Skip to main content
Top
Published in: Virchows Archiv 5/2014

01-05-2014 | Original Article

APC alterations are frequently involved in the pathogenesis of acinar cell carcinoma of the pancreas, mainly through gene loss and promoter hypermethylation

Authors: Daniela Furlan, Nora Sahnane, Barbara Bernasconi, Milo Frattini, Maria Grazia Tibiletti, Francesca Molinari, Alessandro Marando, Lizhi Zhang, Alessandro Vanoli, Selenia Casnedi, Volkan Adsay, Kenji Notohara, Luca Albarello, Sofia Asioli, Fausto Sessa, Carlo Capella, Stefano La Rosa

Published in: Virchows Archiv | Issue 5/2014

Login to get access

Abstract

Genetic and epigenetic alterations involved in the pathogenesis of pancreatic acinar cell carcinomas (ACCs) are poorly characterized, including the frequency and role of gene-specific hypermethylation, chromosome aberrations, and copy number alterations (CNAs). A subset of ACCs is known to show alterations in the APC/β-catenin pathway which includes mutations of APC gene. However, it is not known whether, in addition to mutation, loss of APC gene function can occur through alternative genetic and epigenetic mechanisms such as gene loss or promoter methylation. We investigated the global methylation profile of 34 tumor suppressor genes, CNAs of 52 chromosomal regions, and APC gene alterations (mutation, methylation, and loss) together with APC mRNA level in 45 ACCs and related peritumoral pancreatic tissues using methylation-specific multiplex ligation probe amplification (MS-MLPA), fluorescence in situ hybridization (FISH), mutation analysis, and reverse transcription-droplet digital PCR. ACCs did not show an extensive global gene hypermethylation profile. RASSF1 and APC were the only two genes frequently methylated. APC mutations were found in only 7 % of cases, while APC loss and methylation were more frequently observed (48 and 56 % of ACCs, respectively). APC mRNA low levels were found in 58 % of cases and correlated with CNAs. In conclusion, ACCs do not show extensive global gene hypermethylation. APC alterations are frequently involved in the pathogenesis of ACCs mainly through gene loss and promoter hypermethylation, along with reduction of APC mRNA levels.
Appendix
Available only for authorised users
Literature
1.
go back to reference Klimstra DS, Heffess CS, Oertel JE, Rosai J (1992) Acinar cell carcinoma of the pancreas. A clinicopathologic study of 28 cases. Am J Surg Pathol 16:815–837PubMedCrossRef Klimstra DS, Heffess CS, Oertel JE, Rosai J (1992) Acinar cell carcinoma of the pancreas. A clinicopathologic study of 28 cases. Am J Surg Pathol 16:815–837PubMedCrossRef
2.
go back to reference La Rosa S, Adsay V, Albarello L et al (2012) Clinicopathologic study of 62 acinar cell carcinomas of the pancreas: insights into the morphology and immunophenotype and search for prognostic markers. Am J Surg Pathol 36:1782–1795PubMedCrossRef La Rosa S, Adsay V, Albarello L et al (2012) Clinicopathologic study of 62 acinar cell carcinomas of the pancreas: insights into the morphology and immunophenotype and search for prognostic markers. Am J Surg Pathol 36:1782–1795PubMedCrossRef
4.
go back to reference McCleary-Wheeler AL, Lomberk GA, Weiss FU et al (2013) Insights into the epigenetic mechanisms controlling pancreatic carcinogenesis. Cancer Lett 328:212–221PubMedCentralPubMedCrossRef McCleary-Wheeler AL, Lomberk GA, Weiss FU et al (2013) Insights into the epigenetic mechanisms controlling pancreatic carcinogenesis. Cancer Lett 328:212–221PubMedCentralPubMedCrossRef
5.
go back to reference de Wilde RF, Ottenhof NA, Jansen M et al (2011) Analysis of LKB1 mutations and other molecular alterations in pancreatic acinar cell carcinoma. Mod Pathol 24:1229–1236PubMedCrossRef de Wilde RF, Ottenhof NA, Jansen M et al (2011) Analysis of LKB1 mutations and other molecular alterations in pancreatic acinar cell carcinoma. Mod Pathol 24:1229–1236PubMedCrossRef
6.
go back to reference Hoorens A, Lemoine NR, McLellan E et al (1993) Pancreatic acinar cell carcinoma. An analysis of cell lineage markers, p53 expression, and Ki-ras mutation. Am J Pathol 143:685–698PubMedCentralPubMed Hoorens A, Lemoine NR, McLellan E et al (1993) Pancreatic acinar cell carcinoma. An analysis of cell lineage markers, p53 expression, and Ki-ras mutation. Am J Pathol 143:685–698PubMedCentralPubMed
7.
go back to reference Pellegata NS, Sessa F, Renault B et al (1994) K-ras and p53 gene mutations in pancreatic cancer: ductal and nonductal tumors progress through different genetic lesions. Cancer Res 54:1556–1560PubMed Pellegata NS, Sessa F, Renault B et al (1994) K-ras and p53 gene mutations in pancreatic cancer: ductal and nonductal tumors progress through different genetic lesions. Cancer Res 54:1556–1560PubMed
8.
go back to reference Moore PS, Orlandini S, Zamboni G et al (2001) Pancreatic tumours: molecular pathways implicated in ductal cancer are involved in ampullary but not in exocrine nonductal or endocrine tumorigenesis. Br J Cancer 84:253–262PubMedCentralPubMedCrossRef Moore PS, Orlandini S, Zamboni G et al (2001) Pancreatic tumours: molecular pathways implicated in ductal cancer are involved in ampullary but not in exocrine nonductal or endocrine tumorigenesis. Br J Cancer 84:253–262PubMedCentralPubMedCrossRef
9.
go back to reference Abraham SC, Wu TT, Hruban RH et al (2002) Genetic and immunohistochemical analysis of pancreatic acinar cell carcinoma. Frequent allelic loss on chromosome 11p and alterations in the APC/β-catenin pathway. Am J Pathol 160:953–962PubMedCentralPubMedCrossRef Abraham SC, Wu TT, Hruban RH et al (2002) Genetic and immunohistochemical analysis of pancreatic acinar cell carcinoma. Frequent allelic loss on chromosome 11p and alterations in the APC/β-catenin pathway. Am J Pathol 160:953–962PubMedCentralPubMedCrossRef
10.
go back to reference Hosoda W, Sasaki E, Muraka IY, Yamao K, Shimizu Y, Yatabe Y (2013) BCL10 as a useful marker for pancreatic acinar cell carcinoma, especially using endoscopic ultrasound cytology specimens. Pathol Int 63:176–182PubMedCrossRef Hosoda W, Sasaki E, Muraka IY, Yamao K, Shimizu Y, Yatabe Y (2013) BCL10 as a useful marker for pancreatic acinar cell carcinoma, especially using endoscopic ultrasound cytology specimens. Pathol Int 63:176–182PubMedCrossRef
11.
go back to reference Taruscio D, Paradisi S, Zamboni G, Rigaud G, Falconi M, Scarpa A (2000) Pancreatic acinar carcinoma shows a distinct pattern of chromosomal imbalances by comparative genomic hybridization. Genes Chromosome Cancer 28:294–299CrossRef Taruscio D, Paradisi S, Zamboni G, Rigaud G, Falconi M, Scarpa A (2000) Pancreatic acinar carcinoma shows a distinct pattern of chromosomal imbalances by comparative genomic hybridization. Genes Chromosome Cancer 28:294–299CrossRef
12.
go back to reference Dewald GW, Smyrk TC, Thorland EC et al (2009) Fluorescence in situ hybridization to visualize genetic abnormalities in interphase cells of acinar cell carcinoma, ductal adenocarcinoma, and islet cell carcinoma of the pancreas. Mayo Clin Proc 84:801–810PubMedCentralPubMedCrossRef Dewald GW, Smyrk TC, Thorland EC et al (2009) Fluorescence in situ hybridization to visualize genetic abnormalities in interphase cells of acinar cell carcinoma, ductal adenocarcinoma, and islet cell carcinoma of the pancreas. Mayo Clin Proc 84:801–810PubMedCentralPubMedCrossRef
13.
go back to reference van Dongen JJ, Langerak AW, Bruggemann M et al (2003) Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 17:2257–2317PubMedCrossRef van Dongen JJ, Langerak AW, Bruggemann M et al (2003) Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 17:2257–2317PubMedCrossRef
14.
go back to reference La Rosa S, Marando A, Furlan D, Sahnane N, Capella C (2012) Colorectal poorly differentiated neuroendocrine carcinomas and mixed adenoneuroendocrine carcinomas: insights into the diagnostic immunophenotype, assessment of methylation profile, and search for prognostic markers. Am J Surg Pathol 36:601–611PubMedCrossRef La Rosa S, Marando A, Furlan D, Sahnane N, Capella C (2012) Colorectal poorly differentiated neuroendocrine carcinomas and mixed adenoneuroendocrine carcinomas: insights into the diagnostic immunophenotype, assessment of methylation profile, and search for prognostic markers. Am J Surg Pathol 36:601–611PubMedCrossRef
15.
go back to reference Furlan D, Sahnane N, Mazzoni M et al (2013) Diagnostic utility of MS-MLPA in DNA methylation profiling of adenocarcinomas and neuroendocrine carcinomas of the colon-rectum. Virchows Arch 462:47–56PubMedCrossRef Furlan D, Sahnane N, Mazzoni M et al (2013) Diagnostic utility of MS-MLPA in DNA methylation profiling of adenocarcinomas and neuroendocrine carcinomas of the colon-rectum. Virchows Arch 462:47–56PubMedCrossRef
16.
go back to reference Homing-Holzel C, Savola S (2012) Multiplex ligation-dependent probe amplification (MLPA) in tumor diagnostics and prognostics. Diagn Mol Pathol 21:189–206CrossRef Homing-Holzel C, Savola S (2012) Multiplex ligation-dependent probe amplification (MLPA) in tumor diagnostics and prognostics. Diagn Mol Pathol 21:189–206CrossRef
17.
go back to reference Tibiletti MG, Martin V, Bernasconi B et al (2009) BCL2, BCL6, MYC, MALT 1, and BCL10 rearrangements in nodal diffuse large B-cell lymphomas: a multicenter evaluation of a new set of fluorescence in situ hybridization probes and correlation with clinical outcome. Hum Pathol 40:645–652PubMedCrossRef Tibiletti MG, Martin V, Bernasconi B et al (2009) BCL2, BCL6, MYC, MALT 1, and BCL10 rearrangements in nodal diffuse large B-cell lymphomas: a multicenter evaluation of a new set of fluorescence in situ hybridization probes and correlation with clinical outcome. Hum Pathol 40:645–652PubMedCrossRef
18.
go back to reference Frattini M, Balestra D, Suardi S et al (2004) Different genetic features associated with colon and rectal carcinogenesis. Clin Cancer Res 10:4015–4021PubMedCrossRef Frattini M, Balestra D, Suardi S et al (2004) Different genetic features associated with colon and rectal carcinogenesis. Clin Cancer Res 10:4015–4021PubMedCrossRef
19.
go back to reference Sato N, Goggins M (2006) Epigenetic alterations in intraductal papillary mucinous neoplasms of the pancreas. J Hepatobiliary Pancreat Surg 13:280–285PubMedCrossRef Sato N, Goggins M (2006) Epigenetic alterations in intraductal papillary mucinous neoplasms of the pancreas. J Hepatobiliary Pancreat Surg 13:280–285PubMedCrossRef
20.
go back to reference Dammann R, Schagdarsurengin U, Liu L et al (2003) Frequent RASSF1A promoter hypermethylation and K-ras mutations in pancreatic carcinoma. Oncogene 22:3806–3812PubMedCrossRef Dammann R, Schagdarsurengin U, Liu L et al (2003) Frequent RASSF1A promoter hypermethylation and K-ras mutations in pancreatic carcinoma. Oncogene 22:3806–3812PubMedCrossRef
21.
go back to reference Gerdes B, Wild A, Wittenberg J et al (2003) Tumor-suppressing pathways in cystic pancreatic tumors. Pancreas 26:42–48PubMedCrossRef Gerdes B, Wild A, Wittenberg J et al (2003) Tumor-suppressing pathways in cystic pancreatic tumors. Pancreas 26:42–48PubMedCrossRef
22.
23.
go back to reference Vincent A, Omura N, Hong SM, Jaffe A, Eshleman J, Goggins M (2011) Genome-wide analysis of promoter methylation associated with gene expression profile in pancreatic adenocarcinoma. Clin Cancer Res 17:4341–4354PubMedCentralPubMedCrossRef Vincent A, Omura N, Hong SM, Jaffe A, Eshleman J, Goggins M (2011) Genome-wide analysis of promoter methylation associated with gene expression profile in pancreatic adenocarcinoma. Clin Cancer Res 17:4341–4354PubMedCentralPubMedCrossRef
24.
go back to reference Fukushima N, Walter KM, Uek T et al (2003) Diagnosing pancreatic cancer using methylation specific PCR analysis of pancreatic juice. Cancer Biol Ther 2:78–83PubMed Fukushima N, Walter KM, Uek T et al (2003) Diagnosing pancreatic cancer using methylation specific PCR analysis of pancreatic juice. Cancer Biol Ther 2:78–83PubMed
25.
go back to reference Park JK, Ryu JK, Yoon WJ et al (2012) The role of quantitative NPTX2 hypermethylation as a novel serum diagnostic marker in pancreatic cancer. Pancreas 41:95–101PubMedCrossRef Park JK, Ryu JK, Yoon WJ et al (2012) The role of quantitative NPTX2 hypermethylation as a novel serum diagnostic marker in pancreatic cancer. Pancreas 41:95–101PubMedCrossRef
26.
go back to reference Pfeifer GP, Dammann R (2005) Methylation of the tumor suppressor gene RASSF1A in human tumors. Biochemistry 70:576–583PubMed Pfeifer GP, Dammann R (2005) Methylation of the tumor suppressor gene RASSF1A in human tumors. Biochemistry 70:576–583PubMed
27.
go back to reference Ueki T, Toyota M, Sohn T et al (2000) Hypermethylation of multiple genes in pancreatic adenocarcinomas. Cancer Res 60:1835–1839PubMed Ueki T, Toyota M, Sohn T et al (2000) Hypermethylation of multiple genes in pancreatic adenocarcinomas. Cancer Res 60:1835–1839PubMed
28.
go back to reference Stefanoli M, Furlan D, Sahnane N, La Rosa S, Romualdi C, Sessa F, Capella C (2013) DNA methylation profile identifies prognostic clusters of pancreatic neuroendocrine tumors [abstract]. Mod Pathol 26(Suppl 2):137A Stefanoli M, Furlan D, Sahnane N, La Rosa S, Romualdi C, Sessa F, Capella C (2013) DNA methylation profile identifies prognostic clusters of pancreatic neuroendocrine tumors [abstract]. Mod Pathol 26(Suppl 2):137A
29.
go back to reference Malpeli G, Amato E, Dandrea M et al (2011) Methylation-associated down-regulation of RASSF1A and up-regulation of RASSF1C in pancreatic endocrine tumors. BMC Cancer 11:351PubMedCentralPubMedCrossRef Malpeli G, Amato E, Dandrea M et al (2011) Methylation-associated down-regulation of RASSF1A and up-regulation of RASSF1C in pancreatic endocrine tumors. BMC Cancer 11:351PubMedCentralPubMedCrossRef
30.
go back to reference van Engeland M, Roemen GM, Brink M et al (2002) K-ras mutations and RASSF1A promoter methylation in colorectal cancer. Oncogene 21:3792–3795PubMedCrossRef van Engeland M, Roemen GM, Brink M et al (2002) K-ras mutations and RASSF1A promoter methylation in colorectal cancer. Oncogene 21:3792–3795PubMedCrossRef
31.
go back to reference Kang S, Kim HS, Seo SS, Park SY, Sidransky D, Dong SM (2007) Inverse correlation between RASSF1A hypermethylation, KRAS and BRAF mutations in cervical adenocarcinoma. Gynecol Oncol 105:662–666PubMedCrossRef Kang S, Kim HS, Seo SS, Park SY, Sidransky D, Dong SM (2007) Inverse correlation between RASSF1A hypermethylation, KRAS and BRAF mutations in cervical adenocarcinoma. Gynecol Oncol 105:662–666PubMedCrossRef
32.
go back to reference Agathanggelou A, Cooper WN, Latif F (2005) Role of the Ras-association domain family 1 tumor suppressor gene in human cancers. Cancer Res 65:3497–3508PubMedCrossRef Agathanggelou A, Cooper WN, Latif F (2005) Role of the Ras-association domain family 1 tumor suppressor gene in human cancers. Cancer Res 65:3497–3508PubMedCrossRef
33.
go back to reference Saelee P, Wongkham S, Chariyalertsak S, Petmitr S, Chuensumran U (2010) RASSF1A promoter hypermethylation as a prognostic marker for hepatocellular carcinoma. Asian Pac J Cancer Prev 11:1677–1681PubMed Saelee P, Wongkham S, Chariyalertsak S, Petmitr S, Chuensumran U (2010) RASSF1A promoter hypermethylation as a prognostic marker for hepatocellular carcinoma. Asian Pac J Cancer Prev 11:1677–1681PubMed
34.
go back to reference Gomperts BN, Walser TC, Spira A, Dubinett SM (2013) Enriching the molecular definition of the airway “field of cancerization”: establishing new paradigms for the patient at risk for lung cancer. Cancer Prev Res 6:4–7CrossRef Gomperts BN, Walser TC, Spira A, Dubinett SM (2013) Enriching the molecular definition of the airway “field of cancerization”: establishing new paradigms for the patient at risk for lung cancer. Cancer Prev Res 6:4–7CrossRef
35.
go back to reference Knudson AG Jr (1978) Retinoblastoma: a prototypic hereditary neoplasm. Semin Oncol 5:57–60PubMed Knudson AG Jr (1978) Retinoblastoma: a prototypic hereditary neoplasm. Semin Oncol 5:57–60PubMed
37.
go back to reference Dikovskaya D, Schiffmann D, Newton IP et al (2007) Loss of APC induces polyploidy as a result of a combination of defects in mitosis and apoptosis. J Cell Biol 176:183–195PubMedCentralPubMedCrossRef Dikovskaya D, Schiffmann D, Newton IP et al (2007) Loss of APC induces polyploidy as a result of a combination of defects in mitosis and apoptosis. J Cell Biol 176:183–195PubMedCentralPubMedCrossRef
Metadata
Title
APC alterations are frequently involved in the pathogenesis of acinar cell carcinoma of the pancreas, mainly through gene loss and promoter hypermethylation
Authors
Daniela Furlan
Nora Sahnane
Barbara Bernasconi
Milo Frattini
Maria Grazia Tibiletti
Francesca Molinari
Alessandro Marando
Lizhi Zhang
Alessandro Vanoli
Selenia Casnedi
Volkan Adsay
Kenji Notohara
Luca Albarello
Sofia Asioli
Fausto Sessa
Carlo Capella
Stefano La Rosa
Publication date
01-05-2014
Publisher
Springer Berlin Heidelberg
Published in
Virchows Archiv / Issue 5/2014
Print ISSN: 0945-6317
Electronic ISSN: 1432-2307
DOI
https://doi.org/10.1007/s00428-014-1562-1

Other articles of this Issue 5/2014

Virchows Archiv 5/2014 Go to the issue