Skip to main content
Top
Published in: Journal of Clinical Immunology 1/2013

01-01-2013 | Original Research

Are Transglutaminase 2 Inhibitors Able to Reduce Gliadin-Induced Toxicity Related to Celiac Disease? A Proof-of-Concept Study

Authors: Tiina Rauhavirta, Mikko Oittinen, Rami Kivistö, Pekka T. Männistö, J. Arturo Garcia-Horsman, Zhuo Wang, Martin Griffin, Markku Mäki, Katri Kaukinen, Katri Lindfors

Published in: Journal of Clinical Immunology | Issue 1/2013

Login to get access

Abstract

Purpose

Celiac disease is an autoimmune-mediated enteropathy characterized by adaptive and innate immune responses to dietary gluten in wheat, rye and barley in genetically susceptible individuals. Gluten-derived gliadin peptides are deamidated by transglutaminase 2 (TG2), leading to an immune response in the small-intestinal mucosa. TG2 inhibitors have therefore been suggested as putative drugs for celiac disease. In this proof-of-concept study we investigated whether two TG2 inhibitors, cell-impermeable R281 and cell-permeable R283, can prevent the toxic effects of gliadin in vitro and ex vivo.

Methods

Intestinal epithelial Caco-2 cells were treated with peptic-tryptic-digested gliadin (PT-gliadin) with or without TG2 inhibitors and thereafter direct toxic effects (transepithelial resistance, cytoskeletal rearrangement, junction protein expression and phoshorylation of extracellular-signal-regulated kinase 1/2) were determined. In an organ culture of celiac-patient-derived small-intestinal biopsies we measured secretion of TG2-autoantibodies into the culture medium and the densities of CD25- and interleukin (IL) 15-positive cells, forkhead box P3 (FOXP3)-positive regulatory T cells (Tregs) and Ki-67-positive proliferating crypt cells.

Results

Both TG2 inhibitors evinced protective effects against gliadin-induced detrimental effects in Caco-2 cells but the cell-impermeable R281 seemed slightly more potent. In addition, TG2 inhibitor R281 modified the gluten-induced increase in CD25- and IL15-positive cells, Tregs and crypt cell proliferation, but had no effect on antibody secretion in celiac-patient-derived biopsies.

Conclusions

Our results suggest that TG2 inhibitors are able to reduce certain gliadin-induced effects related to responses in vitro and ex vivo.
Literature
1.
go back to reference Sulkanen S, Halttunen T, Laurila K, et al. Tissue transglutaminase autoantibody enzyme-linked immunosorbent assay in detecting celiac disease. Gastroenterology. 1998;115:1322–8.PubMedCrossRef Sulkanen S, Halttunen T, Laurila K, et al. Tissue transglutaminase autoantibody enzyme-linked immunosorbent assay in detecting celiac disease. Gastroenterology. 1998;115:1322–8.PubMedCrossRef
2.
go back to reference Kaukinen K, Collin P, Laurila K, Kaartinen T, Partanen J, Mäki M. Resurrection of gliadin antibodies in coeliac disease. Deamidated gliadin peptide antibody test provides additional diagnostic benefit. Scand J Gastroenterol. 2007;42:1428–33.PubMedCrossRef Kaukinen K, Collin P, Laurila K, Kaartinen T, Partanen J, Mäki M. Resurrection of gliadin antibodies in coeliac disease. Deamidated gliadin peptide antibody test provides additional diagnostic benefit. Scand J Gastroenterol. 2007;42:1428–33.PubMedCrossRef
3.
go back to reference Hallert C, Granno C, Hulten S, Midhagen G, Strom M, Svensson H, Valdimarsson T. Living with coeliac disease: controlled study of the burden of illness. Scand J Gastroenterol. 2002;37:39–42.PubMedCrossRef Hallert C, Granno C, Hulten S, Midhagen G, Strom M, Svensson H, Valdimarsson T. Living with coeliac disease: controlled study of the burden of illness. Scand J Gastroenterol. 2002;37:39–42.PubMedCrossRef
4.
5.
go back to reference Gundemir S, Colak G, Tucholski J, Johnson GV. Transglutaminase 2: a molecular Swiss army knife. Biochim Biophys Acta. 2012;1823:406–19. Gundemir S, Colak G, Tucholski J, Johnson GV. Transglutaminase 2: a molecular Swiss army knife. Biochim Biophys Acta. 2012;1823:406–19.
6.
go back to reference Jones RA, Nicholas B, Mian S, Davies PJ, Griffin M. Reduced expression of tissue transglutaminase in a human endothelial cell line leads to changes in cell spreading, cell adhesion and reduced polymerisation of fibronectin. J Cell Sci. 1997;110:2461–72.PubMed Jones RA, Nicholas B, Mian S, Davies PJ, Griffin M. Reduced expression of tissue transglutaminase in a human endothelial cell line leads to changes in cell spreading, cell adhesion and reduced polymerisation of fibronectin. J Cell Sci. 1997;110:2461–72.PubMed
7.
go back to reference Griffin M, Casadio R, Bergamini CM. Transglutaminases: nature's biological glues. Biochem J. 2002;368:377–96.PubMedCrossRef Griffin M, Casadio R, Bergamini CM. Transglutaminases: nature's biological glues. Biochem J. 2002;368:377–96.PubMedCrossRef
8.
go back to reference Molberg O, Mcadam SN, Korner R, et al. Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. Nat Med. 1998;4:713–7.PubMedCrossRef Molberg O, Mcadam SN, Korner R, et al. Tissue transglutaminase selectively modifies gliadin peptides that are recognized by gut-derived T cells in celiac disease. Nat Med. 1998;4:713–7.PubMedCrossRef
9.
go back to reference Frisullo G, Nociti V, Iorio R, et al. Increased CD4 + CD25 + Foxp3+ T cells in peripheral blood of celiac disease patients: correlation with dietary treatment. Hum Immunol. 2009;70:430–5.PubMedCrossRef Frisullo G, Nociti V, Iorio R, et al. Increased CD4 + CD25 + Foxp3+ T cells in peripheral blood of celiac disease patients: correlation with dietary treatment. Hum Immunol. 2009;70:430–5.PubMedCrossRef
10.
go back to reference Gianfrani C, Levings MK, Sartirana C, et al. Gliadin-specific type 1 regulatory T cells from the intestinal mucosa of treated celiac patients inhibit pathogenic T cells. J Immunol. 2006;177:4178–86.PubMed Gianfrani C, Levings MK, Sartirana C, et al. Gliadin-specific type 1 regulatory T cells from the intestinal mucosa of treated celiac patients inhibit pathogenic T cells. J Immunol. 2006;177:4178–86.PubMed
11.
go back to reference Maiuri L, Ciacci C, Ricciardelli I, et al. Association between innate response to gliadin and activation of pathogenic T cells in coeliac disease. Lancet. 2003;362:30–7.PubMedCrossRef Maiuri L, Ciacci C, Ricciardelli I, et al. Association between innate response to gliadin and activation of pathogenic T cells in coeliac disease. Lancet. 2003;362:30–7.PubMedCrossRef
12.
go back to reference Sander GR, Cummins AG, Henshall T, Powell BC. Rapid disruption of intestinal barrier function by gliadin involves altered expression of apical junctional proteins. FEBS Lett. 2005;579:4851–5.PubMedCrossRef Sander GR, Cummins AG, Henshall T, Powell BC. Rapid disruption of intestinal barrier function by gliadin involves altered expression of apical junctional proteins. FEBS Lett. 2005;579:4851–5.PubMedCrossRef
13.
go back to reference Giovannini C, Maiuri L, De Vincenzi M. Cytotoxic effect of prolamin-derived peptides on in vitro cultures of cell line Caco-2: Implications for coeliac disease. Toxicol In Vitro. 1995;9:251–5.PubMedCrossRef Giovannini C, Maiuri L, De Vincenzi M. Cytotoxic effect of prolamin-derived peptides on in vitro cultures of cell line Caco-2: Implications for coeliac disease. Toxicol In Vitro. 1995;9:251–5.PubMedCrossRef
14.
go back to reference Browning TH, Trier JS. Organ culture of mucosal biopsies of human small intestine. J Clin Invest. 1969;48:1423–32.PubMedCrossRef Browning TH, Trier JS. Organ culture of mucosal biopsies of human small intestine. J Clin Invest. 1969;48:1423–32.PubMedCrossRef
15.
go back to reference Stenman SM, Lindfors K, Korponay-Szabo IR, et al. Secretion of celiac disease autoantibodies after in vitro gliadin challenge is dependent on small-bowel mucosal transglutaminase 2-specific IgA deposits. BMC Immunol. 2008;9:6.PubMedCrossRef Stenman SM, Lindfors K, Korponay-Szabo IR, et al. Secretion of celiac disease autoantibodies after in vitro gliadin challenge is dependent on small-bowel mucosal transglutaminase 2-specific IgA deposits. BMC Immunol. 2008;9:6.PubMedCrossRef
16.
go back to reference Lindfors K, Blomqvist T, Juuti-Uusitalo K, Stenman S, Venäläinen J, Mäki M, Kaukinen K. Live probiotic Bifidobacterium lactis bacteria inhibit the toxic effects induced by wheat gliadin in epithelial cell culture. Clin Exp Immunol. 2008;152:552–8.PubMedCrossRef Lindfors K, Blomqvist T, Juuti-Uusitalo K, Stenman S, Venäläinen J, Mäki M, Kaukinen K. Live probiotic Bifidobacterium lactis bacteria inhibit the toxic effects induced by wheat gliadin in epithelial cell culture. Clin Exp Immunol. 2008;152:552–8.PubMedCrossRef
17.
go back to reference Juuti-Uusitalo K, Lindfors K, Mäki M, Patrikainen M, Isola J, Kaukinen K. Inhibition of epithelial growth factor receptor signalling does not preserve epithelial barrier function after in vitro gliadin insult. Scand J Gastroenterol. 2009;44:820–5.PubMedCrossRef Juuti-Uusitalo K, Lindfors K, Mäki M, Patrikainen M, Isola J, Kaukinen K. Inhibition of epithelial growth factor receptor signalling does not preserve epithelial barrier function after in vitro gliadin insult. Scand J Gastroenterol. 2009;44:820–5.PubMedCrossRef
18.
go back to reference Griffin M, Mongeot A, Collighan R, Saint RE, Jones RA, Coutts IG, Rathbone DL. Synthesis of potent water-soluble tissue transglutaminase inhibitors. Bioorg Med Chem Lett. 2008;18:5559–62.PubMedCrossRef Griffin M, Mongeot A, Collighan R, Saint RE, Jones RA, Coutts IG, Rathbone DL. Synthesis of potent water-soluble tissue transglutaminase inhibitors. Bioorg Med Chem Lett. 2008;18:5559–62.PubMedCrossRef
19.
go back to reference Baumgartner W, Golenhofen N, Weth A, Hiiragi T, Saint R, Griffin M, Drenckhahn D. Role of transglutaminase 1 in stabilisation of intercellular junctions of the vascular endothelium. Histochem Cell Biol. 2004;122:17–25.PubMedCrossRef Baumgartner W, Golenhofen N, Weth A, Hiiragi T, Saint R, Griffin M, Drenckhahn D. Role of transglutaminase 1 in stabilisation of intercellular junctions of the vascular endothelium. Histochem Cell Biol. 2004;122:17–25.PubMedCrossRef
20.
go back to reference Rauhavirta T, Qiao SW, Jiang Z, et al. Epithelial transport and deamidation of gliadin peptides: a role for coeliac disease patient immunoglobulin A. Clin Exp Immunol. 2011;164:127–36.PubMedCrossRef Rauhavirta T, Qiao SW, Jiang Z, et al. Epithelial transport and deamidation of gliadin peptides: a role for coeliac disease patient immunoglobulin A. Clin Exp Immunol. 2011;164:127–36.PubMedCrossRef
21.
go back to reference Maiuri L, Ciacci C, Ricciardelli I, et al. Unexpected role of surface transglutaminase type II in celiac disease. Gastroenterology. 2005;129:1400–13.PubMedCrossRef Maiuri L, Ciacci C, Ricciardelli I, et al. Unexpected role of surface transglutaminase type II in celiac disease. Gastroenterology. 2005;129:1400–13.PubMedCrossRef
22.
go back to reference Jones RA, Kotsakis P, Johnson TS, Chau DY, Ali S, Melino G, Griffin M. Matrix changes induced by transglutaminase 2 lead to inhibition of angiogenesis and tumor growth. Cell Death Differ. 2006;13:1442–53.PubMedCrossRef Jones RA, Kotsakis P, Johnson TS, Chau DY, Ali S, Melino G, Griffin M. Matrix changes induced by transglutaminase 2 lead to inhibition of angiogenesis and tumor growth. Cell Death Differ. 2006;13:1442–53.PubMedCrossRef
23.
go back to reference Stenman SM, Venalainen JI, Lindfors K, et al. Enzymatic detoxification of gluten by germinating wheat proteases: implications for new treatment of celiac disease. Ann Med. 2009;41:390–400.PubMedCrossRef Stenman SM, Venalainen JI, Lindfors K, et al. Enzymatic detoxification of gluten by germinating wheat proteases: implications for new treatment of celiac disease. Ann Med. 2009;41:390–400.PubMedCrossRef
24.
go back to reference Thomas S, Brightman F, Gill H, Lee S, Pufong B. Simulation modelling of human intestinal absorption using Caco-2 permeability and kinetic solubility data for early drug discovery. J Pharm Sci. 2008;97:4557–74.PubMedCrossRef Thomas S, Brightman F, Gill H, Lee S, Pufong B. Simulation modelling of human intestinal absorption using Caco-2 permeability and kinetic solubility data for early drug discovery. J Pharm Sci. 2008;97:4557–74.PubMedCrossRef
25.
go back to reference Molberg O, McAdam S, Lundin KE, Kristiansen C, Arentz-Hansen H, Kett K, Sollid LM. T cells from celiac disease lesions recognize gliadin epitopes deamidated in situ by endogenous tissue transglutaminase. Eur J Immunol. 2001;31:1317–23.PubMedCrossRef Molberg O, McAdam S, Lundin KE, Kristiansen C, Arentz-Hansen H, Kett K, Sollid LM. T cells from celiac disease lesions recognize gliadin epitopes deamidated in situ by endogenous tissue transglutaminase. Eur J Immunol. 2001;31:1317–23.PubMedCrossRef
26.
go back to reference Zanzi D, Stefanile R, Santagata S, et al. IL-15 interferes with suppressive activity of intestinal regulatory T cells expanded in Celiac disease. Am J Gastroenterol. 2011;106:1308–17.PubMedCrossRef Zanzi D, Stefanile R, Santagata S, et al. IL-15 interferes with suppressive activity of intestinal regulatory T cells expanded in Celiac disease. Am J Gastroenterol. 2011;106:1308–17.PubMedCrossRef
27.
go back to reference Tiittanen M, Westerholm-Ormio M, Verkasalo M, Savilahti E, Vaarala O. Infiltration of forkhead box P3-expressing cells in small intestinal mucosa in coeliac disease but not in type 1 diabetes. Clin Exp Immunol. 2008;152:498–507.PubMedCrossRef Tiittanen M, Westerholm-Ormio M, Verkasalo M, Savilahti E, Vaarala O. Infiltration of forkhead box P3-expressing cells in small intestinal mucosa in coeliac disease but not in type 1 diabetes. Clin Exp Immunol. 2008;152:498–507.PubMedCrossRef
28.
go back to reference Vorobjova T, Uibo O, Ojakivi I, Teesalu K, Panarina M, Heilman K, Uibo R. Lower expression of tight junction protein 1 gene and increased FOXP3 expression in the small bowel mucosa in coeliac disease and associated type 1 diabetes mellitus. Int Arch Allergy Immunol. 2011;156:451–61.PubMedCrossRef Vorobjova T, Uibo O, Ojakivi I, Teesalu K, Panarina M, Heilman K, Uibo R. Lower expression of tight junction protein 1 gene and increased FOXP3 expression in the small bowel mucosa in coeliac disease and associated type 1 diabetes mellitus. Int Arch Allergy Immunol. 2011;156:451–61.PubMedCrossRef
29.
go back to reference Maiuri L, Ciacci C, Auricchio S, Brown V, Quaratino S, Londei M. Interleukin 15 mediates epithelial changes in celiac disease. Gastroenterology. 2000;119:996–1006.PubMedCrossRef Maiuri L, Ciacci C, Auricchio S, Brown V, Quaratino S, Londei M. Interleukin 15 mediates epithelial changes in celiac disease. Gastroenterology. 2000;119:996–1006.PubMedCrossRef
30.
go back to reference Barone MV, Zanzi D, Maglio M, et al. Gliadin-mediated proliferation and innate immune activation in celiac disease are due to alterations in vesicular trafficking. PLoS One. 2011;6:e17039.PubMedCrossRef Barone MV, Zanzi D, Maglio M, et al. Gliadin-mediated proliferation and innate immune activation in celiac disease are due to alterations in vesicular trafficking. PLoS One. 2011;6:e17039.PubMedCrossRef
31.
go back to reference Ciccocioppo R, Finamore A, Ara C, Di Sabatino A, Mengheri E, Corazza GR. Altered expression, localization, and phosphorylation of epithelial junctional proteins in celiac disease. Am J Clin Pathol. 2006;125:502–11.PubMed Ciccocioppo R, Finamore A, Ara C, Di Sabatino A, Mengheri E, Corazza GR. Altered expression, localization, and phosphorylation of epithelial junctional proteins in celiac disease. Am J Clin Pathol. 2006;125:502–11.PubMed
32.
go back to reference Barone MV, Gimigliano A, Castoria G, et al. Growth factor-like activity of gliadin, an alimentary protein: implications for coeliac disease. Gut. 2007;56:480–8.PubMedCrossRef Barone MV, Gimigliano A, Castoria G, et al. Growth factor-like activity of gliadin, an alimentary protein: implications for coeliac disease. Gut. 2007;56:480–8.PubMedCrossRef
33.
go back to reference Koval M, Ward C, Findley MK, Roser-Page S, Helms MN, Roman J. Extracellular matrix influences alveolar epithelial claudin expression and barrier function. Am J Respir Cell Mol Biol. 2010;42:172–80.PubMedCrossRef Koval M, Ward C, Findley MK, Roser-Page S, Helms MN, Roman J. Extracellular matrix influences alveolar epithelial claudin expression and barrier function. Am J Respir Cell Mol Biol. 2010;42:172–80.PubMedCrossRef
34.
go back to reference Dieterich W, Esslinger B, Trapp D, et al. Cross linking to tissue transglutaminase and collagen favours gliadin toxicity in coeliac disease. Gut. 2006;55:478–84.PubMedCrossRef Dieterich W, Esslinger B, Trapp D, et al. Cross linking to tissue transglutaminase and collagen favours gliadin toxicity in coeliac disease. Gut. 2006;55:478–84.PubMedCrossRef
35.
go back to reference Lammers KM, Lu R, Brownley J et al. Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3. Gastroenterology. 2008;135:194–204.e3. Lammers KM, Lu R, Brownley J et al. Gliadin induces an increase in intestinal permeability and zonulin release by binding to the chemokine receptor CXCR3. Gastroenterology. 2008;135:194–204.e3.
Metadata
Title
Are Transglutaminase 2 Inhibitors Able to Reduce Gliadin-Induced Toxicity Related to Celiac Disease? A Proof-of-Concept Study
Authors
Tiina Rauhavirta
Mikko Oittinen
Rami Kivistö
Pekka T. Männistö
J. Arturo Garcia-Horsman
Zhuo Wang
Martin Griffin
Markku Mäki
Katri Kaukinen
Katri Lindfors
Publication date
01-01-2013
Publisher
Springer US
Published in
Journal of Clinical Immunology / Issue 1/2013
Print ISSN: 0271-9142
Electronic ISSN: 1573-2592
DOI
https://doi.org/10.1007/s10875-012-9745-5

Other articles of this Issue 1/2013

Journal of Clinical Immunology 1/2013 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine