49:285–94.PubMedCrossRef
72.
go back to reference DeNardo GL, DeNardo SJ, Meares CF, Kukis DL, Diril H, McCall MJ, et al. Pharmacokinetics of copper-67 conjugated Lym-1, a potential therapeutic radioimmunoconjugate, in mice and patients with lymphoma. Antibody Immunoconj Radiopharm 1991;4:777–85. DeNardo GL, DeNardo SJ, Meares CF, Kukis DL, Diril H, McCall MJ, et al. Pharmacokinetics of copper-67 conjugated Lym-1, a potential therapeutic radioimmunoconjugate, in mice and patients with lymphoma. Antibody Immunoconj Radiopharm 1991;4:777–85.
73.
go back to reference DeNardo GL, Kukis DL, Shen S, DeNardo DA, Meares CF, DeNardo SJ. 67-Cu versus 131-I-labeled Lym-1 antibody: comparative pharmacokinetics and dosimetry in patients with non-Hodgkin’s lymphoma. Clin Cancer Res 1999;5:533–41.PubMed DeNardo GL, Kukis DL, Shen S, DeNardo DA, Meares CF, DeNardo SJ. 67-Cu versus 131-I-labeled Lym-1 antibody: comparative pharmacokinetics and dosimetry in patients with non-Hodgkin’s lymphoma. Clin Cancer Res 1999;5:533–41.PubMed
74.
go back to reference O’Donnell RT, DeNardo GL, Kukis DL, Lamborn KR, Shen S, Yuan A, et al. A clinical trial of radioimmunotherapy with 67-Cu-2IT-BATLym- 1. J Nucl Med 1999;40:2014–20.PubMed O’Donnell RT, DeNardo GL, Kukis DL, Lamborn KR, Shen S, Yuan A, et al. A clinical trial of radioimmunotherapy with 67-Cu-2IT-BATLym- 1. J Nucl Med 1999;40:2014–20.PubMed
75.
go back to reference DeNardo SJ, DeNardo GL, Kukis DL, Shen S, Kroger LA, DeNardo DA, et al. 67Cu-2IT-BAT-Lym-1 pharmacokinetics, radiation dosimetry, toxicity and tumor regression in patients with lymphoma. J Nucl Med 1999;40:302–10.PubMed DeNardo SJ, DeNardo GL, Kukis DL, Shen S, Kroger LA, DeNardo DA, et al. 67Cu-2IT-BAT-Lym-1 pharmacokinetics, radiation dosimetry, toxicity and tumor regression in patients with lymphoma. J Nucl Med 1999;40:302–10.PubMed
76.
go back to reference Novak-Hofer I, Schubiger PA. Copper-67 as a therapeutic nuclide for radioimmunotherapy. Eur J Nucl Med Mol Imaging 2002;29:821–30.PubMedCrossRef Novak-Hofer I, Schubiger PA. Copper-67 as a therapeutic nuclide for radioimmunotherapy. Eur J Nucl Med Mol Imaging 2002;29:821–30.PubMedCrossRef
77.
go back to reference McDevitt MR, Sgouros G, Finn RD, Humm JL, Jurcic JG, Larson SM, et al. Radioimmunotherapy with alpha-emitting nuclides. Eur J Nucl Med Mol Imaging 1998;25:1341–51.CrossRef McDevitt MR, Sgouros G, Finn RD, Humm JL, Jurcic JG, Larson SM, et al. Radioimmunotherapy with alpha-emitting nuclides. Eur J Nucl Med Mol Imaging 1998;25:1341–51.CrossRef
78.
go back to reference Mulford DA, Scheinberg DA, Jurcic JG. The promise of targeted alpha-particle therapy. J Nucl Med 2005;46(Suppl 1):199S–204S.PubMed Mulford DA, Scheinberg DA, Jurcic JG. The promise of targeted alpha-particle therapy. J Nucl Med 2005;46(Suppl 1):199S–204S.PubMed
79.
go back to reference Couturier O, Supiot S, Degraef-Mougin M, Faivre-Chauvet A, Carlier T, Chatal JF, et al. Cancer radioimmunotherapy with alpha-emitting nuclides. Eur J Nucl Med Mol Imaging 2005;32:601–14.PubMedCrossRef Couturier O, Supiot S, Degraef-Mougin M, Faivre-Chauvet A, Carlier T, Chatal JF, et al. Cancer radioimmunotherapy with alpha-emitting nuclides. Eur J Nucl Med Mol Imaging 2005;32:601–14.PubMedCrossRef
80.
go back to reference Johnson EL, Turkington TG, Jaszczak RJ, et al. Quantitation of 211At in small volumes for evaluation of targeted radiotherapy in animal models. Nucl Med Biol 1995;22:45–54.PubMedCrossRef Johnson EL, Turkington TG, Jaszczak RJ, et al. Quantitation of 211At in small volumes for evaluation of targeted radiotherapy in animal models. Nucl Med Biol 1995;22:45–54.PubMedCrossRef
81.
go back to reference Welch MJ. Potential and pitfalls of therapy with alpha-particles. J Nucl Med 2005;46:1254–5.PubMed Welch MJ. Potential and pitfalls of therapy with alpha-particles. J Nucl Med 2005;46:1254–5.PubMed
82.
go back to reference Cherel M, Davodeau F, Kraeber-Bodere F, Chatal JF. Current status and perspectives in alpha radioimmunotherapy. Q J Nucl Med Mol Imaging 2006;50:322–9.PubMed Cherel M, Davodeau F, Kraeber-Bodere F, Chatal JF. Current status and perspectives in alpha radioimmunotherapy. Q J Nucl Med Mol Imaging 2006;50:322–9.PubMed
83.
go back to reference Szelecsényi F, Steyn GF, Kovács Z, Vermeulen C, van der Meulen NP, Dolley SG, et al. Investigation of the 66Zn(p,2pn)64Cu and 68Zn(p,x)64Cu nuclear processes up to 100 MeV: production of 64Cu. Nucl Instr and Meth B 2005;240:625.CrossRef Szelecsényi F, Steyn GF, Kovács Z, Vermeulen C, van der Meulen NP, Dolley SG, et al. Investigation of the 66Zn(p,2pn)64Cu and 68Zn(p,x)64Cu nuclear processes up to 100 MeV: production of 64Cu. Nucl Instr and Meth B 2005;240:625.CrossRef
84.
go back to reference Mausner LF, Hock JC. Target design consideration for isotope production with high intensity 200 MeV protons. Nucl Inst Meth A 1997;397:18.CrossRef Mausner LF, Hock JC. Target design consideration for isotope production with high intensity 200 MeV protons. Nucl Inst Meth A 1997;397:18.CrossRef
85.
go back to reference Quaim SM. Nuclear data for medical applications: an overview. Radiochim Acta 2001;89:189.CrossRef Quaim SM. Nuclear data for medical applications: an overview. Radiochim Acta 2001;89:189.CrossRef
Metadata
Title
ARRONAX, a high-energy and high-intensity cyclotron for nuclear medicine
Authors
Ferid Haddad
Ludovic Ferrer
Arnaud Guertin
Thomas Carlier
Nathalie Michel
Jacques Barbet
Jean-François Chatal
Publication date
01-07-2008
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 7/2008
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-008-0802-5

Other articles of this Issue 7/2008

European Journal of Nuclear Medicine and Molecular Imaging 7/2008 Go to the issue