Skip to main content
Top
Published in: Molecular Imaging and Biology 3/2018

01-06-2018 | Research Article

Applying Amide Proton Transfer MR Imaging to Hybrid Brain PET/MR: Concordance with Gadolinium Enhancement and Added Value to [18F]FDG PET

Authors: Hongzan Sun, Jun Xin, Jinyuan Zhou, Zaiming Lu, Qiyong Guo

Published in: Molecular Imaging and Biology | Issue 3/2018

Login to get access

Abstract

Purpose

The purpose of this study is to evaluate the diagnostic concordance and metric correlations of amide proton transfer (APT) imaging with gadolinium-enhanced magnetic resonance imaging (MRI) and 2-deoxy-2-[18F-]fluoro-D-glucose ([18F]FDG) positron emission tomography (PET), using hybrid brain PET/MRI.

Procedures

Twenty-one subjects underwent brain gadolinium-enhanced [18F]FDG PET/MRI prospectively. Imaging accuracy was compared between unenhanced MRI, MRI with enhancement, APT-weighted (APTW) images, and PET based on six diagnostic criteria. Among tumors, the McNemar test was further used for concordance assessment between gadolinium-enhanced imaging, APT imaging, and [18F]FDG PET. As well, the relation of metrics between APT imaging and PET was analyzed by the Pearson correlation analysis.

Results

APT imaging and gadolinium-enhanced MRI showed superior and similar diagnostic accuracy. APTW signal intensity and gadolinium enhancement were concordant in 19 tumors (100 %), while high [18F]FDG avidity was shown in only 12 (63.2 %). For the metrics from APT imaging and PET, there was significant correlation for 13 hypermetabolic tumors (P < 0.05) and no correlation for the remaining six [18F]FDG-avid tumors.

Conclusions

APT imaging can be used to increase diagnostic accuracy with no need to administer gadolinium chelates. APT imaging may provide an added value to [18F]FDG PET in the evaluation of tumor metabolic activity during brain PET/MR studies.
Literature
1.
go back to reference Fraum TJ, Fowler KJ, McConathy J (2016) PET/MRI:: emerging clinical applications in oncology. Acad Radiol 23:220–236CrossRefPubMed Fraum TJ, Fowler KJ, McConathy J (2016) PET/MRI:: emerging clinical applications in oncology. Acad Radiol 23:220–236CrossRefPubMed
2.
go back to reference Spick C, Herrmann K, Czernin J (2016) 18F-FDG PET/CT and PET/MRI perform equally well in cancer patients: evidence from studies on more than 2300 patients. J Nucl Med 57:420–430CrossRefPubMedPubMedCentral Spick C, Herrmann K, Czernin J (2016) 18F-FDG PET/CT and PET/MRI perform equally well in cancer patients: evidence from studies on more than 2300 patients. J Nucl Med 57:420–430CrossRefPubMedPubMedCentral
3.
go back to reference Ishii S, Shimao D, Hara T et al (2016) Comparison of integrated whole-body PET/MR and PET/CT: is PET/MR alternative to PET/CT in routine clinical oncology? Ann Nucl Med 30:225–233CrossRefPubMed Ishii S, Shimao D, Hara T et al (2016) Comparison of integrated whole-body PET/MR and PET/CT: is PET/MR alternative to PET/CT in routine clinical oncology? Ann Nucl Med 30:225–233CrossRefPubMed
4.
go back to reference Padhani AR, Liu G, Mu-Koh D et al (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11:102–125CrossRefPubMedPubMedCentral Padhani AR, Liu G, Mu-Koh D et al (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11:102–125CrossRefPubMedPubMedCentral
5.
go back to reference Yang D, Korogi Y, Sugahara T et al (2002) Cerebral gliomas: prospective comparison of multivoxel 2D chemical-shift imaging proton MR spectroscopy, echoplanar perfusion and diffusion-weighted MRI. Neuroradiology 44:656–666CrossRefPubMed Yang D, Korogi Y, Sugahara T et al (2002) Cerebral gliomas: prospective comparison of multivoxel 2D chemical-shift imaging proton MR spectroscopy, echoplanar perfusion and diffusion-weighted MRI. Neuroradiology 44:656–666CrossRefPubMed
6.
go back to reference Zhou J, Payen JF, Wilson DA, Traystman RJ, van Zijl PC (2003) Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat Med 9:1085–1090CrossRefPubMed Zhou J, Payen JF, Wilson DA, Traystman RJ, van Zijl PC (2003) Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat Med 9:1085–1090CrossRefPubMed
7.
8.
go back to reference Harston GW, Tee YK, Blockley N et al (2015) Identifying the ischaemic penumbra using pH-weighted magnetic resonance imaging. Brain 138:36–42CrossRefPubMed Harston GW, Tee YK, Blockley N et al (2015) Identifying the ischaemic penumbra using pH-weighted magnetic resonance imaging. Brain 138:36–42CrossRefPubMed
9.
go back to reference Sun H, Xin J, Zhang S et al (2014) Anatomical and functional volume concordance between FDG PET, and T2 and diffusion-weighted MRI for cervical cancer: a hybrid PET/MR study. Eur J Nucl Med Mol Imaging 41:898–905CrossRefPubMed Sun H, Xin J, Zhang S et al (2014) Anatomical and functional volume concordance between FDG PET, and T2 and diffusion-weighted MRI for cervical cancer: a hybrid PET/MR study. Eur J Nucl Med Mol Imaging 41:898–905CrossRefPubMed
10.
go back to reference Han M, Kim SY, Lee SJ, Choi JW (2015) The correlations between MRI perfusion, diffusion parameters, and 18F-FDG PET metabolic parameters in primary head-and-neck cancer: a cross-sectional analysis in single institute. Medicine (Baltimore) 94:e2141CrossRef Han M, Kim SY, Lee SJ, Choi JW (2015) The correlations between MRI perfusion, diffusion parameters, and 18F-FDG PET metabolic parameters in primary head-and-neck cancer: a cross-sectional analysis in single institute. Medicine (Baltimore) 94:e2141CrossRef
11.
go back to reference Zhou J, Blakeley JO, Hua J et al (2008) Practical data acquisition method for human brain tumor amide proton transfer (APT) imaging. Magn Reson Med 60:842–849CrossRefPubMedPubMedCentral Zhou J, Blakeley JO, Hua J et al (2008) Practical data acquisition method for human brain tumor amide proton transfer (APT) imaging. Magn Reson Med 60:842–849CrossRefPubMedPubMedCentral
12.
go back to reference Jiang S, Yu H, Wang X et al (2016) Molecular MRI differentiation between primary central nervous system lymphomas and high-grade gliomas using endogenous protein-based amide proton transfer MR imaging at 3 Tesla. Eur Radiol 26:64–71CrossRefPubMed Jiang S, Yu H, Wang X et al (2016) Molecular MRI differentiation between primary central nervous system lymphomas and high-grade gliomas using endogenous protein-based amide proton transfer MR imaging at 3 Tesla. Eur Radiol 26:64–71CrossRefPubMed
13.
go back to reference Kickingereder P, Wiestler B, Sahm F et al (2014) Primary central nervous system lymphoma and atypical glioblastoma: multiparametric differentiation by using diffusion-, perfusion-, and susceptibility-weighted MR imaging. Radiology 272:843–850CrossRefPubMed Kickingereder P, Wiestler B, Sahm F et al (2014) Primary central nervous system lymphoma and atypical glioblastoma: multiparametric differentiation by using diffusion-, perfusion-, and susceptibility-weighted MR imaging. Radiology 272:843–850CrossRefPubMed
14.
go back to reference Padma MV, Said S, Jacobs M et al (2003) Prediction of pathology and survival by FDG PET in gliomas. J Neuro-Oncol 64:227–237CrossRef Padma MV, Said S, Jacobs M et al (2003) Prediction of pathology and survival by FDG PET in gliomas. J Neuro-Oncol 64:227–237CrossRef
15.
go back to reference Klenk C, Gawande R, Tran VT et al (2016) Progressing toward a cohesive pediatric 18F-FDG PET/MR protocol: is administration of gadolinium chelates necessary? J Nucl Med 57:70–77CrossRefPubMed Klenk C, Gawande R, Tran VT et al (2016) Progressing toward a cohesive pediatric 18F-FDG PET/MR protocol: is administration of gadolinium chelates necessary? J Nucl Med 57:70–77CrossRefPubMed
16.
go back to reference Goerke S, Zaiss M, Kunz P et al (2015) Signature of protein unfolding in chemical exchange saturation transfer imaging. NMR Biomed 28:906–913CrossRefPubMed Goerke S, Zaiss M, Kunz P et al (2015) Signature of protein unfolding in chemical exchange saturation transfer imaging. NMR Biomed 28:906–913CrossRefPubMed
17.
go back to reference Zhou J, Lal B, Wilson DA, Laterra J, van Zijl PC (2003) Amide proton transfer (APT) contrast for imaging of brain tumors. Magn Reson Med 50:1120–1126CrossRefPubMed Zhou J, Lal B, Wilson DA, Laterra J, van Zijl PC (2003) Amide proton transfer (APT) contrast for imaging of brain tumors. Magn Reson Med 50:1120–1126CrossRefPubMed
18.
go back to reference Jones CK, Schlosser MJ, van Zijl PC et al (2006) Amide proton transfer imaging of human brain tumors at 3T. Magn Reson Med 56:585–592CrossRefPubMed Jones CK, Schlosser MJ, van Zijl PC et al (2006) Amide proton transfer imaging of human brain tumors at 3T. Magn Reson Med 56:585–592CrossRefPubMed
19.
go back to reference Zhou J, Tryggestad E, Wen Z et al (2011) Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nat Med 17:130–134CrossRefPubMed Zhou J, Tryggestad E, Wen Z et al (2011) Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nat Med 17:130–134CrossRefPubMed
20.
go back to reference Togao O, Yoshiura T, Keupp J et al (2014) Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades. Neuro-Oncology 16:441–448CrossRefPubMed Togao O, Yoshiura T, Keupp J et al (2014) Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades. Neuro-Oncology 16:441–448CrossRefPubMed
21.
go back to reference Park KJ, Kim HS, Park JE et al (2016) Added value of amide proton transfer imaging to conventional and perfusion MR imaging for evaluating the treatment response of newly diagnosed glioblastoma. Eur Radiol 26:4390–4403CrossRefPubMed Park KJ, Kim HS, Park JE et al (2016) Added value of amide proton transfer imaging to conventional and perfusion MR imaging for evaluating the treatment response of newly diagnosed glioblastoma. Eur Radiol 26:4390–4403CrossRefPubMed
22.
go back to reference Sakata A, Okada T, Yamamoto A et al (2015) Grading glial tumors with amide proton transfer MR imaging: different analytical approaches. J Neuro-Oncol 122:339–348CrossRef Sakata A, Okada T, Yamamoto A et al (2015) Grading glial tumors with amide proton transfer MR imaging: different analytical approaches. J Neuro-Oncol 122:339–348CrossRef
23.
go back to reference Ramalho J, Semelka RC, Ramalho M et al (2016) Gadolinium-based contrast agent accumulation and toxicity: an update. AJNR Am J Neuroradiol 37:1192–1198CrossRefPubMed Ramalho J, Semelka RC, Ramalho M et al (2016) Gadolinium-based contrast agent accumulation and toxicity: an update. AJNR Am J Neuroradiol 37:1192–1198CrossRefPubMed
24.
go back to reference Thomsen HS, Morcos SK, Almen T et al (2013) Nephrogenic systemic fibrosis and gadolinium-based contrast media: updated ESUR Contrast Medium Safety Committee guidelines. Eur Radiol 23:307–318CrossRefPubMed Thomsen HS, Morcos SK, Almen T et al (2013) Nephrogenic systemic fibrosis and gadolinium-based contrast media: updated ESUR Contrast Medium Safety Committee guidelines. Eur Radiol 23:307–318CrossRefPubMed
26.
go back to reference Lee JW, Kang KW, Park SH et al (2009) 18F-FDG PET in the assessment of tumor grade and prediction of tumor recurrence in intracranial meningioma. Eur J Nucl Med Mol Imaging 36:1574–1582CrossRefPubMed Lee JW, Kang KW, Park SH et al (2009) 18F-FDG PET in the assessment of tumor grade and prediction of tumor recurrence in intracranial meningioma. Eur J Nucl Med Mol Imaging 36:1574–1582CrossRefPubMed
27.
go back to reference Zhou J, Zhu H, Lim M et al (2013) Three-dimensional amide proton transfer MR imaging of gliomas: initial experience and comparison with gadolinium enhancement. J Magn Reson Imaging 38:1119–1128CrossRefPubMed Zhou J, Zhu H, Lim M et al (2013) Three-dimensional amide proton transfer MR imaging of gliomas: initial experience and comparison with gadolinium enhancement. J Magn Reson Imaging 38:1119–1128CrossRefPubMed
28.
go back to reference Zhu H, Jones CK, van Zijl PC, Barker PB, Zhou J (2010) Fast 3D chemical exchange saturation transfer (CEST) imaging of the human brain. Magn Reson Med 64:638–644CrossRefPubMedPubMedCentral Zhu H, Jones CK, van Zijl PC, Barker PB, Zhou J (2010) Fast 3D chemical exchange saturation transfer (CEST) imaging of the human brain. Magn Reson Med 64:638–644CrossRefPubMedPubMedCentral
29.
go back to reference Zhao X, Wen Z, Zhang G et al (2013) Three-dimensional turbo-spin-echo amide proton transfer MR imaging at 3-Tesla and its application to high-grade human brain tumors. Mol Imaging Biol 15:114–122CrossRefPubMedPubMedCentral Zhao X, Wen Z, Zhang G et al (2013) Three-dimensional turbo-spin-echo amide proton transfer MR imaging at 3-Tesla and its application to high-grade human brain tumors. Mol Imaging Biol 15:114–122CrossRefPubMedPubMedCentral
30.
31.
32.
go back to reference Rivlin M, Horev J, Tsarfaty I, Navon G (2013) Molecular imaging of tumors and metastases using chemical exchange saturation transfer (CEST) MRI. Sci Rep 3:3045CrossRefPubMed Rivlin M, Horev J, Tsarfaty I, Navon G (2013) Molecular imaging of tumors and metastases using chemical exchange saturation transfer (CEST) MRI. Sci Rep 3:3045CrossRefPubMed
Metadata
Title
Applying Amide Proton Transfer MR Imaging to Hybrid Brain PET/MR: Concordance with Gadolinium Enhancement and Added Value to [18F]FDG PET
Authors
Hongzan Sun
Jun Xin
Jinyuan Zhou
Zaiming Lu
Qiyong Guo
Publication date
01-06-2018
Publisher
Springer International Publishing
Published in
Molecular Imaging and Biology / Issue 3/2018
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-017-1136-0

Other articles of this Issue 3/2018

Molecular Imaging and Biology 3/2018 Go to the issue