Skip to main content
Top
Published in: BMC Anesthesiology 1/2020

Open Access 01-12-2020 | Aortic Valve Replacement | Research article

Effectiveness of wound infusion of 0.2% ropivacaine by patient control analgesia pump after minithoracotomy aortic valve replacement: a randomized, double-blind, placebo-controlled trial

Authors: Gordan Mijovski, Matej Podbregar, Juš Kšela, Matej Jenko, Maja Šoštarič

Published in: BMC Anesthesiology | Issue 1/2020

Login to get access

Abstract

Background

Local anesthetic wound infusion has become an invaluable technique in multimodal analgesia. The effectiveness of wound infusion of 0.2% ropivacaine delivered by patient controlled analgesia (PCA) pump has not been evaluated in minimally invasive cardiac surgery. We tested the hypothesis that 0.2% ropivacaine wound infusion by PCA pump reduces the cumulative dose of opioid needed in the first 48 h after minithoracothomy aortic valve replacement (AVR).

Methods

In this prospective, randomized, double-blind, placebo-controlled study, 70 adult patients (31 female and 39 male) were analyzed. Patients were randomized to receive 0.2% ropivacaine or 0.9% saline wound infusion by PCA pump for 48 h postoperatively. PCA pump was programmed at 5 ml h− 1 continuously and 5 ml of bolus with 60 min lockout. Pain levels were assessed and recorded hourly by Numeric Rating Scale (NRS). If NRS score was higher than three the patient was administered 3 mg of opioid piritramide repeated and titrated as needed until pain relief was achieved. The primary outcome was the cumulative dose of the opioid piritramide in the first 48 h after surgery. Secondary outcomes were frequency of NRS scores higher than three, patient’s satisfaction with pain relief, hospital length of stay, side effects related to the local anesthetic and complications related to the wound catheter.

Results

The cumulative dose of the opioid piritramide in the first 48 h after minithoracotomy AVR was significantly lower (p < 0.001) in the ropivacaine (R) group median 3 mg (IQR 6 mg) vs. 9 mg (IQR 9 mg). The number of episodes of pain where NRS score was greater than three median 2 (IQR 2), vs 3 (IQR 3), (p = 0.002) in the first 48 h after surgery were significantly lower in the ropivacaine group, compared to control. Patient satisfaction with pain relief in our study was high. There were no wound infections and no side-effects from the local anesthetic.

Conclusions

Wound infusion of local anesthetic by PCA pump significantly reduced opioid dose needed and improves pain control postoperatively. We have also shown that it is a feasible method of analgesia and it should be considered in the multimodal pain control strategy following minimally invasive cardiac surgery.

Trial registration

ClinicalTrials.​gov NCT03079830, date of registration: March 15, 2017. Retrospecitvely registered.
Literature
1.
go back to reference Kehlet H, Dahl JB. The value of "multimodal" or "balanced analgesia" in postoperative pain treatment. Anesth Analg. 1993;77(5):1048–56.CrossRef Kehlet H, Dahl JB. The value of "multimodal" or "balanced analgesia" in postoperative pain treatment. Anesth Analg. 1993;77(5):1048–56.CrossRef
2.
go back to reference Batchelor TJP, Rasburn NJ, Abdelnour-Berchtold E, Brunelli A, Cerfolio RJ, Gonzalez M, Ljungqvist O, Petersen RH, Popescu WM, Slinger PD, et al. Guidelines for enhanced recovery after lung surgery: recommendations of the enhanced recovery after surgery (ERAS(R)) society and the European Society of Thoracic Surgeons (ESTS). Eur J Cardiothorac Surg. 2019;55(1):91–115.CrossRef Batchelor TJP, Rasburn NJ, Abdelnour-Berchtold E, Brunelli A, Cerfolio RJ, Gonzalez M, Ljungqvist O, Petersen RH, Popescu WM, Slinger PD, et al. Guidelines for enhanced recovery after lung surgery: recommendations of the enhanced recovery after surgery (ERAS(R)) society and the European Society of Thoracic Surgeons (ESTS). Eur J Cardiothorac Surg. 2019;55(1):91–115.CrossRef
3.
go back to reference Gustafsson UO, Scott MJ, Hubner M, Nygren J, Demartines N, Francis N, Rockall TA, Young-Fadok TM, Hill AG, Soop M, et al. Guidelines for perioperative Care in Elective Colorectal Surgery: enhanced recovery after surgery (ERAS((R))) society recommendations: 2018. World J Surg. 2019;43(3):659–95.CrossRef Gustafsson UO, Scott MJ, Hubner M, Nygren J, Demartines N, Francis N, Rockall TA, Young-Fadok TM, Hill AG, Soop M, et al. Guidelines for perioperative Care in Elective Colorectal Surgery: enhanced recovery after surgery (ERAS((R))) society recommendations: 2018. World J Surg. 2019;43(3):659–95.CrossRef
4.
go back to reference Sommer M, de Rijke JM, van Kleef M, Kessels AG, Peters ML, Geurts JW, Gramke HF, Marcus MA. The prevalence of postoperative pain in a sample of 1490 surgical inpatients. Eur J Anaesthesiol. 2008;25(4):267–74.CrossRef Sommer M, de Rijke JM, van Kleef M, Kessels AG, Peters ML, Geurts JW, Gramke HF, Marcus MA. The prevalence of postoperative pain in a sample of 1490 surgical inpatients. Eur J Anaesthesiol. 2008;25(4):267–74.CrossRef
5.
go back to reference Apfelbaum JL, Chen C, Mehta SS, Gan TJ: Postoperative pain experience: results from a national survey suggest postoperative pain continues to be undermanaged. Anesth Analg 2003, 97(2):534–540, table of contents. Apfelbaum JL, Chen C, Mehta SS, Gan TJ: Postoperative pain experience: results from a national survey suggest postoperative pain continues to be undermanaged. Anesth Analg 2003, 97(2):534–540, table of contents.
6.
go back to reference Thompson C, French DG, Costache I. Pain management within an enhanced recovery program after thoracic surgery. J Thorac Dis. 2018;10(Suppl 32):S3773–s3780.CrossRef Thompson C, French DG, Costache I. Pain management within an enhanced recovery program after thoracic surgery. J Thorac Dis. 2018;10(Suppl 32):S3773–s3780.CrossRef
7.
go back to reference Buvanendran A, Kroin JS. Multimodal analgesia for controlling acute postoperative pain. Curr Opin Anaesthesiol. 2009;22(5):588–93.CrossRef Buvanendran A, Kroin JS. Multimodal analgesia for controlling acute postoperative pain. Curr Opin Anaesthesiol. 2009;22(5):588–93.CrossRef
8.
go back to reference Cashman JN, Dolin SJ. Respiratory and haemodynamic effects of acute postoperative pain management: evidence from published data. Br J Anaesth. 2004;93(2):212–23.CrossRef Cashman JN, Dolin SJ. Respiratory and haemodynamic effects of acute postoperative pain management: evidence from published data. Br J Anaesth. 2004;93(2):212–23.CrossRef
9.
go back to reference Pattinson KT. Opioids and the control of respiration. Br J Anaesth. 2008;100(6):747–58.CrossRef Pattinson KT. Opioids and the control of respiration. Br J Anaesth. 2008;100(6):747–58.CrossRef
10.
go back to reference Babul N, Provencher L, Laberge F, Harsanyi Z, Moulin D. Comparative efficacy and safety of controlled-release morphine suppositories and tablets in cancer pain. J Clin Pharmacol. 1998;38(1):74–81.CrossRef Babul N, Provencher L, Laberge F, Harsanyi Z, Moulin D. Comparative efficacy and safety of controlled-release morphine suppositories and tablets in cancer pain. J Clin Pharmacol. 1998;38(1):74–81.CrossRef
11.
go back to reference Ahmedzai S, Brooks D. Transdermal fentanyl versus sustained-release oral morphine in cancer pain: preference, efficacy, and quality of life. The TTS-fentanyl comparative trial group. J Pain Symptom Manag. 1997;13(5):254–61.CrossRef Ahmedzai S, Brooks D. Transdermal fentanyl versus sustained-release oral morphine in cancer pain: preference, efficacy, and quality of life. The TTS-fentanyl comparative trial group. J Pain Symptom Manag. 1997;13(5):254–61.CrossRef
12.
go back to reference Fayaz MK, Abel RJ, Pugh SC, Hall JE, Djaiani G, Mecklenburgh JS. Opioid-sparing effects of diclofenac and paracetamol lead to improved outcomes after cardiac surgery. J Cardiothorac Vasc Anesth. 2004;18(6):742–7.CrossRef Fayaz MK, Abel RJ, Pugh SC, Hall JE, Djaiani G, Mecklenburgh JS. Opioid-sparing effects of diclofenac and paracetamol lead to improved outcomes after cardiac surgery. J Cardiothorac Vasc Anesth. 2004;18(6):742–7.CrossRef
13.
go back to reference Maddali MM, Kurian E, Fahr J. Extubation time, hemodynamic stability, and postoperative pain control in patients undergoing coronary artery bypass surgery: an evaluation of fentanyl, remifentanil, and nonsteroidal antiinflammatory drugs with propofol for perioperative and postoperative management. J Clin Anesth. 2006;18(8):605–10.CrossRef Maddali MM, Kurian E, Fahr J. Extubation time, hemodynamic stability, and postoperative pain control in patients undergoing coronary artery bypass surgery: an evaluation of fentanyl, remifentanil, and nonsteroidal antiinflammatory drugs with propofol for perioperative and postoperative management. J Clin Anesth. 2006;18(8):605–10.CrossRef
14.
go back to reference Rafiq S, Steinbruchel DA, Wanscher MJ, Andersen LW, Navne A, Lilleoer NB, Olsen PS. Multimodal analgesia versus traditional opiate based analgesia after cardiac surgery, a randomized controlled trial. J Cardiothorac Surg. 2014;9:52.CrossRef Rafiq S, Steinbruchel DA, Wanscher MJ, Andersen LW, Navne A, Lilleoer NB, Olsen PS. Multimodal analgesia versus traditional opiate based analgesia after cardiac surgery, a randomized controlled trial. J Cardiothorac Surg. 2014;9:52.CrossRef
15.
go back to reference Forastiere E, Sofra M, Giannarelli D, Fabrizi L, Simone G. Effectiveness of continuous wound infusion of 0.5% ropivacaine by on-Q pain relief system for postoperative pain management after open nephrectomy. Br J Anaesth. 2008;101(6):841–7.CrossRef Forastiere E, Sofra M, Giannarelli D, Fabrizi L, Simone G. Effectiveness of continuous wound infusion of 0.5% ropivacaine by on-Q pain relief system for postoperative pain management after open nephrectomy. Br J Anaesth. 2008;101(6):841–7.CrossRef
16.
go back to reference Aguirre J, Baulig B, Dora C, Ekatodramis G, Votta-Velis G, Ruland P, Borgeat A. Continuous epicapsular ropivacaine 0.3% infusion after minimally invasive hip arthroplasty: a prospective, randomized, double-blinded, placebo-controlled study comparing continuous wound infusion with morphine patient-controlled analgesia. Anesth Analg. 2012;114(2):456–61.CrossRef Aguirre J, Baulig B, Dora C, Ekatodramis G, Votta-Velis G, Ruland P, Borgeat A. Continuous epicapsular ropivacaine 0.3% infusion after minimally invasive hip arthroplasty: a prospective, randomized, double-blinded, placebo-controlled study comparing continuous wound infusion with morphine patient-controlled analgesia. Anesth Analg. 2012;114(2):456–61.CrossRef
17.
go back to reference Chan SK, Lai PB, Li PT, Wong J, Karmakar MK, Lee KF, Gin T. The analgesic efficacy of continuous wound instillation with ropivacaine after open hepatic surgery. Anaesthesia. 2010;65(12):1180–6.CrossRef Chan SK, Lai PB, Li PT, Wong J, Karmakar MK, Lee KF, Gin T. The analgesic efficacy of continuous wound instillation with ropivacaine after open hepatic surgery. Anaesthesia. 2010;65(12):1180–6.CrossRef
18.
go back to reference Dowling R, Thielmeier K, Ghaly A, Barber D, Boice T, Dine A. Improved pain control after cardiac surgery: results of a randomized, double-blind, clinical trial. J Thorac Cardiovasc Surg. 2003;126(5):1271–8.CrossRef Dowling R, Thielmeier K, Ghaly A, Barber D, Boice T, Dine A. Improved pain control after cardiac surgery: results of a randomized, double-blind, clinical trial. J Thorac Cardiovasc Surg. 2003;126(5):1271–8.CrossRef
19.
go back to reference White PF, Rawal S, Latham P, Markowitz S, Issioui T, Chi L, Dellaria S, Shi C, Morse L, Ing C. Use of a continuous local anesthetic infusion for pain management after median sternotomy. Anesthesiology. 2003;99(4):918–23.CrossRef White PF, Rawal S, Latham P, Markowitz S, Issioui T, Chi L, Dellaria S, Shi C, Morse L, Ing C. Use of a continuous local anesthetic infusion for pain management after median sternotomy. Anesthesiology. 2003;99(4):918–23.CrossRef
20.
go back to reference Magnano D, Montalbano R, Lamarra M, Ferri F, Lorini L, Clarizia S, Rescigno G. Ineffectiveness of local wound anesthesia to reduce postoperative pain after median sternotomy. J Card Surg. 2005;20(4):314–8.CrossRef Magnano D, Montalbano R, Lamarra M, Ferri F, Lorini L, Clarizia S, Rescigno G. Ineffectiveness of local wound anesthesia to reduce postoperative pain after median sternotomy. J Card Surg. 2005;20(4):314–8.CrossRef
21.
go back to reference Amour J, Cholley B, Ouattara A, Longrois D, Leprince P, Fellahi JL, Riou B, Hariri S, Latremouille C, Remy A, et al. The effect of local anesthetic continuous wound infusion for the prevention of postoperative pneumonia after on-pump cardiac surgery with sternotomy: the STERNOCAT randomized clinical trial. Intensive Care Med. 2019;45(1):33–43.CrossRef Amour J, Cholley B, Ouattara A, Longrois D, Leprince P, Fellahi JL, Riou B, Hariri S, Latremouille C, Remy A, et al. The effect of local anesthetic continuous wound infusion for the prevention of postoperative pneumonia after on-pump cardiac surgery with sternotomy: the STERNOCAT randomized clinical trial. Intensive Care Med. 2019;45(1):33–43.CrossRef
22.
go back to reference Hinrichs M, Weyland A. Bantel C: [Piritramide : A critical review]. Schmerz. 2017;31(4):345–52.CrossRef Hinrichs M, Weyland A. Bantel C: [Piritramide : A critical review]. Schmerz. 2017;31(4):345–52.CrossRef
23.
go back to reference Knudsen K, Beckman Suurkula M, Blomberg S, Sjovall J, Edvardsson N. Central nervous and cardiovascular effects of i.v. infusions of ropivacaine, bupivacaine and placebo in volunteers. Br J Anaesth. 1997;78(5):507–14.CrossRef Knudsen K, Beckman Suurkula M, Blomberg S, Sjovall J, Edvardsson N. Central nervous and cardiovascular effects of i.v. infusions of ropivacaine, bupivacaine and placebo in volunteers. Br J Anaesth. 1997;78(5):507–14.CrossRef
24.
go back to reference Peters ML, Sommer M, de Rijke JM, Kessels F, Heineman E, Patijn J, Marcus MA, Vlaeyen JW, van Kleef M. Somatic and psychologic predictors of long-term unfavorable outcome after surgical intervention. Ann Surg. 2007;245(3):487–94.CrossRef Peters ML, Sommer M, de Rijke JM, Kessels F, Heineman E, Patijn J, Marcus MA, Vlaeyen JW, van Kleef M. Somatic and psychologic predictors of long-term unfavorable outcome after surgical intervention. Ann Surg. 2007;245(3):487–94.CrossRef
25.
go back to reference Beaussier M, El'Ayoubi H, Schiffer E, Rollin M, Parc Y, Mazoit JX, Azizi L, Gervaz P, Rohr S, Biermann C, et al. Continuous preperitoneal infusion of ropivacaine provides effective analgesia and accelerates recovery after colorectal surgery: a randomized, double-blind, placebo-controlled study. Anesthesiology. 2007;107(3):461–8.CrossRef Beaussier M, El'Ayoubi H, Schiffer E, Rollin M, Parc Y, Mazoit JX, Azizi L, Gervaz P, Rohr S, Biermann C, et al. Continuous preperitoneal infusion of ropivacaine provides effective analgesia and accelerates recovery after colorectal surgery: a randomized, double-blind, placebo-controlled study. Anesthesiology. 2007;107(3):461–8.CrossRef
26.
go back to reference Shepherd SJ, Klein AA, Martinez G. Enhanced recovery for thoracic surgery in the elderly. Curr Opin Anaesthesiol. 2018;31(1):30–8.CrossRef Shepherd SJ, Klein AA, Martinez G. Enhanced recovery for thoracic surgery in the elderly. Curr Opin Anaesthesiol. 2018;31(1):30–8.CrossRef
27.
go back to reference Hoenecke HR Jr, Pulido PA, Morris BA, Fronek J. The efficacy of continuous bupivacaine infiltration following anterior cruciate ligament reconstruction. Arthroscopy. 2002;18(8):854–8.CrossRef Hoenecke HR Jr, Pulido PA, Morris BA, Fronek J. The efficacy of continuous bupivacaine infiltration following anterior cruciate ligament reconstruction. Arthroscopy. 2002;18(8):854–8.CrossRef
28.
go back to reference Kushner DM, LaGalbo R, Connor JP, Chappell R, Stewart SL, Hartenbach EM. Use of a bupivacaine continuous wound infusion system in gynecologic oncology: a randomized trial. Obstet Gynecol. 2005;106(2):227–33.CrossRef Kushner DM, LaGalbo R, Connor JP, Chappell R, Stewart SL, Hartenbach EM. Use of a bupivacaine continuous wound infusion system in gynecologic oncology: a randomized trial. Obstet Gynecol. 2005;106(2):227–33.CrossRef
29.
go back to reference Florkiewicz P, Musialowicz T, Hippelainen M, Lahtinen P. Continuous Ropivacaine infusion offers no benefit in treating postoperative pain after cardiac surgery. J Cardiothorac Vasc Anesth. 2019;33(2):378–84.CrossRef Florkiewicz P, Musialowicz T, Hippelainen M, Lahtinen P. Continuous Ropivacaine infusion offers no benefit in treating postoperative pain after cardiac surgery. J Cardiothorac Vasc Anesth. 2019;33(2):378–84.CrossRef
30.
go back to reference Eljezi V, Imhoff E, Bourdeaux D, Pereira B, Farhat M, Schoeffler P, Azarnoush K, Duale C. Bilateral sternal infusion of ropivacaine and length of stay in ICU after cardiac surgery with increased respiratory risk: a randomised controlled trial. Eur J Anaesthesiol. 2017;34(2):56–65.CrossRef Eljezi V, Imhoff E, Bourdeaux D, Pereira B, Farhat M, Schoeffler P, Azarnoush K, Duale C. Bilateral sternal infusion of ropivacaine and length of stay in ICU after cardiac surgery with increased respiratory risk: a randomised controlled trial. Eur J Anaesthesiol. 2017;34(2):56–65.CrossRef
31.
go back to reference Glauber M, Gilmanov D, Farneti PA, Kallushi E, Miceli A, Chiaramonti F, Murzi M, Solinas M: Right anterior minithoracotomy for aortic valve replacement: 10-year experience of a single center. J Thorac Cardiovasc Surg 2015, 150(3):548–556.e542. Glauber M, Gilmanov D, Farneti PA, Kallushi E, Miceli A, Chiaramonti F, Murzi M, Solinas M: Right anterior minithoracotomy for aortic valve replacement: 10-year experience of a single center. J Thorac Cardiovasc Surg 2015, 150(3):548–556.e542.
Metadata
Title
Effectiveness of wound infusion of 0.2% ropivacaine by patient control analgesia pump after minithoracotomy aortic valve replacement: a randomized, double-blind, placebo-controlled trial
Authors
Gordan Mijovski
Matej Podbregar
Juš Kšela
Matej Jenko
Maja Šoštarič
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Anesthesiology / Issue 1/2020
Electronic ISSN: 1471-2253
DOI
https://doi.org/10.1186/s12871-020-01093-9

Other articles of this Issue 1/2020

BMC Anesthesiology 1/2020 Go to the issue