Skip to main content
Top
Published in: Cellular Oncology 6/2014

01-12-2014 | Original Paper

Apoptosis induction by an analog of curcumin (BDMC-A) in human laryngeal carcinoma cells through intrinsic and extrinsic pathways

Authors: Kumaravel Mohankumar, Sankar Pajaniradje, Subhashree Sridharan, Vivek Kumar Singh, Larance Ronsard, Akhil C. Banerjea, Benson Chellakkan Selvanesan, Mohane Selvaraj Coumar, Latha Periyasamy, Rukkumani Rajagopalan

Published in: Cellular Oncology | Issue 6/2014

Login to get access

Abstract

Background

Head and neck cancer is the sixth most frequently occurring cancer worldwide and accounts for about 2 % of all cancer-related deaths annually. Curcumin is a well-known chemopreventive agent, and apoptosis induction by curcumin has been reported in many cancer cell types. We synthesized an ortho-hydroxy substituted analog of curcumin, bisdemethoxycurcumin analog (BDMC-A), and aimed to demarcate the apoptotic effects induced by BDMC-A on human laryngeal cancer Hep-2 cells and to compare these effects with those induced by curcumin.

Methods

We evaluated the apoptotic effects of BDMC-A in comparison to those of curcumin on Hep-2 cells by performing Western blotting, RT-PCR, fluorescent staining and DNA fragmentation assays. In addition, we carried out an in silico molecular docking study on the EGFR kinase domain.

Results

We found that BDMC-A can induce apoptosis in Hep-2 cells by regulating the expression of both intrinsic and extrinsic apoptotic proteins, i.e., Bcl-2, Bax, apoptososme complex and death receptors, more efficiently than curcumin. We also observed increased nuclear fragmentation and chromatin condensation after BDMC-A treatment compared to curcumin treatment. Depolarized mitochondria and ROS generation was well pronounced in both BDMC-A and curcumin treated Hep-2 cells. Our in silico molecular docking study on the EGFR kinase domain revealed that BDMC-A may dock more efficiently than curcumin.

Conclusions

From our results we conclude that BDMC-A can induce apoptosis in Hep-2 laryngeal carcinoma cells more effectively than curcumin, and that this activity can be attributed to the presence of a hydroxyl group at the ortho position within this compound.
Literature
1.
go back to reference S. Ghosh, A. Ghosh, G.P. Maiti, N. Alam, A. Roy, B. Roy, S. Roychoudhury, C.K. Panda, Alterations of 3p21.31 tumor suppressor genes in head and neck squamous cell carcinoma: correlation with progression and prognosis. Int. J. Cancer 123, 2594–2604 (2008)PubMedCrossRef S. Ghosh, A. Ghosh, G.P. Maiti, N. Alam, A. Roy, B. Roy, S. Roychoudhury, C.K. Panda, Alterations of 3p21.31 tumor suppressor genes in head and neck squamous cell carcinoma: correlation with progression and prognosis. Int. J. Cancer 123, 2594–2604 (2008)PubMedCrossRef
2.
go back to reference C. Salazar, R. Nagadia, P. Pandit, J. Cooper-White, N. Banerjee, N. Dimitrova, W.B. Coman, C. Punyadeera, A novel saliva-based microRNA biomarker panel to detect head and neck cancers. Cell. Oncol. 37, 331–338 (2014)CrossRef C. Salazar, R. Nagadia, P. Pandit, J. Cooper-White, N. Banerjee, N. Dimitrova, W.B. Coman, C. Punyadeera, A novel saliva-based microRNA biomarker panel to detect head and neck cancers. Cell. Oncol. 37, 331–338 (2014)CrossRef
3.
go back to reference T. Nakaoka, A. Ota, T. Ono, S. Karnan, H. Konishi, A. Furuhashi, Y. Ohmura, Y. Yamada, Y. Hosokawa, Y. Kazaoka, Combined arsenic trioxide-cisplatin treatment enhances apoptosis in oral squamous cell carcinoma cells. Cell. Oncol. 37, 119–129 (2014)CrossRef T. Nakaoka, A. Ota, T. Ono, S. Karnan, H. Konishi, A. Furuhashi, Y. Ohmura, Y. Yamada, Y. Hosokawa, Y. Kazaoka, Combined arsenic trioxide-cisplatin treatment enhances apoptosis in oral squamous cell carcinoma cells. Cell. Oncol. 37, 119–129 (2014)CrossRef
4.
go back to reference D. Weiss, C. Stockmann, K. Schrödter, C. Rudack, Protein expression and promoter methylation of the candidate biomarker TCF21 in head and neck squamous cell carcinoma. Cell. Oncol. 36, 213–224 (2013)CrossRef D. Weiss, C. Stockmann, K. Schrödter, C. Rudack, Protein expression and promoter methylation of the candidate biomarker TCF21 in head and neck squamous cell carcinoma. Cell. Oncol. 36, 213–224 (2013)CrossRef
5.
go back to reference B.B. Aggarwal, C. Sundaram, N. Malani, H. Ichikawa, Curcumin: the Indian solid gold. Adv. Exp. Med. Biol. 595, 1–75 (2007)PubMedCrossRef B.B. Aggarwal, C. Sundaram, N. Malani, H. Ichikawa, Curcumin: the Indian solid gold. Adv. Exp. Med. Biol. 595, 1–75 (2007)PubMedCrossRef
6.
go back to reference S. Shishodia, M.M. Chaturvedi, B.B. Aggarwal, Role of curcumin in cancer therapy. Curr. Probl. Cancer 31, 243–305 (2007)PubMedCrossRef S. Shishodia, M.M. Chaturvedi, B.B. Aggarwal, Role of curcumin in cancer therapy. Curr. Probl. Cancer 31, 243–305 (2007)PubMedCrossRef
7.
go back to reference N. Chakravarti, J.N. Myers, B.B. Aggarwal, Targeting constitutive and interleukin-6-inducible signal transducers and activators of transcription 3 pathway in head and neck squamous cell carcinoma cells by curcumin (diferuloylmethane). Int. J. Cancer 119, 1268–1275 (2006)PubMedCrossRef N. Chakravarti, J.N. Myers, B.B. Aggarwal, Targeting constitutive and interleukin-6-inducible signal transducers and activators of transcription 3 pathway in head and neck squamous cell carcinoma cells by curcumin (diferuloylmethane). Int. J. Cancer 119, 1268–1275 (2006)PubMedCrossRef
8.
go back to reference A. Chen, J. Xu, A.C. Johnson, Curcumin inhibits human colon cancer cell growth by suppressing gene expression of epidermal growth factor receptor through reducing the activity of the transcription factor Egr-1. Oncogene 25, 278–287 (2006)PubMed A. Chen, J. Xu, A.C. Johnson, Curcumin inhibits human colon cancer cell growth by suppressing gene expression of epidermal growth factor receptor through reducing the activity of the transcription factor Egr-1. Oncogene 25, 278–287 (2006)PubMed
9.
go back to reference S. Prakobwong, J. Khoontawad, P. Yongvanit, C. Pairojkul, Y. Hiraku, P. Sithithaworn, P. Pinlaor, B.B. Aggarwal, S. Pinlaor, Curcumin decreases cholangiocarcinogenesis in hamsters by suppressing inflammation-mediated molecular events related to multistep carcinogenesis. Int. J. Cancer 129, 88–100 (2011)PubMedCrossRef S. Prakobwong, J. Khoontawad, P. Yongvanit, C. Pairojkul, Y. Hiraku, P. Sithithaworn, P. Pinlaor, B.B. Aggarwal, S. Pinlaor, Curcumin decreases cholangiocarcinogenesis in hamsters by suppressing inflammation-mediated molecular events related to multistep carcinogenesis. Int. J. Cancer 129, 88–100 (2011)PubMedCrossRef
10.
go back to reference P. Anand, C. Sundaram, S. Jhurani, A.B. Kunnumakkara, B.B. Aggarwal, Curcumin and cancer: an “old-age” disease with an “age-old” solution. Cancer Lett. 267, 133–164 (2008)PubMedCrossRef P. Anand, C. Sundaram, S. Jhurani, A.B. Kunnumakkara, B.B. Aggarwal, Curcumin and cancer: an “old-age” disease with an “age-old” solution. Cancer Lett. 267, 133–164 (2008)PubMedCrossRef
11.
go back to reference J.M. Davis, E.A. Murphy, M.D. Carmichael, M.R. Zielinski, C.M. Groschwitz, A.S. Brown, J.D. Gangemi, A. Ghaffar, E.P. Mayer, Curcumin effects on inflammation and performance recovery following eccentric exercise-induced muscle damage. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, 2168–2173 (2007)CrossRef J.M. Davis, E.A. Murphy, M.D. Carmichael, M.R. Zielinski, C.M. Groschwitz, A.S. Brown, J.D. Gangemi, A. Ghaffar, E.P. Mayer, Curcumin effects on inflammation and performance recovery following eccentric exercise-induced muscle damage. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, 2168–2173 (2007)CrossRef
12.
go back to reference B.B. Aggarwal, A. Kumar, A.C. Bharti, Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res. 23, 363–398 (2003)PubMed B.B. Aggarwal, A. Kumar, A.C. Bharti, Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res. 23, 363–398 (2003)PubMed
13.
go back to reference J. Nautiyal, S. Banerjee, S.S. Kanwar, Y. Yu, B.B. Patel, F.H. Sarkar, A.P. Majumdar, Curcumin enhances dasatinib-induced inhibition of growth and transformation of colon cancer cells. Int. J. Cancer 128, 951–961 (2011)PubMedCentralPubMedCrossRef J. Nautiyal, S. Banerjee, S.S. Kanwar, Y. Yu, B.B. Patel, F.H. Sarkar, A.P. Majumdar, Curcumin enhances dasatinib-induced inhibition of growth and transformation of colon cancer cells. Int. J. Cancer 128, 951–961 (2011)PubMedCentralPubMedCrossRef
14.
go back to reference R.J. Anto, G. Kuttan, K.V.D. Babu, K.V. Rajasekharan, R. Kuttan, Anti-tumour and free radical scavenging activity of synthetic curcuminoids. Inter. J. Pharm. 131, 1–7 (1996)CrossRef R.J. Anto, G. Kuttan, K.V.D. Babu, K.V. Rajasekharan, R. Kuttan, Anti-tumour and free radical scavenging activity of synthetic curcuminoids. Inter. J. Pharm. 131, 1–7 (1996)CrossRef
15.
go back to reference R.J. Anto, J. George, K.V. Babu, K.N. Rajasekharan, R. Kuttan, Antimutagenic and anticarcinogenic activity of natural and synthetic curcuminoid. Mutat. Res. 370, 127–131 (1996)PubMedCrossRef R.J. Anto, J. George, K.V. Babu, K.N. Rajasekharan, R. Kuttan, Antimutagenic and anticarcinogenic activity of natural and synthetic curcuminoid. Mutat. Res. 370, 127–131 (1996)PubMedCrossRef
16.
go back to reference R. Rukkumani, K. Aruna, P.S. Varma, K.N. Rajasekaran, V.P. Menon, Comparative effects of curcumin and an analog of curcumin on alcohol and PUFA induced oxidative stress. J. Pharm. Pharm. Sci. 7, 274–283 (2004)PubMed R. Rukkumani, K. Aruna, P.S. Varma, K.N. Rajasekaran, V.P. Menon, Comparative effects of curcumin and an analog of curcumin on alcohol and PUFA induced oxidative stress. J. Pharm. Pharm. Sci. 7, 274–283 (2004)PubMed
17.
go back to reference R. Rukkumani, K. Aruna, P.S. Varma, P. Viswanathan, K.N. Rajasekaran, V.P. Menon, Protective role of a novel curcuminoid on alcohol and PUFA-induced hyperlipidemia. Toxicol. Mech. Methods 15, 227–234 (2005)PubMedCrossRef R. Rukkumani, K. Aruna, P.S. Varma, P. Viswanathan, K.N. Rajasekaran, V.P. Menon, Protective role of a novel curcuminoid on alcohol and PUFA-induced hyperlipidemia. Toxicol. Mech. Methods 15, 227–234 (2005)PubMedCrossRef
18.
go back to reference R. Rajagopalan, S. Sridharan, V.P. Menon, Hepatoprotective role of bis-demethoxy curcumin analog on the expression of matrix metalloproteinase induced by alcohol and polyunsaturated fatty acid in rats. Toxicol. Mech. Methods 20, 252–259 (2010)PubMedCrossRef R. Rajagopalan, S. Sridharan, V.P. Menon, Hepatoprotective role of bis-demethoxy curcumin analog on the expression of matrix metalloproteinase induced by alcohol and polyunsaturated fatty acid in rats. Toxicol. Mech. Methods 20, 252–259 (2010)PubMedCrossRef
19.
go back to reference T. Devasena, K.N. Rajasekaran, V.P. Menon, Bis-1,7-(2-hydroxyphenyl)-hepta-1,6-diene-3,5-dione (a curcumin analog) ameliorates DMH-induced hepatic oxidative stress during colon carcinogenesis. Pharmacol. Res. 46, 39–45 (2002)PubMedCrossRef T. Devasena, K.N. Rajasekaran, V.P. Menon, Bis-1,7-(2-hydroxyphenyl)-hepta-1,6-diene-3,5-dione (a curcumin analog) ameliorates DMH-induced hepatic oxidative stress during colon carcinogenesis. Pharmacol. Res. 46, 39–45 (2002)PubMedCrossRef
20.
go back to reference M. Kumaravel, P. Sankar, P. Latha, C.S. Benson, R. Rukkumani, Antiproliferative effects of an analog of curcumin in Hep-2 cells: a comparative study with curcumin. Nat. Prod. Commun. 8, 183–186 (2013)PubMed M. Kumaravel, P. Sankar, P. Latha, C.S. Benson, R. Rukkumani, Antiproliferative effects of an analog of curcumin in Hep-2 cells: a comparative study with curcumin. Nat. Prod. Commun. 8, 183–186 (2013)PubMed
21.
go back to reference K.Y. Chang, S.Y. Tsai, S.H. Chen, H.H. Tsou, C.J. Yen, K.J. Liu, H.L. Fang, H.C. Wu, B.F. Chuang, S.W. Chou, C.K. Tang, S.Y. Liu, P.J. Lu, C.Y. Yen, J.Y. Chang, Dissecting the EGFR-PI3K-AKT pathway in oral cancer highlights the role of the EGFR variant III and its clinical relevance. J. Biomed. Sci. 20, 43 (2013)PubMedCentralPubMedCrossRef K.Y. Chang, S.Y. Tsai, S.H. Chen, H.H. Tsou, C.J. Yen, K.J. Liu, H.L. Fang, H.C. Wu, B.F. Chuang, S.W. Chou, C.K. Tang, S.Y. Liu, P.J. Lu, C.Y. Yen, J.Y. Chang, Dissecting the EGFR-PI3K-AKT pathway in oral cancer highlights the role of the EGFR variant III and its clinical relevance. J. Biomed. Sci. 20, 43 (2013)PubMedCentralPubMedCrossRef
22.
go back to reference S. Haupt, M. Berger, Z. Goldberg, Y. Haupt, Apoptosis - the p53 network. J. Cell Sci. 116, 4077–4085 (2003)PubMedCrossRef S. Haupt, M. Berger, Z. Goldberg, Y. Haupt, Apoptosis - the p53 network. J. Cell Sci. 116, 4077–4085 (2003)PubMedCrossRef
24.
go back to reference C. Gajate, F. Mollinedo, Cytoskeleton-mediated death receptor and ligand concentration in lipid rafts forms apoptosis-promoting clusters in cancer chemotherapy. J. Biol. Chem. 280, 11641–11647 (2005)PubMedCrossRef C. Gajate, F. Mollinedo, Cytoskeleton-mediated death receptor and ligand concentration in lipid rafts forms apoptosis-promoting clusters in cancer chemotherapy. J. Biol. Chem. 280, 11641–11647 (2005)PubMedCrossRef
25.
go back to reference H.F. Lu, K.C. Lai, S.C. Hsu, H.J. Lin, M.D. Yang, Y.L. Chen, M.J. Fan, J.S. Yang, P.Y. Cheng, C.L. Kuo, J.G. Chung, Curcumin induces apoptosis through FAS and FADD, in caspase-3-dependent and -independent pathways in the N18 mouse-rat hybrid retina ganglion cells. Oncol. Rep. 22, 97–104 (2009)PubMed H.F. Lu, K.C. Lai, S.C. Hsu, H.J. Lin, M.D. Yang, Y.L. Chen, M.J. Fan, J.S. Yang, P.Y. Cheng, C.L. Kuo, J.G. Chung, Curcumin induces apoptosis through FAS and FADD, in caspase-3-dependent and -independent pathways in the N18 mouse-rat hybrid retina ganglion cells. Oncol. Rep. 22, 97–104 (2009)PubMed
26.
go back to reference S. Shankar, R.K. Srivastava, Bax and Bak genes are essential for maximum apoptotic response by curcumin, a polyphenolic compound and cancer chemopreventive agent derived from turmeric, Curcuma longa. Carcinog. 28, 1277–1286 (2007)CrossRef S. Shankar, R.K. Srivastava, Bax and Bak genes are essential for maximum apoptotic response by curcumin, a polyphenolic compound and cancer chemopreventive agent derived from turmeric, Curcuma longa. Carcinog. 28, 1277–1286 (2007)CrossRef
27.
go back to reference M. Roy, S. Chakraborty, M. Siddiqi, R.K. Bhattacharya, Induction of Apoptosis in Tumor Cells by Natural Phenolic Compounds. Asian Pac. J. Cancer Prev. 3, 61–67 (2002)PubMed M. Roy, S. Chakraborty, M. Siddiqi, R.K. Bhattacharya, Induction of Apoptosis in Tumor Cells by Natural Phenolic Compounds. Asian Pac. J. Cancer Prev. 3, 61–67 (2002)PubMed
28.
go back to reference K.V. Dinesh Babu, K.N. Rajasekaran, Simplified conditions for the synthesis of curcumin I and other curcuminoids. Org. Prep. Proc. Int. 24, 674–677 (1994)CrossRef K.V. Dinesh Babu, K.N. Rajasekaran, Simplified conditions for the synthesis of curcumin I and other curcuminoids. Org. Prep. Proc. Int. 24, 674–677 (1994)CrossRef
29.
go back to reference R.J. Fido, A.S. Tatham, P.R. Shewry, Western blotting analysis, in Methods in molecular biology: plant gene transfer and expression protocols, ed. by H. Jones, vol. 49 (Humana Press Inc, Totowa, 1995), pp. 423–437 R.J. Fido, A.S. Tatham, P.R. Shewry, Western blotting analysis, in Methods in molecular biology: plant gene transfer and expression protocols, ed. by H. Jones, vol. 49 (Humana Press Inc, Totowa, 1995), pp. 423–437
30.
go back to reference P. Chomczynski, N. Sacchi, Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987)PubMedCrossRef P. Chomczynski, N. Sacchi, Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987)PubMedCrossRef
31.
go back to reference C. Brana, C. Benham, L. Sundstrom, A method for characterising cell death in vitro by combining propidium iodide staining with immunohistochemistry. Brain Res. Brain Res. Protoc. 10, 109–114 (2002)PubMedCrossRef C. Brana, C. Benham, L. Sundstrom, A method for characterising cell death in vitro by combining propidium iodide staining with immunohistochemistry. Brain Res. Brain Res. Protoc. 10, 109–114 (2002)PubMedCrossRef
32.
go back to reference R.A. Friesner, R.B. Murphy, M.P. Repasky, L.L. Frye, J.R. Greenwood, T.A. Halgren, P.C. Sanschagrin, D.T. Mainz, Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 4, 6177–6196 (2006)CrossRef R.A. Friesner, R.B. Murphy, M.P. Repasky, L.L. Frye, J.R. Greenwood, T.A. Halgren, P.C. Sanschagrin, D.T. Mainz, Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 4, 6177–6196 (2006)CrossRef
33.
34.
go back to reference C. Ramachandran, S. Rodriguez, R. Ramachandran, P.K. Raveendran Nair, H. Fonseca, Z. Khatib, E. Escalon, S.J. Melnick, Expression profiles of apoptotic genes induced by curcumin in human breast cancer and mammary epithelial cell lines. Anticancer Res. 25, 3293–3302 (2005)PubMed C. Ramachandran, S. Rodriguez, R. Ramachandran, P.K. Raveendran Nair, H. Fonseca, Z. Khatib, E. Escalon, S.J. Melnick, Expression profiles of apoptotic genes induced by curcumin in human breast cancer and mammary epithelial cell lines. Anticancer Res. 25, 3293–3302 (2005)PubMed
35.
36.
go back to reference T. Miyashita, J.C. Reed, Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80, 293–299 (1995)PubMedCrossRef T. Miyashita, J.C. Reed, Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80, 293–299 (1995)PubMedCrossRef
37.
go back to reference S. Awantika, K. Durga Prasad, G. Archana, In Silico molecular docking analysis to identify PI3K inhibitors as possible NSCLC agents. Int. J. Comput. Bioinfo. In Silico Model 2, 68–71 (2013) S. Awantika, K. Durga Prasad, G. Archana, In Silico molecular docking analysis to identify PI3K inhibitors as possible NSCLC agents. Int. J. Comput. Bioinfo. In Silico Model 2, 68–71 (2013)
38.
go back to reference U.M. Moll, O. Petrenko, The MDM2-p53 interaction. Mol. Cancer Res. 1, 1001–1008 (2003)PubMed U.M. Moll, O. Petrenko, The MDM2-p53 interaction. Mol. Cancer Res. 1, 1001–1008 (2003)PubMed
39.
go back to reference R. Wilken, M.S. Veena, M.B. Wang, E.S. Srivatsan, Curcumin: a review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol. Cancer 10, 12 (2011)PubMedCentralPubMedCrossRef R. Wilken, M.S. Veena, M.B. Wang, E.S. Srivatsan, Curcumin: a review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol. Cancer 10, 12 (2011)PubMedCentralPubMedCrossRef
40.
go back to reference S. Shankar, Q. Chen, K. Sarva, I. Siddiqui, R.K. Srivastava, Curcumin enhances the apoptosis-inducing potential of TRAIL in prostate cancer cells: molecular mechanisms of apoptosis, migration and angiogenesis. J. Mol. Signal. 2, 10 (2007)PubMedCentralPubMedCrossRef S. Shankar, Q. Chen, K. Sarva, I. Siddiqui, R.K. Srivastava, Curcumin enhances the apoptosis-inducing potential of TRAIL in prostate cancer cells: molecular mechanisms of apoptosis, migration and angiogenesis. J. Mol. Signal. 2, 10 (2007)PubMedCentralPubMedCrossRef
41.
go back to reference R.U. Janicke, M.L. Sprengart, M.R. Wati, A.G. Porter, Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J. Biol. Chem. 273, 9357–9360 (1998)PubMedCrossRef R.U. Janicke, M.L. Sprengart, M.R. Wati, A.G. Porter, Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J. Biol. Chem. 273, 9357–9360 (1998)PubMedCrossRef
43.
go back to reference R. Prasanna, C.C. Harish, R. Pichai, D. Sakthisekaran, P. Gunasekaran, Anti-cancer effect of Cassia auriculata leaf extract in vitro through cell cycle arrest and induction of apoptosis in human breast and larynx cancer cell lines. Cell Biol. Int. 33, 127–134 (2009)PubMedCrossRef R. Prasanna, C.C. Harish, R. Pichai, D. Sakthisekaran, P. Gunasekaran, Anti-cancer effect of Cassia auriculata leaf extract in vitro through cell cycle arrest and induction of apoptosis in human breast and larynx cancer cell lines. Cell Biol. Int. 33, 127–134 (2009)PubMedCrossRef
44.
go back to reference C.B. Gonzales, N.B. Kirma, J.J. De La Chapa, R. Chen, M.A. Henry, S. Luo, K.M. Hargreaves, Vanilloids induce oral cancer apoptosis independent of TRPV1. Oral Oncol. 50, 437–447 (2014)PubMedCrossRef C.B. Gonzales, N.B. Kirma, J.J. De La Chapa, R. Chen, M.A. Henry, S. Luo, K.M. Hargreaves, Vanilloids induce oral cancer apoptosis independent of TRPV1. Oral Oncol. 50, 437–447 (2014)PubMedCrossRef
45.
go back to reference D. Wang, J. Hu, L. Lv, X. Xia, J. Liu, X. Li, Enhanced inhibitory effect of curcumin via reactive oxygen species generation in human nasopharyngeal carcinoma cells following purple-light irradiation. Oncol. Lett. 6, 81–85 (2013)PubMedCentralPubMed D. Wang, J. Hu, L. Lv, X. Xia, J. Liu, X. Li, Enhanced inhibitory effect of curcumin via reactive oxygen species generation in human nasopharyngeal carcinoma cells following purple-light irradiation. Oncol. Lett. 6, 81–85 (2013)PubMedCentralPubMed
46.
go back to reference A. Shehzad, J. Lee, T.L. Huh, Y.S. Lee, Curcumin induces apoptosis in human colorectal carcinoma (HCT-15) cells by regulating expression of Prp4 and p53. Mol. Cells 35, 526–532 (2013)PubMedCentralPubMedCrossRef A. Shehzad, J. Lee, T.L. Huh, Y.S. Lee, Curcumin induces apoptosis in human colorectal carcinoma (HCT-15) cells by regulating expression of Prp4 and p53. Mol. Cells 35, 526–532 (2013)PubMedCentralPubMedCrossRef
47.
go back to reference T. Atsumi, K. Tonosaki, S. Fujisawa, Induction of early apoptosis and ROS-generation activity in human gingival fibroblasts (HGF) and human submandibular gland carcinoma (HSG) cells treated with curcumin. Arch. Oral Biol. 51, 913–921 (2006)PubMedCrossRef T. Atsumi, K. Tonosaki, S. Fujisawa, Induction of early apoptosis and ROS-generation activity in human gingival fibroblasts (HGF) and human submandibular gland carcinoma (HSG) cells treated with curcumin. Arch. Oral Biol. 51, 913–921 (2006)PubMedCrossRef
48.
49.
go back to reference S. Shishodia, Molecular mechanisms of curcumin action: gene expression. Biofactors 39, 37–55 (2013)PubMedCrossRef S. Shishodia, Molecular mechanisms of curcumin action: gene expression. Biofactors 39, 37–55 (2013)PubMedCrossRef
50.
go back to reference G.P. Maiti, P. Mondal, N. Mukherjee, A. Ghosh, S. Ghosh, S. Dey, J. Chakrabarty, A. Roy, J. Biswas, S. Roychoudhury, C.K. Panda, Overexpression of EGFR in head and neck squamous cell carcinoma is associated with inactivation of SH3GL2 and CDC25A genes. PLoS One 8, e63440 (2013)PubMedCentralPubMedCrossRef G.P. Maiti, P. Mondal, N. Mukherjee, A. Ghosh, S. Ghosh, S. Dey, J. Chakrabarty, A. Roy, J. Biswas, S. Roychoudhury, C.K. Panda, Overexpression of EGFR in head and neck squamous cell carcinoma is associated with inactivation of SH3GL2 and CDC25A genes. PLoS One 8, e63440 (2013)PubMedCentralPubMedCrossRef
51.
go back to reference J. Stamos, M.X. Sliwkowski, C. Eigenbrot, Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J. Biol. Chem. 277, 46265–46272 (2002)PubMedCrossRef J. Stamos, M.X. Sliwkowski, C. Eigenbrot, Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J. Biol. Chem. 277, 46265–46272 (2002)PubMedCrossRef
52.
go back to reference R.B. Cohen, Current challenges and clinical investigations of epidermal growth factor receptor (EGFR) - and ErbB family-targeted agents in the treatment of head and neck squamous cell carcinoma (HNSCC). Cancer Treat. Rev. 40, 567–577 (2014)PubMedCrossRef R.B. Cohen, Current challenges and clinical investigations of epidermal growth factor receptor (EGFR) - and ErbB family-targeted agents in the treatment of head and neck squamous cell carcinoma (HNSCC). Cancer Treat. Rev. 40, 567–577 (2014)PubMedCrossRef
53.
go back to reference M.E. Noble, J.A. Endicott, L.N. Johnson, Protein kinase inhibitors: insights into drug design from structure. Science 303, 1800–1805 (2004)PubMedCrossRef M.E. Noble, J.A. Endicott, L.N. Johnson, Protein kinase inhibitors: insights into drug design from structure. Science 303, 1800–1805 (2004)PubMedCrossRef
54.
go back to reference J.J. Liao, Molecular recognition of protein kinase binding pockets for design of potent and selective kinase inhibitors. J. Med. Chem. 50, 409–424 (2007)PubMedCrossRef J.J. Liao, Molecular recognition of protein kinase binding pockets for design of potent and selective kinase inhibitors. J. Med. Chem. 50, 409–424 (2007)PubMedCrossRef
55.
go back to reference Y.H. Peng, H.Y. Shiao, C.H. Tu, P.M. Liu, J.T. Hsu, P.K. Amancha, J.S. Wu, M.S. Coumar, C.H. Chen, S.Y. Wang, W.H. Lin, H.Y. Sun, Y.S. Chao, P.C. Lyu, H.P. Hsieh, S.Y. Wu, Protein kinase inhibitor design by targeting the Asp-Phe-Gly (DFG) motif: the role of the DFG motif in the design of epidermal growth factor receptor inhibitors. J. Med. Chem. 56, 3889–3903 (2013)PubMedCrossRef Y.H. Peng, H.Y. Shiao, C.H. Tu, P.M. Liu, J.T. Hsu, P.K. Amancha, J.S. Wu, M.S. Coumar, C.H. Chen, S.Y. Wang, W.H. Lin, H.Y. Sun, Y.S. Chao, P.C. Lyu, H.P. Hsieh, S.Y. Wu, Protein kinase inhibitor design by targeting the Asp-Phe-Gly (DFG) motif: the role of the DFG motif in the design of epidermal growth factor receptor inhibitors. J. Med. Chem. 56, 3889–3903 (2013)PubMedCrossRef
Metadata
Title
Apoptosis induction by an analog of curcumin (BDMC-A) in human laryngeal carcinoma cells through intrinsic and extrinsic pathways
Authors
Kumaravel Mohankumar
Sankar Pajaniradje
Subhashree Sridharan
Vivek Kumar Singh
Larance Ronsard
Akhil C. Banerjea
Benson Chellakkan Selvanesan
Mohane Selvaraj Coumar
Latha Periyasamy
Rukkumani Rajagopalan
Publication date
01-12-2014
Publisher
Springer Netherlands
Published in
Cellular Oncology / Issue 6/2014
Print ISSN: 2211-3428
Electronic ISSN: 2211-3436
DOI
https://doi.org/10.1007/s13402-014-0207-3

Other articles of this Issue 6/2014

Cellular Oncology 6/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine