Skip to main content
Top
Published in: Journal of Artificial Organs 1/2023

10-09-2022 | Review Paper

Application of mathematical analysis on dialysis

Authors: Takehiro Miyasaka, Kiyotaka Sakai

Published in: Journal of Artificial Organs | Issue 1/2023

Login to get access

Abstract

Hemodialysis is a blood purification method based on solute removal by diffusion and incorporates filtration to improve the efficiency of water removal and removal of high molecular weight substances. It is now a well-established treatment, due to the improved performance of dialyzers. This review outlines the development process of dialyzers, focusing on the application based on the mathematical analysis. First, phenomena occurring in the vicinity of the dialysis membrane are explained using a film model for diffusion and a gel polarization model for filtration. Then, currently established dialyzer designs are introduced using mathematical analysis. Furthermore, the design of dialyzers to promote internal filtration, the designs of hemodiafilters suitable for online hemodiafiltration (HDF), and the design of compact dialyzer for are also presented.
Literature
1.
go back to reference Smith KA, Colton CK, Merrill EW, Evans LB. Convective transport in a batch dialyzer: determination of true membrane permeability from a single measurement. Chem Eng Prog Symp Ser Artif Kidney. 1968;64:45–58. Smith KA, Colton CK, Merrill EW, Evans LB. Convective transport in a batch dialyzer: determination of true membrane permeability from a single measurement. Chem Eng Prog Symp Ser Artif Kidney. 1968;64:45–58.
2.
go back to reference Babb AL, Maurer CJ, Fry DL, Popovich RP, McKee RE. The determination of membrane permeabilities and solute diffusivities with applications to hemodialysis. Chem Eng Prog Symp Ser Artif Kidney. 1968;64:59–68. Babb AL, Maurer CJ, Fry DL, Popovich RP, McKee RE. The determination of membrane permeabilities and solute diffusivities with applications to hemodialysis. Chem Eng Prog Symp Ser Artif Kidney. 1968;64:59–68.
3.
go back to reference Hershey D, Cho SJ. Laminar flow of suspensions (blood): thickness and effective slip velocity of the film adjacent to the wall. Chem Eng Prog Symp Ser Chem Eng Med. 1966;62:140–5. Hershey D, Cho SJ. Laminar flow of suspensions (blood): thickness and effective slip velocity of the film adjacent to the wall. Chem Eng Prog Symp Ser Chem Eng Med. 1966;62:140–5.
4.
go back to reference Kanamori T, Sakai K. Effect of mass transfer between plasma and erythrocyte interior on evaluating dialyzer performance: Artif. Organs Today. 1995;5:101–12. Kanamori T, Sakai K. Effect of mass transfer between plasma and erythrocyte interior on evaluating dialyzer performance: Artif. Organs Today. 1995;5:101–12.
5.
go back to reference Lightfoot EN. A formal description of ultrafiltration. Chem Eng Prog Symp Ser Artif Kidney. 1968;64:79–84. Lightfoot EN. A formal description of ultrafiltration. Chem Eng Prog Symp Ser Artif Kidney. 1968;64:79–84.
6.
go back to reference Keshaviah P. Hemofiltration. AIChE Symp Ser Chron Replace Kidney Funct. 1979;75:24–30. Keshaviah P. Hemofiltration. AIChE Symp Ser Chron Replace Kidney Funct. 1979;75:24–30.
7.
go back to reference Yoshida F. Rates of blood filtration. A brief review. Ind Eng Chem Fundam. 1986;25:633–5.CrossRef Yoshida F. Rates of blood filtration. A brief review. Ind Eng Chem Fundam. 1986;25:633–5.CrossRef
8.
go back to reference Zydney AL, Colton CK. Continuous flow membrane plasmapheresis: theoretical models for flux and hemolysis prediction. Trans Am Soc Artif Intern Organs. 1982;28:408–12.PubMed Zydney AL, Colton CK. Continuous flow membrane plasmapheresis: theoretical models for flux and hemolysis prediction. Trans Am Soc Artif Intern Organs. 1982;28:408–12.PubMed
9.
go back to reference Ohashi K, Tashiro K, Kushiya F, Matsumoto T, Yoshida S, Endo M, Horio T, Ozawa K, Sakai K. Rotation-induced Taylor vortex enhances filtrate flux in plasma separation. Trans Am Soc Artif Intern Organs. 1988;34:300–7. Ohashi K, Tashiro K, Kushiya F, Matsumoto T, Yoshida S, Endo M, Horio T, Ozawa K, Sakai K. Rotation-induced Taylor vortex enhances filtrate flux in plasma separation. Trans Am Soc Artif Intern Organs. 1988;34:300–7.
10.
go back to reference Okazaki M, Yoshida F. Ultrafiltration of blood: effect of hematocrit on ultrafiltration rate. Ann Biomed Eng. 1976;4:138–50.PubMedCrossRef Okazaki M, Yoshida F. Ultrafiltration of blood: effect of hematocrit on ultrafiltration rate. Ann Biomed Eng. 1976;4:138–50.PubMedCrossRef
11.
go back to reference Mochizuki S, Zydney AL. Dextran transport through asymmetric ultrafiltration membranes: comparison with hydrodynamic models. J Membr Sci. 1992;68:21–41.CrossRef Mochizuki S, Zydney AL. Dextran transport through asymmetric ultrafiltration membranes: comparison with hydrodynamic models. J Membr Sci. 1992;68:21–41.CrossRef
12.
go back to reference Mochizuki S, Zydney AL. Effect of protein adsorption on the transport characteristics of asymmetric ultrafiltration membranes. Biotechnol Prog. 1992;8:553–61.PubMedCrossRef Mochizuki S, Zydney AL. Effect of protein adsorption on the transport characteristics of asymmetric ultrafiltration membranes. Biotechnol Prog. 1992;8:553–61.PubMedCrossRef
13.
go back to reference Abel JJ, Rowntree LG, Turner BB. On the removal of diffusible substances from the circulating blood of living animals by dialysis. J Pharmacol Exp Ther. 1914;5:275–316. Abel JJ, Rowntree LG, Turner BB. On the removal of diffusible substances from the circulating blood of living animals by dialysis. J Pharmacol Exp Ther. 1914;5:275–316.
14.
go back to reference Grimsrud L, Babb AL. Velocity and concentration profiles for laminar flow of a Newtonian fluid in a dialyzer. Chem Eng Prog Symp Ser Chem Eng Med. 1966;62:20–31. Grimsrud L, Babb AL. Velocity and concentration profiles for laminar flow of a Newtonian fluid in a dialyzer. Chem Eng Prog Symp Ser Chem Eng Med. 1966;62:20–31.
15.
go back to reference Wolf L Jr, Zaltzman S. Optimum geometry for artificial kidney dialyzers. Chem Eng Prog Symp Ser Artif Kidney. 1968;64:104–11. Wolf L Jr, Zaltzman S. Optimum geometry for artificial kidney dialyzers. Chem Eng Prog Symp Ser Artif Kidney. 1968;64:104–11.
16.
go back to reference Shimizu S, Okazaki M, Yoshida F. Mass transfer in hemodialyzers. Jpn J Artif Organs. 1978;7:317–8 (in Japanese). Shimizu S, Okazaki M, Yoshida F. Mass transfer in hemodialyzers. Jpn J Artif Organs. 1978;7:317–8 (in Japanese).
17.
go back to reference Sakai K. Technical determination of optimal dimensions of hollow fibre membranes for clinical dialysis. Nephrol Dial Transp. 1989;4:73–7. Sakai K. Technical determination of optimal dimensions of hollow fibre membranes for clinical dialysis. Nephrol Dial Transp. 1989;4:73–7.
18.
go back to reference Suzuki Y, Kohori F, Sakai K. Computer-aided design of hollow-fiber dialyzers. J Artif Organs. 2001;4:326–30.CrossRef Suzuki Y, Kohori F, Sakai K. Computer-aided design of hollow-fiber dialyzers. J Artif Organs. 2001;4:326–30.CrossRef
19.
go back to reference Noda I, Gryte CC. Mass transfer in regular arrays of hollow fibers in countercurrent dialysis. AIChE J. 1979;25:113–22.CrossRef Noda I, Gryte CC. Mass transfer in regular arrays of hollow fibers in countercurrent dialysis. AIChE J. 1979;25:113–22.CrossRef
20.
go back to reference Fukuda M, Hosoya N, Kanamori T, Sakai K, Nishikido J, Watanabe T, Fushimi F. Determination of optimal fiber density of conventional and high performance dialyzers. Artif Organs Today. 1992;2:205–14. Fukuda M, Hosoya N, Kanamori T, Sakai K, Nishikido J, Watanabe T, Fushimi F. Determination of optimal fiber density of conventional and high performance dialyzers. Artif Organs Today. 1992;2:205–14.
21.
go back to reference Takesawa S, Terasawa M, Sakagami M, Kobayashi T, Hidai H, Sakai K. Nondestructive evaluation by X-ray computed tomography of dialysate flow pattern in capillary dialyzers. Trans Am Soc Artif Intern Organs. 1988;34:794–9. Takesawa S, Terasawa M, Sakagami M, Kobayashi T, Hidai H, Sakai K. Nondestructive evaluation by X-ray computed tomography of dialysate flow pattern in capillary dialyzers. Trans Am Soc Artif Intern Organs. 1988;34:794–9.
22.
go back to reference Osuga T, Obata T, Ikehira H, Tanada S, Sasaki Y, Naito H. Dialysate pressure isobars in a hollow-fiber dialyzer determination from magnetic resonance imaging and numerical simulation of dialysate flow. Artif Organs. 1998;22:907–9.PubMedCrossRef Osuga T, Obata T, Ikehira H, Tanada S, Sasaki Y, Naito H. Dialysate pressure isobars in a hollow-fiber dialyzer determination from magnetic resonance imaging and numerical simulation of dialysate flow. Artif Organs. 1998;22:907–9.PubMedCrossRef
23.
go back to reference Osuga T, Ikehira H, Obata T, Homma K, Yamane S, Naito H. Numerical simulation of dialysate flow in a hollow-fiber dialyzer. Johosyorigakkai Ronbunshi. 2002;43:2687–96 (in Japanese). Osuga T, Ikehira H, Obata T, Homma K, Yamane S, Naito H. Numerical simulation of dialysate flow in a hollow-fiber dialyzer. Johosyorigakkai Ronbunshi. 2002;43:2687–96 (in Japanese).
24.
go back to reference Osuga T, Obata T, Ikehira H. Detection of small degree of nonuniformity in dialysate flow in hollow-fiber dialyzer using proton magnetic resonance imaging. Magn Reson Imaging. 2004;22:417–20.PubMedCrossRef Osuga T, Obata T, Ikehira H. Detection of small degree of nonuniformity in dialysate flow in hollow-fiber dialyzer using proton magnetic resonance imaging. Magn Reson Imaging. 2004;22:417–20.PubMedCrossRef
25.
go back to reference Yamamoto K, Matsuda M, Hirano A, Takizawa N, Iwashima S, Yakushiji T, Fukuda M, Miyasaka T, Sakai K. Computational evaluation of dialysis fluid flow in dialyzers with variously designed jackets. Artif Organs. 2009;33:481–6.PubMedCrossRef Yamamoto K, Matsuda M, Hirano A, Takizawa N, Iwashima S, Yakushiji T, Fukuda M, Miyasaka T, Sakai K. Computational evaluation of dialysis fluid flow in dialyzers with variously designed jackets. Artif Organs. 2009;33:481–6.PubMedCrossRef
26.
go back to reference Zydney AL. Bulk mass transport limitations during high-flux hemodialysis. Artif Organs. 1993;17:919–24.PubMedCrossRef Zydney AL. Bulk mass transport limitations during high-flux hemodialysis. Artif Organs. 1993;17:919–24.PubMedCrossRef
27.
go back to reference Kanamori T, Mizoguchi K. Analysis of solute transport by diffusion and convection in hollow-fiber hemodialyzer using the finite element method. Kagaku-Kogaku Ronbunsyu. 2011;37:91–5 (in Japanese).CrossRef Kanamori T, Mizoguchi K. Analysis of solute transport by diffusion and convection in hollow-fiber hemodialyzer using the finite element method. Kagaku-Kogaku Ronbunsyu. 2011;37:91–5 (in Japanese).CrossRef
28.
go back to reference Sano Y, Nakayama A. A porous media approach for analyzing a countercurrent dialyzer system. J Heat Transf. 2012;134:072602.CrossRef Sano Y, Nakayama A. A porous media approach for analyzing a countercurrent dialyzer system. J Heat Transf. 2012;134:072602.CrossRef
29.
go back to reference Sano Y. Operating conditions for hemodialysis treatment based on the volume averaging theory. Interdiscip Inf Sci. 2016;22:215–27. Sano Y. Operating conditions for hemodialysis treatment based on the volume averaging theory. Interdiscip Inf Sci. 2016;22:215–27.
30.
go back to reference Donato D, Boschetti-de-Fierro A, Zweigart C, Kolb M, Eloot S, Storr M, Krause B, Leypoldt K, Segers P. Optimization of dialyzer design to maximize solute removal with a two-dimensional transport model. J Membr Sci. 2017;541:519–28.CrossRef Donato D, Boschetti-de-Fierro A, Zweigart C, Kolb M, Eloot S, Storr M, Krause B, Leypoldt K, Segers P. Optimization of dialyzer design to maximize solute removal with a two-dimensional transport model. J Membr Sci. 2017;541:519–28.CrossRef
31.
go back to reference Stiller S, Mann H, Brunner H. Backfiltration in hemodialysis with highly permeable membranes. Contr Nephrol. 1985;46:23–32.CrossRef Stiller S, Mann H, Brunner H. Backfiltration in hemodialysis with highly permeable membranes. Contr Nephrol. 1985;46:23–32.CrossRef
32.
go back to reference Hosoya N, Kanamori T, Sakai K. Optimal design of a high-performance dialyzer involving backfiltration. Artif Organs Today. 1993;2:287–98. Hosoya N, Kanamori T, Sakai K. Optimal design of a high-performance dialyzer involving backfiltration. Artif Organs Today. 1993;2:287–98.
33.
go back to reference Mineshima M, Ishimori I, Ishida K, et al. Effects of internal filtration on the solute removal efficiency of a dialyzer. ASAIO J. 2000;46:456–60.PubMedCrossRef Mineshima M, Ishimori I, Ishida K, et al. Effects of internal filtration on the solute removal efficiency of a dialyzer. ASAIO J. 2000;46:456–60.PubMedCrossRef
34.
go back to reference Sekino M, Yagi T, Tamamura N. New analytical model and its applications for hemodiafilter. Kagaku Kogaku Ronbunsyu. 2010;36:34–40 (in Japanese).CrossRef Sekino M, Yagi T, Tamamura N. New analytical model and its applications for hemodiafilter. Kagaku Kogaku Ronbunsyu. 2010;36:34–40 (in Japanese).CrossRef
35.
go back to reference Rautenbach R. Albrecht R. 5.1 Tubular module. In: Membrane Processes. Wiley, New York, pp. 135–137. 1989 Rautenbach R. Albrecht R. 5.1 Tubular module. In: Membrane Processes. Wiley, New York, pp. 135–137. 1989
36.
go back to reference Sekino M. Effect of ultrafiltration in hemodiafiltration system. Kagaku Kogaku Ronbunsyu. 2012;38:34–40 (in Japanese).CrossRef Sekino M. Effect of ultrafiltration in hemodiafiltration system. Kagaku Kogaku Ronbunsyu. 2012;38:34–40 (in Japanese).CrossRef
37.
go back to reference Yamashita AC. Development of the hemodialyzer and hemodiafilter of the near future. Jpn J Clin Dial. 2020;36:439–44 (in Japanese). Yamashita AC. Development of the hemodialyzer and hemodiafilter of the near future. Jpn J Clin Dial. 2020;36:439–44 (in Japanese).
38.
go back to reference Yamashita AC. Diafilters for predilution and postdilution on-line hemodiafiltration. Blood Purif. 2013;35:29–33.PubMedCrossRef Yamashita AC. Diafilters for predilution and postdilution on-line hemodiafiltration. Blood Purif. 2013;35:29–33.PubMedCrossRef
39.
go back to reference Dorson A, Markovitz M. A pulsating ultrafiltration artificial kidney. Chem Eng Prog Symp Ser Artif Kidney. 1968;64:85–9. Dorson A, Markovitz M. A pulsating ultrafiltration artificial kidney. Chem Eng Prog Symp Ser Artif Kidney. 1968;64:85–9.
40.
go back to reference Bixler HJ, Nelsen LM, Besarab A. The Diaphron hemodiafilter: an alternative to dialysis for extracorporeal blood purification. Eng Prog Symp Ser Artif Kidney. 1968;64:90–103. Bixler HJ, Nelsen LM, Besarab A. The Diaphron hemodiafilter: an alternative to dialysis for extracorporeal blood purification. Eng Prog Symp Ser Artif Kidney. 1968;64:90–103.
41.
go back to reference Kokubo K, Kobayashi K, Yamane T, Yamamoto K, Matsuda K. Portable blood purification device available in the event of natural disaster. Jpn J Clin Dial. 2020;36:459–64 (in Japanese). Kokubo K, Kobayashi K, Yamane T, Yamamoto K, Matsuda K. Portable blood purification device available in the event of natural disaster. Jpn J Clin Dial. 2020;36:459–64 (in Japanese).
42.
go back to reference Kokubo K, Kurihara Y, Kobayashi K, Moriguchi T, Matsuda K, Kobayashi H. Development of a blood purifier using thin hollow fiber membranes. Jpn J Artif Organs. 2014;43:238–41 (in Japanese). Kokubo K, Kurihara Y, Kobayashi K, Moriguchi T, Matsuda K, Kobayashi H. Development of a blood purifier using thin hollow fiber membranes. Jpn J Artif Organs. 2014;43:238–41 (in Japanese).
43.
go back to reference Kurihara Y, Kokubo K, Kobayashi K, Ushiroda Y, Tsukao H, Yanagisawa M, Goto J, Harii N, Moriguchi T, Matsuda K, Kobayashi H. Development of hemofilter using fine diameter fibers. Ther Eng. 2015;27:44–7 (in Japanese). Kurihara Y, Kokubo K, Kobayashi K, Ushiroda Y, Tsukao H, Yanagisawa M, Goto J, Harii N, Moriguchi T, Matsuda K, Kobayashi H. Development of hemofilter using fine diameter fibers. Ther Eng. 2015;27:44–7 (in Japanese).
Metadata
Title
Application of mathematical analysis on dialysis
Authors
Takehiro Miyasaka
Kiyotaka Sakai
Publication date
10-09-2022
Publisher
Springer Nature Singapore
Published in
Journal of Artificial Organs / Issue 1/2023
Print ISSN: 1434-7229
Electronic ISSN: 1619-0904
DOI
https://doi.org/10.1007/s10047-022-01359-8

Other articles of this Issue 1/2023

Journal of Artificial Organs 1/2023 Go to the issue