Skip to main content
Top
Published in: Journal of Digital Imaging 1/2023

24-08-2022 | Original Paper

Application of Deep Learning in Generating Structured Radiology Reports: A Transformer-Based Technique

Authors: Seyed Ali Reza Moezzi, Abdolrahman Ghaedi, Mojdeh Rahmanian, Seyedeh Zahra Mousavi, Ashkan Sami

Published in: Journal of Imaging Informatics in Medicine | Issue 1/2023

Login to get access

Abstract

Since radiology reports needed for clinical practice and research are written and stored in free-text narrations, extraction of relative information for further analysis is difficult. In these circumstances, natural language processing (NLP) techniques can facilitate automatic information extraction and transformation of free-text formats to structured data. In recent years, deep learning (DL)-based models have been adapted for NLP experiments with promising results. Despite the significant potential of DL models based on artificial neural networks (ANN) and convolutional neural networks (CNN), the models face some limitations to implement in clinical practice. Transformers, another new DL architecture, have been increasingly applied to improve the process. Therefore, in this study, we propose a transformer-based fine-grained named entity recognition (NER) architecture for clinical information extraction. We collected 88 abdominopelvic sonography reports in free-text formats and annotated them based on our developed information schema. The text-to-text transfer transformer model (T5) and Scifive, a pre-trained domain-specific adaptation of the T5 model, were applied for fine-tuning to extract entities and relations and transform the input into a structured format. Our transformer-based model in this study outperformed previously applied approaches such as ANN and CNN models based on ROUGE-1, ROUGE-2, ROUGE-L, and BLEU scores of 0.816, 0.668, 0.528, and 0.743, respectively, while providing an interpretable structured report.
Literature
1.
go back to reference Hassanpour S, Langlotz CP: Information extraction from multi-institutional radiology reports. Artif Intell Med 66:29–39; 2016CrossRefPubMed Hassanpour S, Langlotz CP: Information extraction from multi-institutional radiology reports. Artif Intell Med 66:29–39; 2016CrossRefPubMed
2.
go back to reference Perera N, Dehmer M, Emmert-Streib F: Named Entity Recognition and Relation Detection for Biomedical Information Extraction. Front Cell Dev Biol 8; 2020 Perera N, Dehmer M, Emmert-Streib F: Named Entity Recognition and Relation Detection for Biomedical Information Extraction. Front Cell Dev Biol 8; 2020
3.
go back to reference Steinkamp JM, Chambers C, Lalevic D, Zafar HM, Cook TS: Toward Complete Structured Information Extraction from Radiology Reports Using Machine Learning. J Digit Imaging 32(4):554–64; 2019CrossRefPubMedPubMedCentral Steinkamp JM, Chambers C, Lalevic D, Zafar HM, Cook TS: Toward Complete Structured Information Extraction from Radiology Reports Using Machine Learning. J Digit Imaging 32(4):554–64; 2019CrossRefPubMedPubMedCentral
4.
go back to reference Sorin V, Barash Y, Konen E, Klang E: Deep Learning for Natural Language Processing in Radiology—Fundamentals and a Systematic Review. J Am Coll Radiol 17(5):639–48; 2020CrossRefPubMed Sorin V, Barash Y, Konen E, Klang E: Deep Learning for Natural Language Processing in Radiology—Fundamentals and a Systematic Review. J Am Coll Radiol 17(5):639–48; 2020CrossRefPubMed
5.
go back to reference Monshi MMA, Poon J, Chung V: Deep learning in generating radiology reports: A survey. Artif Intell Med 106; 2020 Monshi MMA, Poon J, Chung V: Deep learning in generating radiology reports: A survey. Artif Intell Med 106; 2020
6.
go back to reference Pons E, Braun LM, Hunink MM, Kors JA: Natural language processing in radiology: a systematic review. Radiology 279(2):329-43; 2016CrossRefPubMed Pons E, Braun LM, Hunink MM, Kors JA: Natural language processing in radiology: a systematic review. Radiology 279(2):329-43; 2016CrossRefPubMed
7.
go back to reference Cai T, Giannopoulos AA, Yu S, Kelil T, Ripley B, Kumamaru KK, et al.: Natural language processing technologies in radiology research and clinical applications. Radiographics 36(1):176-91; 2016CrossRefPubMed Cai T, Giannopoulos AA, Yu S, Kelil T, Ripley B, Kumamaru KK, et al.: Natural language processing technologies in radiology research and clinical applications. Radiographics 36(1):176-91; 2016CrossRefPubMed
8.
go back to reference Wolf T, Debut L, Sanh V, Chaumond J, Delangue C, Moi A, et al.: Huggingface’s transformers: State-of-the-art natural language processing. arXiv Prepr arXiv191003771; 2019 Wolf T, Debut L, Sanh V, Chaumond J, Delangue C, Moi A, et al.: Huggingface’s transformers: State-of-the-art natural language processing. arXiv Prepr arXiv191003771; 2019
9.
go back to reference Devlin J, Chang MW, Lee K, Toutanova K: Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805; 2018 Devlin J, Chang MW, Lee K, Toutanova K: Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:​1810.​04805; 2018
10.
go back to reference Lan Z, Chen M, Goodman S, Gimpel K, Sharma P, Soricut R: ALBERT: A Lite BERT for Self-supervised Learning of Language Representations. arXiv Prepr arXiv190911942; 2019 Lan Z, Chen M, Goodman S, Gimpel K, Sharma P, Soricut R: ALBERT: A Lite BERT for Self-supervised Learning of Language Representations. arXiv Prepr arXiv190911942; 2019
11.
go back to reference Liu Y, Ott M, Goyal N, Du J, Joshi M, Chen D, et al.: RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv Prepr arXiv190711692; 2019 Liu Y, Ott M, Goyal N, Du J, Joshi M, Chen D, et al.: RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv Prepr arXiv190711692; 2019
12.
go back to reference Raffel C, Shazeer N, Roberts A, Lee K, Narang S, et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. J Mach Learn Res 21:1–67; 2020 Raffel C, Shazeer N, Roberts A, Lee K, Narang S, et al.: Exploring the limits of transfer learning with a unified text-to-text transformer. J Mach Learn Res 21:1–67; 2020
13.
go back to reference Vaswani A, Brain G, Shazeer N, Parmar N, Uszkoreit J, Jones L, et al.: Attention Is All You Need. Adv Neural Inf Process Syst 5998–6008; 2017 Vaswani A, Brain G, Shazeer N, Parmar N, Uszkoreit J, Jones L, et al.: Attention Is All You Need. Adv Neural Inf Process Syst 5998–6008; 2017
14.
go back to reference Phan LN, Anibal JT, Tran H, Chanana S, Bahadroglu E, Peltekian A, Altan-Bonnet G. SciFive: a text-to-text transformer model for biomedical literature. arXiv preprint arXiv:2106.03598. 2021 May 28. Phan LN, Anibal JT, Tran H, Chanana S, Bahadroglu E, Peltekian A, Altan-Bonnet G. SciFive: a text-to-text transformer model for biomedical literature. arXiv preprint arXiv:​2106.​03598. 2021 May 28.
15.
go back to reference Lee J, Yoon W, Kim S, Kim D, Kim S, So CH, et al.: BioBERT: A pre-trained biomedical language representation model for biomedical text mining. Bioinformatics 36(4):1234–40; 2020CrossRefPubMed Lee J, Yoon W, Kim S, Kim D, Kim S, So CH, et al.: BioBERT: A pre-trained biomedical language representation model for biomedical text mining. Bioinformatics 36(4):1234–40; 2020CrossRefPubMed
16.
go back to reference Si Y, Wang J, Xu H, Roberts K: Enhancing clinical concept extraction with contextual embeddings. J Am Med Informatics Assoc 26(11):1297–304; 2019CrossRef Si Y, Wang J, Xu H, Roberts K: Enhancing clinical concept extraction with contextual embeddings. J Am Med Informatics Assoc 26(11):1297–304; 2019CrossRef
17.
go back to reference Peng Y, Yan S, Lu Z: Transfer Learning in Biomedical Natural Language Processing: An Evaluation of BERT and ELMo on Ten Benchmarking Datasets. arXiv Prepr arXiv190605474; 2019 Peng Y, Yan S, Lu Z: Transfer Learning in Biomedical Natural Language Processing: An Evaluation of BERT and ELMo on Ten Benchmarking Datasets. arXiv Prepr arXiv190605474; 2019
18.
go back to reference Alsentzer E, Murphy JR, Boag W, Weng WH, Jin D, Naumann T, McDermott M. Publicly available clinical BERT embeddings. arXiv preprint arXiv:1904.03323; 2019 Alsentzer E, Murphy JR, Boag W, Weng WH, Jin D, Naumann T, McDermott M. Publicly available clinical BERT embeddings. arXiv preprint arXiv:​1904.​03323; 2019
19.
go back to reference European Society of Radiology (ESR) communications@ myesr. org: ESR paper on structured reporting in radiology. Insights into imaging 9:1-7; 2018 European Society of Radiology (ESR) communications@ myesr. org: ESR paper on structured reporting in radiology. Insights into imaging 9:1-7; 2018
20.
go back to reference Langlotz CP: RadLex: A new method for indexing online educational materials. Radiographics 26(6):1595–7; 2006CrossRefPubMed Langlotz CP: RadLex: A new method for indexing online educational materials. Radiographics 26(6):1595–7; 2006CrossRefPubMed
21.
go back to reference Tayefi M, Ngo P, Chomutare T, Dalianis H, Salvi E, Budrionis A, et al.: Challenges and opportunities beyond structured data in analysis of electronic health records. Wiley Interdiscip Rev Comput Stat 13(6); 2021 Tayefi M, Ngo P, Chomutare T, Dalianis H, Salvi E, Budrionis A, et al.: Challenges and opportunities beyond structured data in analysis of electronic health records. Wiley Interdiscip Rev Comput Stat 13(6); 2021
22.
go back to reference Lambin P, Leijenaar RT, Deist TM, Peerlings J, De Jong EE, Van Timmeren J, et al.: Radiomics: the bridge between medical imaging and personalized medicine. Nature reviews Clinical oncology 14(12):749-62; 2017CrossRefPubMed Lambin P, Leijenaar RT, Deist TM, Peerlings J, De Jong EE, Van Timmeren J, et al.: Radiomics: the bridge between medical imaging and personalized medicine. Nature reviews Clinical oncology 14(12):749-62; 2017CrossRefPubMed
23.
go back to reference Keek SA, Leijenaar RT, Jochems A, Woodruff HC: A review on radiomics and the future of theranostics for patient selection in precision medicine. Br J Radiol 91(1091); 2018 Keek SA, Leijenaar RT, Jochems A, Woodruff HC: A review on radiomics and the future of theranostics for patient selection in precision medicine. Br J Radiol 91(1091); 2018
24.
go back to reference Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al.: A survey on deep learning in medical image analysis. Med Image Anal 42:60–88; 2017CrossRefPubMed Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al.: A survey on deep learning in medical image analysis. Med Image Anal 42:60–88; 2017CrossRefPubMed
25.
go back to reference Lundervold AS, Lundervold A: An overview of deep learning in medical imaging focusing on MRI. Z Med Phys 29(2):102–27; 2019CrossRefPubMed Lundervold AS, Lundervold A: An overview of deep learning in medical imaging focusing on MRI. Z Med Phys 29(2):102–27; 2019CrossRefPubMed
26.
go back to reference Pinto dos Santos D, Baeßler B: Big data, artificial intelligence, and structured reporting. Eur Radiol Exp 2(1); 2018 Pinto dos Santos D, Baeßler B: Big data, artificial intelligence, and structured reporting. Eur Radiol Exp 2(1); 2018
27.
go back to reference Taira RK, Soderland SG, Jakobovits RM: Automatic structuring of radiology free-text reports. Radiographics 21(1):237–45; 2001CrossRefPubMed Taira RK, Soderland SG, Jakobovits RM: Automatic structuring of radiology free-text reports. Radiographics 21(1):237–45; 2001CrossRefPubMed
28.
go back to reference Savova GK, Masanz JJ, Ogren P V., Zheng J, Sohn S, Kipper-Schuler KC, et al.: Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): Architecture, component evaluation and applications. J Am Med Informatics Assoc 17(5):507–13; 2010CrossRef Savova GK, Masanz JJ, Ogren P V., Zheng J, Sohn S, Kipper-Schuler KC, et al.: Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): Architecture, component evaluation and applications. J Am Med Informatics Assoc 17(5):507–13; 2010CrossRef
29.
go back to reference Aronson AR, Lang FM: An overview of MetaMap: Historical perspective and recent advances. J Am Med Informatics Assoc 17(3):229–36; 2010CrossRef Aronson AR, Lang FM: An overview of MetaMap: Historical perspective and recent advances. J Am Med Informatics Assoc 17(3):229–36; 2010CrossRef
30.
go back to reference Sun W, Cai Z, Li Y, Liu F, Fang S, Wang G: Data processing and text mining technologies on electronic medical records: A review. J Healthc Eng; 2018 Sun W, Cai Z, Li Y, Liu F, Fang S, Wang G: Data processing and text mining technologies on electronic medical records: A review. J Healthc Eng; 2018
31.
go back to reference Rebholz-Schuhmann D, Yepes AJ, Li C, Kafkas S, Lewin I, Kang N, et al.: Assessment of NER solutions against the first and second CALBC Silver Standard Corpus. J Biomed Semantics 2(5); 2011 Rebholz-Schuhmann D, Yepes AJ, Li C, Kafkas S, Lewin I, Kang N, et al.: Assessment of NER solutions against the first and second CALBC Silver Standard Corpus. J Biomed Semantics 2(5); 2011
32.
go back to reference Ji Z, Wei Q, Xu H. BERT-based ranking for biomedical entity normalization. AMIA Summits on Translational Science Proceedings 2020:269; 2020PubMedCentral Ji Z, Wei Q, Xu H. BERT-based ranking for biomedical entity normalization. AMIA Summits on Translational Science Proceedings 2020:269; 2020PubMedCentral
33.
go back to reference Soysal E, Wang J, Jiang M, Wu Y, Pakhomov S, Liu H, et al.: CLAMP - a toolkit for efficiently building customized clinical natural language processing pipelines. J Am Med Informatics Assoc 25(3):331–6; 2018CrossRef Soysal E, Wang J, Jiang M, Wu Y, Pakhomov S, Liu H, et al.: CLAMP - a toolkit for efficiently building customized clinical natural language processing pipelines. J Am Med Informatics Assoc 25(3):331–6; 2018CrossRef
34.
go back to reference Rebholz-Schuhmann D, Kirsch H, Arregui M, Gaudan S, Riethoven M, Stoehr P: EBIMed - Text crunching to gather facts for proteins from Medline. Bioinformatics 23(2); 2007 Rebholz-Schuhmann D, Kirsch H, Arregui M, Gaudan S, Riethoven M, Stoehr P: EBIMed - Text crunching to gather facts for proteins from Medline. Bioinformatics 23(2); 2007
35.
go back to reference Pennington J, Socher R, Manning CD: GloVe: Global vectors for word representation. EMNLP 2014 - 2014 Conf Empir Methods Nat Lang Process Proc Conf 1532–43; 2014 Pennington J, Socher R, Manning CD: GloVe: Global vectors for word representation. EMNLP 2014 - 2014 Conf Empir Methods Nat Lang Process Proc Conf 1532–43; 2014
36.
go back to reference Hoffmann R, Valencia A: Implementing the iHOP concept for navigation of biomedical literature. Bioinformatics 21(suppl_2):ii252–8; 2005 Hoffmann R, Valencia A: Implementing the iHOP concept for navigation of biomedical literature. Bioinformatics 21(suppl_2):ii252–8; 2005
37.
go back to reference Garten Y, Altman RB: Pharmspresso: a text mining tool for extraction of pharmacogenomic concepts and relationships from full text. BMC Bioinformatics 10 Suppl 2; 2009 Garten Y, Altman RB: Pharmspresso: a text mining tool for extraction of pharmacogenomic concepts and relationships from full text. BMC Bioinformatics 10 Suppl 2; 2009
38.
go back to reference Hakenberg J: Mining Relations from the Biomedical Literature 179; 2009 Hakenberg J: Mining Relations from the Biomedical Literature 179; 2009
39.
go back to reference Muzaffar AW, Azam F, Qamar U: A Relation Extraction Framework for Biomedical Text Using Hybrid Feature Set. Comput Math Methods Med; 2015 Muzaffar AW, Azam F, Qamar U: A Relation Extraction Framework for Biomedical Text Using Hybrid Feature Set. Comput Math Methods Med; 2015
40.
go back to reference Chen MC, Ball RL, Yang L, Moradzadeh N, Chapman BE, Larson DB, et al.: Deep learning to classify radiology free-text reports. Radiology 286(3):845–52; 2018CrossRefPubMed Chen MC, Ball RL, Yang L, Moradzadeh N, Chapman BE, Larson DB, et al.: Deep learning to classify radiology free-text reports. Radiology 286(3):845–52; 2018CrossRefPubMed
41.
go back to reference Wang Y, Sohn S, Liu S, Shen F, Wang L, Atkinson EJ, et al.: A clinical text classification paradigm using weak supervision and deep representation. BMC Med Inform Decis Mak 19(1); 2019 Wang Y, Sohn S, Liu S, Shen F, Wang L, Atkinson EJ, et al.: A clinical text classification paradigm using weak supervision and deep representation. BMC Med Inform Decis Mak 19(1); 2019
42.
go back to reference Lee C, Kim Y, Kim YS, Jang J: Automatic disease annotation from radiology reports using artificial intelligence implemented by a recurrent neural network. Am J Roentgenol 212(4):734–40; 2019CrossRef Lee C, Kim Y, Kim YS, Jang J: Automatic disease annotation from radiology reports using artificial intelligence implemented by a recurrent neural network. Am J Roentgenol 212(4):734–40; 2019CrossRef
43.
go back to reference Carrodeguas E, Lacson R, Swanson W, Khorasani R: Use of Machine Learning to Identify Follow-Up Recommendations in Radiology Reports. J Am Coll Radiol 16(3):336–43; 2019CrossRefPubMed Carrodeguas E, Lacson R, Swanson W, Khorasani R: Use of Machine Learning to Identify Follow-Up Recommendations in Radiology Reports. J Am Coll Radiol 16(3):336–43; 2019CrossRefPubMed
44.
go back to reference Smit A, Jain S, Rajpurkar P, Pareek A, Ng AY, Lungren MP: CheXbert: combining automatic labelers and expert annotations for accurate radiology report labeling using BERT. arXiv preprint arXiv:2004.09167; 2020 Smit A, Jain S, Rajpurkar P, Pareek A, Ng AY, Lungren MP: CheXbert: combining automatic labelers and expert annotations for accurate radiology report labeling using BERT. arXiv preprint arXiv:​2004.​09167; 2020
45.
go back to reference Wood DA, Lynch J, Kafiabadi S, Guilhem E, Al Busaidi A, Montvila A, et al.: Townend M, Kiik M. Automated Labelling using an Attention model for Radiology reports of MRI scans (ALARM). InMedical Imaging with Deep Learning 811–826; 2020 Wood DA, Lynch J, Kafiabadi S, Guilhem E, Al Busaidi A, Montvila A, et al.: Townend M, Kiik M. Automated Labelling using an Attention model for Radiology reports of MRI scans (ALARM). InMedical Imaging with Deep Learning 811–826; 2020
46.
go back to reference Liu PJ, Saleh M, Pot E, Goodrich B, Sepassi R, Kaiser L, Shazeer N: Generating wikipedia by summarizing long sequences. arXiv preprint arXiv:1801.10198; 2018 Liu PJ, Saleh M, Pot E, Goodrich B, Sepassi R, Kaiser L, Shazeer N: Generating wikipedia by summarizing long sequences. arXiv preprint arXiv:​1801.​10198; 2018
47.
48.
go back to reference Lin C. Y.: Rouge: A package for automatic evaluation of summaries. In Text summarization branches out (pp. 74–81). Lin C. Y.: Rouge: A package for automatic evaluation of summaries. In Text summarization branches out (pp. 74–81).
49.
go back to reference Papineni K., Roukos S., Ward T., Zhu W. J.: Bleu: a method for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association for Computational Linguistics: 311–318; 2002 Papineni K., Roukos S., Ward T., Zhu W. J.: Bleu: a method for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association for Computational Linguistics: 311–318; 2002
50.
go back to reference Huang X, Fang Y, Lu M, Yao Y, Li M: An Annotation Model on End-to-End Chest Radiology Reports. IEEE Access 7:65757–65; 2019CrossRef Huang X, Fang Y, Lu M, Yao Y, Li M: An Annotation Model on End-to-End Chest Radiology Reports. IEEE Access 7:65757–65; 2019CrossRef
51.
go back to reference Mostafiz T, Ashraf K: Pathology extraction from chest X-ray radiology reports: A performance study. arXiv preprint arXiv:1812.02305; 2018 Mostafiz T, Ashraf K: Pathology extraction from chest X-ray radiology reports: A performance study. arXiv preprint arXiv:​1812.​02305; 2018
Metadata
Title
Application of Deep Learning in Generating Structured Radiology Reports: A Transformer-Based Technique
Authors
Seyed Ali Reza Moezzi
Abdolrahman Ghaedi
Mojdeh Rahmanian
Seyedeh Zahra Mousavi
Ashkan Sami
Publication date
24-08-2022
Publisher
Springer International Publishing
Published in
Journal of Imaging Informatics in Medicine / Issue 1/2023
Print ISSN: 2948-2925
Electronic ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-022-00692-x

Other articles of this Issue 1/2023

Journal of Digital Imaging 1/2023 Go to the issue