Skip to main content
Top
Published in: Respiratory Research 1/2009

Open Access 01-12-2009 | Research

Arginine deficiency augments inflammatory mediator production by airway epithelial cells in vitro

Authors: Xiao-Yun Fan, Arjen van den Berg, Mieke Snoek, Laurens G van der Flier, Barbara Smids, Henk M Jansen, Rong-Yu Liu, René Lutter

Published in: Respiratory Research | Issue 1/2009

Login to get access

Abstract

Background

Previously we showed that reduced availability of the essential amino acid tryptophan per se attenuates post-transcriptional control of interleukin (IL)-6 and IL-8 leading to hyperresponsive production of these inflammatory mediators by airway epithelial cells. Availability of the non-essential amino acid arginine in the inflamed airway mucosa of patients with asthma is reduced markedly, but it is not known whether this can also lead to an exaggerated production of IL-6 and IL-8.

Methods

IL-6 and IL-8 were determined by ELISA in culture supernatants of NCI-H292 airway epithelial-like cells and normal bronchial epithelial (NHBE) cells that were exposed to TNF-α, LPS or no stimulus, in medium with or without arginine. Arginine deficiency may also result from exposure to poly-L-arginine or major basic protein (MBP), which can block arginine uptake. Epithelial cells were exposed to these polycationic proteins and L-14C-arginine uptake was assessed as well as IL-6 and IL-8 production. To determine the mode of action, IL-6 and IL-8 mRNA profiles over time were assessed as were gene transcription and post-transcriptional mRNA degradation.

Results

For both NCI-H292 and NHBE cells, low arginine concentrations enhanced basal epithelial IL-6 and IL-8 production and synergized with TNF-α-induced IL-6 and IL-8 production. Poly-L-arginine enhanced the stimulus-induced IL-6 and IL-8 production, however, blocking arginine uptake and the enhanced IL-6 and IL-8 production appeared unrelated. The exaggerated IL-6 and IL-8 production due to arginine deficiency and to poly-L-arginine depend on a post-transcriptional and a transcriptional process, respectively.

Conclusion

We conclude that both reduced arginine availability per se and the presence of polycationic proteins may promote airway inflammation by enhanced pro-inflammatory mediator production in airway epithelial cells, but due to distinct mechanisms.
Literature
3.
go back to reference Fei GH, Liu RY, Zhang ZH, Zhou JN: Alterations in circadian rhythms of melatonin and cortisol in patients with bronchial asthma. Acta Pharmacol Sin 2004,25(5):651–6.PubMed Fei GH, Liu RY, Zhang ZH, Zhou JN: Alterations in circadian rhythms of melatonin and cortisol in patients with bronchial asthma. Acta Pharmacol Sin 2004,25(5):651–6.PubMed
4.
go back to reference Yates DH, Kharitonov SA, Thomas PS, Barnes PJ: Endogenous nitric oxide is decreased in asthmatic patients by an inhibitor of inducible nitric oxide synthase. Am J Respir Crit Care Med 1996,154(1):247–50.CrossRefPubMed Yates DH, Kharitonov SA, Thomas PS, Barnes PJ: Endogenous nitric oxide is decreased in asthmatic patients by an inhibitor of inducible nitric oxide synthase. Am J Respir Crit Care Med 1996,154(1):247–50.CrossRefPubMed
5.
go back to reference Kharitonov SA, O'Connor BJ, Evans DJ, Barnes PJ: Allergen-induced late asthmatic reactions are associated with elevation of exhaled nitric oxide. Am J Respir Crit Care Med 1995,151(6):1894–9.CrossRefPubMed Kharitonov SA, O'Connor BJ, Evans DJ, Barnes PJ: Allergen-induced late asthmatic reactions are associated with elevation of exhaled nitric oxide. Am J Respir Crit Care Med 1995,151(6):1894–9.CrossRefPubMed
6.
go back to reference Kochañski L, Kossmann S, Rogala E, Dwornicki J: Sputum arginase activity in bronchial asthma. Pneumonol Pol 1980,48(5):329–32.PubMed Kochañski L, Kossmann S, Rogala E, Dwornicki J: Sputum arginase activity in bronchial asthma. Pneumonol Pol 1980,48(5):329–32.PubMed
7.
go back to reference Zimmermann N, King NE, Laporte J, Yang M, Mishra A, Pope SM, Muntel EE, Witte DP, Pegg AA, Foster PS, Hamid Q, Rothenberg ME: Dissection of experimental asthma with DNA microarray analysis identifies arginase in asthma pathogenesis. J Clin Invest 2003,111(12):1863–74.CrossRefPubMedPubMedCentral Zimmermann N, King NE, Laporte J, Yang M, Mishra A, Pope SM, Muntel EE, Witte DP, Pegg AA, Foster PS, Hamid Q, Rothenberg ME: Dissection of experimental asthma with DNA microarray analysis identifies arginase in asthma pathogenesis. J Clin Invest 2003,111(12):1863–74.CrossRefPubMedPubMedCentral
8.
go back to reference Morris CR, Poljakovic M, Lavrisha L, Machado L, Kuypers FA, Morris SM Jr: Decreased arginine bioavailability and increased serum arginase activity in asthma. Am J Respir Crit Care Med 2004,170(2):148–53.CrossRefPubMed Morris CR, Poljakovic M, Lavrisha L, Machado L, Kuypers FA, Morris SM Jr: Decreased arginine bioavailability and increased serum arginase activity in asthma. Am J Respir Crit Care Med 2004,170(2):148–53.CrossRefPubMed
9.
go back to reference van Wissen M, Snoek M, Smids B, Jansen HM, Lutter R: IFN-gamma amplifies IL-6 and IL-8 responses by airway epithelial-like cells via indoleamine 2,3-dioxygenase. J Immunol 2002,169(12):7039–44.CrossRefPubMed van Wissen M, Snoek M, Smids B, Jansen HM, Lutter R: IFN-gamma amplifies IL-6 and IL-8 responses by airway epithelial-like cells via indoleamine 2,3-dioxygenase. J Immunol 2002,169(12):7039–44.CrossRefPubMed
10.
go back to reference Arseneault D, Maghni K, Sirois P: Selective inflammatory response induced by intratracheal and intravenous administration of poly-L-arginine in guinea pig lungs. Inflammation 1999,23(3):287–304.PubMed Arseneault D, Maghni K, Sirois P: Selective inflammatory response induced by intratracheal and intravenous administration of poly-L-arginine in guinea pig lungs. Inflammation 1999,23(3):287–304.PubMed
11.
go back to reference Beckman JS, Koppenol WH: Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 1996,271(5 Pt 1):C1424–37. Review.PubMed Beckman JS, Koppenol WH: Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 1996,271(5 Pt 1):C1424–37. Review.PubMed
12.
go back to reference Bosshart H, Heinzelmann M: arginine-Rich Cationic Polypeptides Amplify Lipopolysaccharide-Induced Monocyte Activation. Infect Immun 2002,70(12):6904–10.CrossRefPubMedPubMedCentral Bosshart H, Heinzelmann M: arginine-Rich Cationic Polypeptides Amplify Lipopolysaccharide-Induced Monocyte Activation. Infect Immun 2002,70(12):6904–10.CrossRefPubMedPubMedCentral
13.
go back to reference Closs EI, Simon A, Vekony N, Rotmann A: Plasma membrane transporters for arginine. J Nutr 2004,134(10 Suppl):2752S-2759S. discussion 2765S-2767SPubMed Closs EI, Simon A, Vekony N, Rotmann A: Plasma membrane transporters for arginine. J Nutr 2004,134(10 Suppl):2752S-2759S. discussion 2765S-2767SPubMed
14.
go back to reference Closs EI, Boissel JP, Habermeier A, Rotmann A: Structure and function of cationic amino acid transporters (CATs). J Membr Biol 2006,213(2):67–77.CrossRefPubMed Closs EI, Boissel JP, Habermeier A, Rotmann A: Structure and function of cationic amino acid transporters (CATs). J Membr Biol 2006,213(2):67–77.CrossRefPubMed
15.
go back to reference Hammermann R, Hirschmann J, Hey C, Mossner J, Folkerts G, Nijkamp FP, Wessler I, Racke K: Cationic proteins inhibit arginine uptake in rat alveolar macrophages and tracheal epithelial cells. Implications for nitric oxide synthesis. Am J Respir Cell Mol Biol 1999,21(2):155–62.CrossRefPubMed Hammermann R, Hirschmann J, Hey C, Mossner J, Folkerts G, Nijkamp FP, Wessler I, Racke K: Cationic proteins inhibit arginine uptake in rat alveolar macrophages and tracheal epithelial cells. Implications for nitric oxide synthesis. Am J Respir Cell Mol Biol 1999,21(2):155–62.CrossRefPubMed
16.
go back to reference Helle M, Boeije L, de Groot E, de Vos A, Aarden L: Sensitive ELISA for interleukin-6. Detection of IL-6 in biological fluids: synovial fluids and sera. J Immunol Methods 1991,138(1):47–56.CrossRefPubMed Helle M, Boeije L, de Groot E, de Vos A, Aarden L: Sensitive ELISA for interleukin-6. Detection of IL-6 in biological fluids: synovial fluids and sera. J Immunol Methods 1991,138(1):47–56.CrossRefPubMed
17.
go back to reference Hack CE, Hart M, van Schijndel RJ, Eerenberg AJ, Nuijens JH, Thijs LG, Aarden LA: Interleukin-8 in sepsis: relation to shock and inflammatory mediators. Infect Immun 1992,60(7):2835–42.PubMedPubMedCentral Hack CE, Hart M, van Schijndel RJ, Eerenberg AJ, Nuijens JH, Thijs LG, Aarden LA: Interleukin-8 in sepsis: relation to shock and inflammatory mediators. Infect Immun 1992,60(7):2835–42.PubMedPubMedCentral
18.
go back to reference Roger T, Out T, Mukaida N, Matsushima K, Jansen H, Lutter R: Enhanced AP-1 and NF-kappaB activities and stability of interleukin 8 (IL-8) transcripts are implicated in IL-8 mRNA superinduction in lung epithelial H292 cells. Biochem J 1998,330(Pt 1):429–35.CrossRefPubMedPubMedCentral Roger T, Out T, Mukaida N, Matsushima K, Jansen H, Lutter R: Enhanced AP-1 and NF-kappaB activities and stability of interleukin 8 (IL-8) transcripts are implicated in IL-8 mRNA superinduction in lung epithelial H292 cells. Biochem J 1998,330(Pt 1):429–35.CrossRefPubMedPubMedCentral
19.
go back to reference Roger T, Out TA, Jansen HM, Lutter R: Superinduction of interleukin-6 mRNA in lung epithelial H292 cells depends on transiently increased C/EBP activity and durable increased mRNA stability. Biochim Biophys Acta 1998,1398(3):275–84.CrossRefPubMed Roger T, Out TA, Jansen HM, Lutter R: Superinduction of interleukin-6 mRNA in lung epithelial H292 cells depends on transiently increased C/EBP activity and durable increased mRNA stability. Biochim Biophys Acta 1998,1398(3):275–84.CrossRefPubMed
20.
go back to reference Roger T, Bresser P, Snoek M, Sluijs K, Berg A, Nijhuis M, Jansen HM, Lutter R: Exaggerated IL-8 and IL-6 responses to TNF-alpha by parainfluenza virus type 4-infected NCI-H292 cells. Am J Physiol Lung Cell Mol Physiol 2004,287(5):L1048–55.CrossRefPubMed Roger T, Bresser P, Snoek M, Sluijs K, Berg A, Nijhuis M, Jansen HM, Lutter R: Exaggerated IL-8 and IL-6 responses to TNF-alpha by parainfluenza virus type 4-infected NCI-H292 cells. Am J Physiol Lung Cell Mol Physiol 2004,287(5):L1048–55.CrossRefPubMed
21.
go back to reference Berg A, Kuiper M, Snoek M, Timens W, Postma DS, Jansen HM, Lutter R: Interleukin-17 induces hyperresponsive interleukin-8 and interleukin-6 production to tumor necrosis factor-alpha in structural lung cells. Am J Respir Cell Mol Biol 2005,33(1):97–104.CrossRefPubMed Berg A, Kuiper M, Snoek M, Timens W, Postma DS, Jansen HM, Lutter R: Interleukin-17 induces hyperresponsive interleukin-8 and interleukin-6 production to tumor necrosis factor-alpha in structural lung cells. Am J Respir Cell Mol Biol 2005,33(1):97–104.CrossRefPubMed
22.
go back to reference Mukaida N, Mahe Y, Matsushima K: interaction of nuclear factor-kappa B- and cis-regulatory enhancer binding protein-like factor binding elements in activating the interleukin-8 gene by pro-inflammatory cytokines. J Biol Chem 1990,265(34):21128–33.PubMed Mukaida N, Mahe Y, Matsushima K: interaction of nuclear factor-kappa B- and cis-regulatory enhancer binding protein-like factor binding elements in activating the interleukin-8 gene by pro-inflammatory cytokines. J Biol Chem 1990,265(34):21128–33.PubMed
23.
go back to reference Libermann TA, Baltimore D: Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Mol Cell Biol 1990,10(5):2327–34.CrossRefPubMedPubMedCentral Libermann TA, Baltimore D: Activation of interleukin-6 gene expression through the NF-kappa B transcription factor. Mol Cell Biol 1990,10(5):2327–34.CrossRefPubMedPubMedCentral
24.
go back to reference Meurs H, Maarsingh H, Zaagsma J: Arginase and asthma: novel insights into nitric oxide homeostasis and airway hyperresponsiveness. Trends Pharmacol Sci 2003,24(9):450–5. Review.CrossRefPubMed Meurs H, Maarsingh H, Zaagsma J: Arginase and asthma: novel insights into nitric oxide homeostasis and airway hyperresponsiveness. Trends Pharmacol Sci 2003,24(9):450–5. Review.CrossRefPubMed
25.
go back to reference Heinzel B, John M, Klatt P, Böhme E, Mayer B: Ca2+/calmodulin-dependent formation of hydrogen peroxide by brain nitric oxide synthase. Biochem J 1992,281(Pt 3):627–30.CrossRefPubMedPubMedCentral Heinzel B, John M, Klatt P, Böhme E, Mayer B: Ca2+/calmodulin-dependent formation of hydrogen peroxide by brain nitric oxide synthase. Biochem J 1992,281(Pt 3):627–30.CrossRefPubMedPubMedCentral
26.
go back to reference Muijsers RB, Veeken A, Habernickel J, Folkerts G, Postma DS, Nijkamp FP: Intra-luminal exposure of murine airways to peroxynitrite causes inflammation but not hyperresponsiveness. Inflamm Res 2002,51(1):33–7.CrossRefPubMed Muijsers RB, Veeken A, Habernickel J, Folkerts G, Postma DS, Nijkamp FP: Intra-luminal exposure of murine airways to peroxynitrite causes inflammation but not hyperresponsiveness. Inflamm Res 2002,51(1):33–7.CrossRefPubMed
27.
go back to reference Di Costanzo L, Sabio G, Mora A, Rodriguez PC, Ochoa AC, Centeno F, Christianson DW: Crystal structure of human arginase I at 1.29-A resolution and exploration of inhibition in the immune response. Proc Natl Acad Sci USA 2005,102(37):13058–63.CrossRefPubMedPubMedCentral Di Costanzo L, Sabio G, Mora A, Rodriguez PC, Ochoa AC, Centeno F, Christianson DW: Crystal structure of human arginase I at 1.29-A resolution and exploration of inhibition in the immune response. Proc Natl Acad Sci USA 2005,102(37):13058–63.CrossRefPubMedPubMedCentral
28.
go back to reference Hanazawa T, Kharitonov SA, Barnes PJ: Increased nitrotyrosine in exhaled breath condensate of patients with asthma. Am J Respir Crit Care Med 2000, 162:1273–1276.CrossRefPubMed Hanazawa T, Kharitonov SA, Barnes PJ: Increased nitrotyrosine in exhaled breath condensate of patients with asthma. Am J Respir Crit Care Med 2000, 162:1273–1276.CrossRefPubMed
29.
go back to reference Coyle AJ, Ackerman SJ, Burch R, Proud D, Irvin CG: Human eosinophil-granule major basic protein and synthetic polycations induce airway hyperresponsiveness in vivo dependent on bradykinin generation. J Clin Invest 1995,95(4):1735–40.CrossRefPubMedPubMedCentral Coyle AJ, Ackerman SJ, Burch R, Proud D, Irvin CG: Human eosinophil-granule major basic protein and synthetic polycations induce airway hyperresponsiveness in vivo dependent on bradykinin generation. J Clin Invest 1995,95(4):1735–40.CrossRefPubMedPubMedCentral
30.
go back to reference Coyle AJ, Uchida D, Ackerman SJ, Mitzner W, Irvin CG: Role of cationic proteins in the airway. Hyperresponsiveness due to airway inflammation. Am J Respir Crit Care Med 1994,150(5 Pt 2):S63–71.CrossRefPubMed Coyle AJ, Uchida D, Ackerman SJ, Mitzner W, Irvin CG: Role of cationic proteins in the airway. Hyperresponsiveness due to airway inflammation. Am J Respir Crit Care Med 1994,150(5 Pt 2):S63–71.CrossRefPubMed
31.
go back to reference Meurs H, Schuurman FE, Duyvendak M, Zaagsma J: Deficiency of nitric oxide in polycation-induced airway hyperreactivity. Br J Pharmacol 1999,126(3):559–62.CrossRefPubMedPubMedCentral Meurs H, Schuurman FE, Duyvendak M, Zaagsma J: Deficiency of nitric oxide in polycation-induced airway hyperreactivity. Br J Pharmacol 1999,126(3):559–62.CrossRefPubMedPubMedCentral
32.
go back to reference Jarman ER, Lamb JR: Reversal of established CD4+ type 2 T helper-mediated allergic airway inflammation and eosinophilia by therapeutic treatment with DNA vaccines limits progression towards chronic inflammation and remodeling. Immunology 2004,112(4):631–42.CrossRefPubMedPubMedCentral Jarman ER, Lamb JR: Reversal of established CD4+ type 2 T helper-mediated allergic airway inflammation and eosinophilia by therapeutic treatment with DNA vaccines limits progression towards chronic inflammation and remodeling. Immunology 2004,112(4):631–42.CrossRefPubMedPubMedCentral
33.
go back to reference Bosshart H, Heinzelmann M: Endotoxin-neutralizing effects of histidine-rich peptides. FEBS 2003,553(1–2):135–40.CrossRef Bosshart H, Heinzelmann M: Endotoxin-neutralizing effects of histidine-rich peptides. FEBS 2003,553(1–2):135–40.CrossRef
34.
go back to reference Jiang Q, Akashi S, Miyake K, Petty HR: Lipopolysaccharide induces physical proximity between CD14 and toll-like receptor 4 (TLR4) prior to nuclear translocation of NF-kappa B. J Immunol 2000,165(7):3541–4.CrossRefPubMed Jiang Q, Akashi S, Miyake K, Petty HR: Lipopolysaccharide induces physical proximity between CD14 and toll-like receptor 4 (TLR4) prior to nuclear translocation of NF-kappa B. J Immunol 2000,165(7):3541–4.CrossRefPubMed
35.
go back to reference Furuta GT, Ackerman SJ, Varga J, Spiess AM, Wang MY, Wershil BK: Eosinophil granule-derived major basic protein induces IL-8 expression in human intestinal myofibroblasts. Clin Exp Immunol 2000,122(1):35–40.CrossRefPubMedPubMedCentral Furuta GT, Ackerman SJ, Varga J, Spiess AM, Wang MY, Wershil BK: Eosinophil granule-derived major basic protein induces IL-8 expression in human intestinal myofibroblasts. Clin Exp Immunol 2000,122(1):35–40.CrossRefPubMedPubMedCentral
36.
go back to reference Page SM, Gleich GJ, Roebuck KA, Thomas LL: Stimulation of Neutrophil Interleukin-8 Production by Eosinophil Granule Major Basic Protein. Am J Respir Cell Mol Biol 1999,21(2):230–7.CrossRefPubMed Page SM, Gleich GJ, Roebuck KA, Thomas LL: Stimulation of Neutrophil Interleukin-8 Production by Eosinophil Granule Major Basic Protein. Am J Respir Cell Mol Biol 1999,21(2):230–7.CrossRefPubMed
37.
go back to reference Becker S, Quay J, Koren HS, Haskill JS: Constitutive and stimulated MCP-1, GRO alpha, beta, and gamma expression in human airway epithelium and bronchoalveolar macrophages. Am J Physiol 1994,266(3 Pt 1):L278–86.PubMed Becker S, Quay J, Koren HS, Haskill JS: Constitutive and stimulated MCP-1, GRO alpha, beta, and gamma expression in human airway epithelium and bronchoalveolar macrophages. Am J Physiol 1994,266(3 Pt 1):L278–86.PubMed
38.
go back to reference Visigalli R, Bussolati O, Sala R, Barilli A, Rotoli BM, Parolari A, Alamanni F, Gazzola GC, Dall'Asta V: The stimulation of arginine transport by TNFalpha in human endothelial cells depends on NF-kappaB activation. Biochim Biophys Acta 2004,1664(1):45–52.CrossRefPubMed Visigalli R, Bussolati O, Sala R, Barilli A, Rotoli BM, Parolari A, Alamanni F, Gazzola GC, Dall'Asta V: The stimulation of arginine transport by TNFalpha in human endothelial cells depends on NF-kappaB activation. Biochim Biophys Acta 2004,1664(1):45–52.CrossRefPubMed
39.
go back to reference Heumann D, Gallay P, Barras C, Zaech P, Ulevitch RJ, Tobias PS, Glauser MP, Baumgartner JD: Control of lipopolysaccharide (LPS) binding and LPS-induced tumor necrosis factor secretion in human peripheral blood monocytes. J Immunol 1992,148(11):3505–12.PubMed Heumann D, Gallay P, Barras C, Zaech P, Ulevitch RJ, Tobias PS, Glauser MP, Baumgartner JD: Control of lipopolysaccharide (LPS) binding and LPS-induced tumor necrosis factor secretion in human peripheral blood monocytes. J Immunol 1992,148(11):3505–12.PubMed
40.
go back to reference Maarsingh H, Zuidhof AB, Bos IS, van Duin M, Boucher JL, Zaagsma J, Meurs H: Arginase inhibition protects against allergen-induced airway obstruction, hyperresponsiveness, and inflammation. Am J Respir Crit Care Med 2008,178(6):565–73.CrossRefPubMed Maarsingh H, Zuidhof AB, Bos IS, van Duin M, Boucher JL, Zaagsma J, Meurs H: Arginase inhibition protects against allergen-induced airway obstruction, hyperresponsiveness, and inflammation. Am J Respir Crit Care Med 2008,178(6):565–73.CrossRefPubMed
41.
go back to reference Ckless K, Lampert A, Reiss J, Kasahara D, Poynter ME, Irvin CG, Lundblad LK, Norton R, Vliet A, Janssen-Heininger YM: Inhibition of arginase activity enhances inflammation in mice with allergic airway disease, in association with increases in protein S-nitrosylation and tyrosine nitration. J Immunol 2008,181(6):4255–64.CrossRefPubMedPubMedCentral Ckless K, Lampert A, Reiss J, Kasahara D, Poynter ME, Irvin CG, Lundblad LK, Norton R, Vliet A, Janssen-Heininger YM: Inhibition of arginase activity enhances inflammation in mice with allergic airway disease, in association with increases in protein S-nitrosylation and tyrosine nitration. J Immunol 2008,181(6):4255–64.CrossRefPubMedPubMedCentral
Metadata
Title
Arginine deficiency augments inflammatory mediator production by airway epithelial cells in vitro
Authors
Xiao-Yun Fan
Arjen van den Berg
Mieke Snoek
Laurens G van der Flier
Barbara Smids
Henk M Jansen
Rong-Yu Liu
René Lutter
Publication date
01-12-2009
Publisher
BioMed Central
Published in
Respiratory Research / Issue 1/2009
Electronic ISSN: 1465-993X
DOI
https://doi.org/10.1186/1465-9921-10-62

Other articles of this Issue 1/2009

Respiratory Research 1/2009 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine