Skip to main content
Top
Published in: Journal of Cardiovascular Magnetic Resonance 1/2017

Open Access 01-12-2017 | Research

Aortic length measurements for pulse wave velocity calculation: manual 2D vs automated 3D centreline extraction

Authors: Arna van Engelen, Miguel Silva Vieira, Isma Rafiq, Marina Cecelja, Torben Schneider, Hubrecht de Bliek, C. Alberto Figueroa, Tarique Hussain, Rene M. Botnar, Jordi Alastruey

Published in: Journal of Cardiovascular Magnetic Resonance | Issue 1/2017

Login to get access

Abstract

Background

Pulse wave velocity (PWV) is a biomarker for the intrinsic stiffness of the aortic wall, and has been shown to be predictive for cardiovascular events. It can be assessed using cardiovascular magnetic resonance (CMR) from the delay between phase-contrast flow waveforms at two or more locations in the aorta, and the distance on CMR images between those locations. This study aimed to investigate the impact of different distance measurement methods on PWV. We present and evaluate an algorithm for automated centreline tracking in 3D images, and compare PWV calculations using distances derived from 3D images to those obtained from a conventional 2D oblique-sagittal image of the aorta.

Methods

We included 35 patients from a twin cohort, and 20 post-coarctation repair patients. Phase-contrast flow was acquired in the ascending, descending and diaphragmatic aorta. A 3D centreline tracking algorithm is presented and evaluated on a subset of 30 subjects, on three CMR sequences: balanced steady-state free precession (SSFP), black-blood double inversion recovery turbo spin echo, and contrast-enhanced CMR angiography. Aortic lengths are subsequently compared between measurements from a 2D oblique-sagittal plane, and a 3D geometry.

Results

The error in length of automated 3D centreline tracking compared with manual annotations ranged from 2.4 [1.8-4.3] mm (mean [IQR], black-blood) to 6.4 [4.7-8.9] mm (SSFP). The impact on PWV was below 0.5m/s (<5%). Differences between 2D and 3D centreline length were significant for the majority of our experiments (p < 0.05). Individual differences in PWV were larger than 0.5m/s in 15% of all cases (thoracic aorta) and 37% when studying the aortic arch only. Finally, the difference between end-diastolic and end-systolic 2D centreline lengths was statistically significant (p < 0.01), but resulted in small differences in PWV (0.08 [0.04 - 0.10]m/s).

Conclusions

Automatic aortic centreline tracking in three commonly used CMR sequences is possible with good accuracy. The 3D length obtained from such sequences can differ considerably from lengths obtained from a 2D oblique-sagittal plane, depending on aortic curvature, adequate planning of the oblique-sagittal plane, and patient motion between acquisitions. For accurate PWV measurements we recommend using 3D centrelines.
Literature
1.
go back to reference Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, Pannier B, Vlachopoulos C, Wilkinson I, Struijker-Boudier H. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27:2588–605.CrossRefPubMed Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, Pannier B, Vlachopoulos C, Wilkinson I, Struijker-Boudier H. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27:2588–605.CrossRefPubMed
2.
go back to reference Mitchell GF, Hwang SJ, Vasan RS, Larson MG, Pencina MJ, Hamburg NM, Vita JA, Levy D, Benjamin EJ. Arterial Stiffness and Cardiovascular Events The Framingham Heart Study. Circulation. 2010;121:505–11.CrossRefPubMedPubMedCentral Mitchell GF, Hwang SJ, Vasan RS, Larson MG, Pencina MJ, Hamburg NM, Vita JA, Levy D, Benjamin EJ. Arterial Stiffness and Cardiovascular Events The Framingham Heart Study. Circulation. 2010;121:505–11.CrossRefPubMedPubMedCentral
3.
go back to reference Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of Cardiovascular Events and All-Cause Mortality With Arterial Stiffness. J Am Coll Cardiol. 2010;55:1318–27.CrossRefPubMed Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of Cardiovascular Events and All-Cause Mortality With Arterial Stiffness. J Am Coll Cardiol. 2010;55:1318–27.CrossRefPubMed
4.
go back to reference Boutouyrie P, Briet M, Collin C, Vermeersch S, Pannier B. Assessment of pulse wave velocity. Artery Res. 2009;3:3–8.CrossRef Boutouyrie P, Briet M, Collin C, Vermeersch S, Pannier B. Assessment of pulse wave velocity. Artery Res. 2009;3:3–8.CrossRef
5.
go back to reference Meaume S, Benetos A, Henry OF, Rudnichi A, Safar ME. Aortic pulse wave velocity predicts cardiovascular mortality in subjects >70 years of age. Arterioscler Thromb Vasc Biol. 2001;21:2046–50.CrossRefPubMed Meaume S, Benetos A, Henry OF, Rudnichi A, Safar ME. Aortic pulse wave velocity predicts cardiovascular mortality in subjects >70 years of age. Arterioscler Thromb Vasc Biol. 2001;21:2046–50.CrossRefPubMed
6.
go back to reference Cecelja M, Chowienczyk P. Dissociation of Aortic Pulse Wave Velocity With Risk Factors for Cardiovascular Disease Other Than Hypertension: A Systematic Review. Hypertension. 2009;54:1328–36.CrossRefPubMed Cecelja M, Chowienczyk P. Dissociation of Aortic Pulse Wave Velocity With Risk Factors for Cardiovascular Disease Other Than Hypertension: A Systematic Review. Hypertension. 2009;54:1328–36.CrossRefPubMed
7.
go back to reference Mohiaddin RH, Firmin DN, Longmore DB. Age-related changes of human aortic flow wave velocity measured noninvasively by magnetic resonance imaging. J Appl Physiol. 1993;74:492–7.PubMed Mohiaddin RH, Firmin DN, Longmore DB. Age-related changes of human aortic flow wave velocity measured noninvasively by magnetic resonance imaging. J Appl Physiol. 1993;74:492–7.PubMed
8.
go back to reference Devos DGH, Rietzschel E, Heyse C, Vandemaele P, Van Bortel L, Babin D, Segers P, Westenberg JM, Achten R. MR pulse wave velocity increases with age faster in the thoracic aorta than in the abdominal aorta. J Magn Reson Imaging. 2014;772:765–772 Devos DGH, Rietzschel E, Heyse C, Vandemaele P, Van Bortel L, Babin D, Segers P, Westenberg JM, Achten R. MR pulse wave velocity increases with age faster in the thoracic aorta than in the abdominal aorta. J Magn Reson Imaging. 2014;772:765–772
9.
go back to reference Kim EK, Chang S-A, Jang SY, Kim Y, Kim SM, Oh JK, Choe YH, Kim D-K. Assessment of regional aortic stiffness with cardiac magnetic resonance imaging in a healthy Asian population. Int J Cardiovasc Imaging. 2013;29 Suppl 1:57–64.CrossRefPubMed Kim EK, Chang S-A, Jang SY, Kim Y, Kim SM, Oh JK, Choe YH, Kim D-K. Assessment of regional aortic stiffness with cardiac magnetic resonance imaging in a healthy Asian population. Int J Cardiovasc Imaging. 2013;29 Suppl 1:57–64.CrossRefPubMed
10.
go back to reference Abbas A, Cecelja M, Hussain T, Greil G, Modarai B, Waltham M, Chowienczyk PJ, Smith A. Thoracic but not abdominal phase contrast magnetic resonance-derived aortic pulse wave velocity is elevated in patients with abdominal aortic aneurysm. J Hypertens. 2015;33:1032–8.CrossRefPubMed Abbas A, Cecelja M, Hussain T, Greil G, Modarai B, Waltham M, Chowienczyk PJ, Smith A. Thoracic but not abdominal phase contrast magnetic resonance-derived aortic pulse wave velocity is elevated in patients with abdominal aortic aneurysm. J Hypertens. 2015;33:1032–8.CrossRefPubMed
11.
go back to reference Kröner ES, Scholte AJ, de Koning PJ, van den Boogaard PJ, Kroft LJ, van der Geest RJ, Hilhorst-Hofstee Y, Lamb HJ, Siebelink HM, Mulder BJ, Groenink M, Radonic T, van der Wall EE, de Roos A, Reiber JH, Westenberg JJ. MRI-assessed regional pulse wave velocity for predicting absence of regional aorta luminal growth in marfan syndrome. Int J Cardiol. 2013;167:2977–82.CrossRefPubMed Kröner ES, Scholte AJ, de Koning PJ, van den Boogaard PJ, Kroft LJ, van der Geest RJ, Hilhorst-Hofstee Y, Lamb HJ, Siebelink HM, Mulder BJ, Groenink M, Radonic T, van der Wall EE, de Roos A, Reiber JH, Westenberg JJ. MRI-assessed regional pulse wave velocity for predicting absence of regional aorta luminal growth in marfan syndrome. Int J Cardiol. 2013;167:2977–82.CrossRefPubMed
12.
go back to reference Westenberg JJ, Scholte AJ, Vaskova Z, van der Geest RJ, Groenink M, Labadie G, van den Boogaard PJ, Radonic T, Hilhorst-Hofstee Y, Mulder BJ, Kroft LJ, Reiber JH, de Roos A. Age-related and regional changes of aortic stiffness in the Marfan syndrome: assessment with velocity-encoded MRI. J Magn Reson Imaging. 2011;34:526–31.CrossRefPubMed Westenberg JJ, Scholte AJ, Vaskova Z, van der Geest RJ, Groenink M, Labadie G, van den Boogaard PJ, Radonic T, Hilhorst-Hofstee Y, Mulder BJ, Kroft LJ, Reiber JH, de Roos A. Age-related and regional changes of aortic stiffness in the Marfan syndrome: assessment with velocity-encoded MRI. J Magn Reson Imaging. 2011;34:526–31.CrossRefPubMed
13.
go back to reference Wentland AL, Grist TM, Wieben O. Review of MRI-based measurements of pulse wave velocity: a biomarker of arterial stiffness. Cardiovasc Diagn Ther. 2014;4:193–206.PubMedPubMedCentral Wentland AL, Grist TM, Wieben O. Review of MRI-based measurements of pulse wave velocity: a biomarker of arterial stiffness. Cardiovasc Diagn Ther. 2014;4:193–206.PubMedPubMedCentral
14.
go back to reference Dogui A, Redheuil A, Lefort M, Decesare A, Kachenoura N, Herment A, Mousseaux E. Measurement of aortic arch pulse wave velocity in cardiovascular MR: Comparison of transit time estimators and description of a new approach. J Magn Reson Imaging. 2011;33:1321–9.CrossRefPubMed Dogui A, Redheuil A, Lefort M, Decesare A, Kachenoura N, Herment A, Mousseaux E. Measurement of aortic arch pulse wave velocity in cardiovascular MR: Comparison of transit time estimators and description of a new approach. J Magn Reson Imaging. 2011;33:1321–9.CrossRefPubMed
15.
go back to reference Vardoulis O, Papaioannou TG, Stergiopulos N. Validation of a novel and existing algorithms for the estimation of pulse transit time: advancing the accuracy in pulse wave velocity measurement. Am J Physiol Hear Circ Physiol. 2013;304:H1558–67.CrossRef Vardoulis O, Papaioannou TG, Stergiopulos N. Validation of a novel and existing algorithms for the estimation of pulse transit time: advancing the accuracy in pulse wave velocity measurement. Am J Physiol Hear Circ Physiol. 2013;304:H1558–67.CrossRef
16.
go back to reference Gaddum NR, Alastruey J, Beerbaum P, Chowienczyk P, Schaeffter T. A technical assessment of pulse wave velocity algorithms applied to non-invasive arterial waveforms. Ann Biomed Eng. 2013;41:2617–29.CrossRefPubMed Gaddum NR, Alastruey J, Beerbaum P, Chowienczyk P, Schaeffter T. A technical assessment of pulse wave velocity algorithms applied to non-invasive arterial waveforms. Ann Biomed Eng. 2013;41:2617–29.CrossRefPubMed
17.
go back to reference Fogel MA, Li C, Nicolson SC, Spray TL, Gaynor JW, Fuller S, Keller MS, Harris MA, Yoganathan AP, Whitehead KK. Comparison by Magnetic Resonance Phase Contrast Imagingof Pulse-Wave Velocity in Patients With Single Ventricle Who Have Reconstructed Aortas Versus Those Without. Am J Cardiol. 2014;114:1902–7.CrossRefPubMedPubMedCentral Fogel MA, Li C, Nicolson SC, Spray TL, Gaynor JW, Fuller S, Keller MS, Harris MA, Yoganathan AP, Whitehead KK. Comparison by Magnetic Resonance Phase Contrast Imagingof Pulse-Wave Velocity in Patients With Single Ventricle Who Have Reconstructed Aortas Versus Those Without. Am J Cardiol. 2014;114:1902–7.CrossRefPubMedPubMedCentral
18.
go back to reference Klug G, Feistritzer H-J, Reinstadler SJ, Mayr A, Kremser C, Schocke M, Franz WM, Metzler B. Use and limitations of cardiac magnetic resonance derived measures of aortic stiffness in patients after acute myocardial infarction. Magn Reson Imaging. 2014;32:1259–65.CrossRefPubMed Klug G, Feistritzer H-J, Reinstadler SJ, Mayr A, Kremser C, Schocke M, Franz WM, Metzler B. Use and limitations of cardiac magnetic resonance derived measures of aortic stiffness in patients after acute myocardial infarction. Magn Reson Imaging. 2014;32:1259–65.CrossRefPubMed
19.
go back to reference King KS, Chen KX, Hulsey KM, McColl RW, Weiner MF, Nakonezny PA, Peshock RM. Aortic arch pulse wave velocity predicts white matter hyperintensity volume independent of other cardiovascular risk factors. Circulation. 2012;126:709–17.CrossRef King KS, Chen KX, Hulsey KM, McColl RW, Weiner MF, Nakonezny PA, Peshock RM. Aortic arch pulse wave velocity predicts white matter hyperintensity volume independent of other cardiovascular risk factors. Circulation. 2012;126:709–17.CrossRef
20.
go back to reference Westenberg JJM, De Roos A, Grotenhuis HB, Steendijk P, Hendriksen D, Van Den Boogaard PJ, Van Der Geest RJ, Bax JJ, Jukema JW, Reiber JHC. Improved aortic pulse wave velocity assessment from multislice two-directional in-plane velocity-encoded magnetic resonance imaging. J Magn Reson Imaging. 2010;32:1086–94.CrossRefPubMed Westenberg JJM, De Roos A, Grotenhuis HB, Steendijk P, Hendriksen D, Van Den Boogaard PJ, Van Der Geest RJ, Bax JJ, Jukema JW, Reiber JHC. Improved aortic pulse wave velocity assessment from multislice two-directional in-plane velocity-encoded magnetic resonance imaging. J Magn Reson Imaging. 2010;32:1086–94.CrossRefPubMed
21.
go back to reference Voges I, Jerosch-Herold M, Hedderich J, Pardun E, Hart C, Gabbert DD, Hansen JH, Petko C, Kramer H-H, Rickers C. Normal values of aortic dimensions, distensibility, and pulse wave velocity in children and young adults: a cross-sectional study. J Cardiovasc Magn Reson. 2012;14:77.CrossRefPubMedPubMedCentral Voges I, Jerosch-Herold M, Hedderich J, Pardun E, Hart C, Gabbert DD, Hansen JH, Petko C, Kramer H-H, Rickers C. Normal values of aortic dimensions, distensibility, and pulse wave velocity in children and young adults: a cross-sectional study. J Cardiovasc Magn Reson. 2012;14:77.CrossRefPubMedPubMedCentral
22.
go back to reference Tjeerdema N, Van Schinkel LD, Westenberg JJ, Van Elderen SG, Van Buchem MA, Smit JW, Van der Grond J, De Roos A. Aortic stiffness is associated with white matter integrity in patients with type 1 diabetes. Eur Radiol. 2014;24:2031–7.CrossRefPubMed Tjeerdema N, Van Schinkel LD, Westenberg JJ, Van Elderen SG, Van Buchem MA, Smit JW, Van der Grond J, De Roos A. Aortic stiffness is associated with white matter integrity in patients with type 1 diabetes. Eur Radiol. 2014;24:2031–7.CrossRefPubMed
23.
go back to reference Shan Y, Lin J, Xu P, Zeng M, Lin H, Yan H. The combined effect of hypertension and type 2 diabetes mellitus on aortic stiffness and endothelial dysfunction: An integrated study with high-resolution MRI. Magn Reson Imaging. 2014;32:211–6.CrossRefPubMed Shan Y, Lin J, Xu P, Zeng M, Lin H, Yan H. The combined effect of hypertension and type 2 diabetes mellitus on aortic stiffness and endothelial dysfunction: An integrated study with high-resolution MRI. Magn Reson Imaging. 2014;32:211–6.CrossRefPubMed
24.
go back to reference Wentland AL, Wieben O, François CJ, Boncyk C, Munoz Del Rio A, Johnson KM, Grist TM, Frydrychowicz A. Aortic pulse wave velocity measurements with undersampled 4D flow-sensitive MRI: Comparison with 2D and algorithm determination. J Magn Reson Imaging. 2013;37:853–9.CrossRefPubMed Wentland AL, Wieben O, François CJ, Boncyk C, Munoz Del Rio A, Johnson KM, Grist TM, Frydrychowicz A. Aortic pulse wave velocity measurements with undersampled 4D flow-sensitive MRI: Comparison with 2D and algorithm determination. J Magn Reson Imaging. 2013;37:853–9.CrossRefPubMed
25.
go back to reference Worz S, von Tengg-Kobligk H, Henninger V, Rengier F, Schumacher H, Bockler D, Kauczor H-U, Rohr K. 3-D Quantification of the Aortic Arch Morphology in 3-D CTA Data for Endovascular Aortic Repair. IEEE Trans Biomed Eng. 2010;57:2359–68.CrossRefPubMed Worz S, von Tengg-Kobligk H, Henninger V, Rengier F, Schumacher H, Bockler D, Kauczor H-U, Rohr K. 3-D Quantification of the Aortic Arch Morphology in 3-D CTA Data for Endovascular Aortic Repair. IEEE Trans Biomed Eng. 2010;57:2359–68.CrossRefPubMed
26.
go back to reference Shin H, Chavan A, Witthus F, Selle D, Stamm G, Peitgen HO, Galanski M. Precise determination of aortic length in patients with aortic stent grafts: In vivo evaluation of a thinning algorithm applied to CT angiography data. Eur Radiol. 2001;11:733–8.CrossRefPubMed Shin H, Chavan A, Witthus F, Selle D, Stamm G, Peitgen HO, Galanski M. Precise determination of aortic length in patients with aortic stent grafts: In vivo evaluation of a thinning algorithm applied to CT angiography data. Eur Radiol. 2001;11:733–8.CrossRefPubMed
27.
go back to reference Krissian K, Carreira JM, Esclarin J, Maynar M. Semi-automatic segmentation and detection of aorta dissection wall in MDCT angiography. Med Image Anal. 2014;18:83–102.CrossRefPubMed Krissian K, Carreira JM, Esclarin J, Maynar M. Semi-automatic segmentation and detection of aorta dissection wall in MDCT angiography. Med Image Anal. 2014;18:83–102.CrossRefPubMed
28.
go back to reference Craiem D, Chironi G, Redheuil A, Casciaro M, Mousseaux E, Simon A, Armentano RL. Aging impact on thoracic aorta 3D morphometry in intermediate-risk subjects: Looking beyond coronary arteries with non-contrast cardiac CT. Ann Biomed Eng. 2012;40:1028–38.CrossRefPubMed Craiem D, Chironi G, Redheuil A, Casciaro M, Mousseaux E, Simon A, Armentano RL. Aging impact on thoracic aorta 3D morphometry in intermediate-risk subjects: Looking beyond coronary arteries with non-contrast cardiac CT. Ann Biomed Eng. 2012;40:1028–38.CrossRefPubMed
29.
go back to reference Babin D, Devos D, Pižurica A, Westenberg J, Vansteenkiste E, Philips W. Robust segmentation methods with an application to aortic pulse wave velocity calculation. Comput Med Imaging Graph. 2014;38:179–89.CrossRefPubMed Babin D, Devos D, Pižurica A, Westenberg J, Vansteenkiste E, Philips W. Robust segmentation methods with an application to aortic pulse wave velocity calculation. Comput Med Imaging Graph. 2014;38:179–89.CrossRefPubMed
30.
go back to reference Zhao F, Zhang H, Wahle A, Thomas MT, Stolpen AH, Scholz TD, Sonka M. Congenital aortic disease: 4D magnetic resonance segmentation and quantitative analysis. Med Image Anal. 2009;13:483–93.CrossRefPubMedPubMedCentral Zhao F, Zhang H, Wahle A, Thomas MT, Stolpen AH, Scholz TD, Sonka M. Congenital aortic disease: 4D magnetic resonance segmentation and quantitative analysis. Med Image Anal. 2009;13:483–93.CrossRefPubMedPubMedCentral
31.
go back to reference Johnson RK, Premraj S, Patel SS, Walker N, Wahle A, Sonka M, Scholz TD. Automated analysis of four-dimensional magnetic resonance images of the human aorta. Int J Cardiovasc Imaging. 2010;26:571–8.CrossRefPubMedPubMedCentral Johnson RK, Premraj S, Patel SS, Walker N, Wahle A, Sonka M, Scholz TD. Automated analysis of four-dimensional magnetic resonance images of the human aorta. Int J Cardiovasc Imaging. 2010;26:571–8.CrossRefPubMedPubMedCentral
32.
go back to reference Boskamp T, Rinck D, Link F, Kümmerlen B, Stamm G, Mildenberger P. New vessel analysis tool for morphometric quantification and visualization of vessels in CT and MR imaging data sets. Radiographics. 2004;24:287–97.CrossRefPubMed Boskamp T, Rinck D, Link F, Kümmerlen B, Stamm G, Mildenberger P. New vessel analysis tool for morphometric quantification and visualization of vessels in CT and MR imaging data sets. Radiographics. 2004;24:287–97.CrossRefPubMed
33.
go back to reference Frangi AF, Niessen WJ, Vincken KL, Viergever MA. Multiscale vessel enhancement filtering. MICCAI. 1998;1496:130–7. Frangi AF, Niessen WJ, Vincken KL, Viergever MA. Multiscale vessel enhancement filtering. MICCAI. 1998;1496:130–7.
34.
go back to reference Wink O, Frangi AF, Verdonck B, Viergever MA, Niessen WJ. 3D MRA coronary axis determination using a minimum cost path approach. Magn Reson Med. 2002;47:1169–75.CrossRefPubMed Wink O, Frangi AF, Verdonck B, Viergever MA, Niessen WJ. 3D MRA coronary axis determination using a minimum cost path approach. Magn Reson Med. 2002;47:1169–75.CrossRefPubMed
35.
go back to reference Schaap M, Metz CT, van Walsum T, van der Giessen AG, Weustink AC, Mollet NR, Bauer C, Bogunović H, Castro C, Deng X, Dikici E, O’Donnell T, Frenay M, Friman O, Hoyos MH, Kitslaar PH, Krissian K, Kühnel C, Luengo-Oroz MA, Orkisz M, Smedby Ö, Styner M, Szymczak A, Tek H, Wang C, Warfield SK, Zambal S, Zhang Y, Krestin GP, Niessen WJ. Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms. Med Image Anal. 2009;13:701–14.CrossRefPubMed Schaap M, Metz CT, van Walsum T, van der Giessen AG, Weustink AC, Mollet NR, Bauer C, Bogunović H, Castro C, Deng X, Dikici E, O’Donnell T, Frenay M, Friman O, Hoyos MH, Kitslaar PH, Krissian K, Kühnel C, Luengo-Oroz MA, Orkisz M, Smedby Ö, Styner M, Szymczak A, Tek H, Wang C, Warfield SK, Zambal S, Zhang Y, Krestin GP, Niessen WJ. Standardized evaluation methodology and reference database for evaluating coronary artery centerline extraction algorithms. Med Image Anal. 2009;13:701–14.CrossRefPubMed
36.
go back to reference Hameeteman K, Zuluaga MA, Freiman M, Joskowicz L, Cuisenaire O, Valencia LF, Gülsün MA, Krissian K, Mille J, Wong WCK, Orkisz M, Tek H, Hoyos MH, Benmansour F, Chung ACS, Rozie S, van Gils M, van den Borne L, Sosna J, Berman P, Cohen N, Douek PC, Sánchez I, Aissat M, Schaap M, Metz CT, Krestin GP, van der Lugt A, Niessen WJ, Van Walsum T. Evaluation framework for carotid bifurcation lumen segmentation and stenosis grading. Med Image Anal. 2011;15:477–88.CrossRefPubMed Hameeteman K, Zuluaga MA, Freiman M, Joskowicz L, Cuisenaire O, Valencia LF, Gülsün MA, Krissian K, Mille J, Wong WCK, Orkisz M, Tek H, Hoyos MH, Benmansour F, Chung ACS, Rozie S, van Gils M, van den Borne L, Sosna J, Berman P, Cohen N, Douek PC, Sánchez I, Aissat M, Schaap M, Metz CT, Krestin GP, van der Lugt A, Niessen WJ, Van Walsum T. Evaluation framework for carotid bifurcation lumen segmentation and stenosis grading. Med Image Anal. 2011;15:477–88.CrossRefPubMed
37.
go back to reference Lesage D, Angelini ED, Bloch I, Funka-Lea G. A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. Med Image Anal. 2009;13:819–45.CrossRefPubMed Lesage D, Angelini ED, Bloch I, Funka-Lea G. A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. Med Image Anal. 2009;13:819–45.CrossRefPubMed
38.
go back to reference Moayyeri A, Hammond CJ, Valdes AM, Spector TD. Cohort profile: TwinsUK and healthy ageing twin study. Int J Epidemiol. 2013;42:76–85.CrossRefPubMed Moayyeri A, Hammond CJ, Valdes AM, Spector TD. Cohort profile: TwinsUK and healthy ageing twin study. Int J Epidemiol. 2013;42:76–85.CrossRefPubMed
39.
go back to reference Wink O. Vessel axis determination for diagnosis and treatment. 2004. Wink O. Vessel axis determination for diagnosis and treatment. 2004.
40.
go back to reference Wink O, Niessen WJ, Viergever MA. Fast delineation and visualization of vessels in 3-D angiographic images. IEEE Trans Med Imaging. 2000;19:337–46.CrossRefPubMed Wink O, Niessen WJ, Viergever MA. Fast delineation and visualization of vessels in 3-D angiographic images. IEEE Trans Med Imaging. 2000;19:337–46.CrossRefPubMed
41.
go back to reference Merkx MAG, Bescõs JO, Geerts L, Bosboom EMH, Van De Vosse FN, Breeuwer M. Accuracy and precision of vessel area assessment: Manual versus automatic lumen delineation based on full-width at half-maximum. J Magn Reson Imaging. 2012;36:1186–93.CrossRefPubMed Merkx MAG, Bescõs JO, Geerts L, Bosboom EMH, Van De Vosse FN, Breeuwer M. Accuracy and precision of vessel area assessment: Manual versus automatic lumen delineation based on full-width at half-maximum. J Magn Reson Imaging. 2012;36:1186–93.CrossRefPubMed
42.
go back to reference Lobregt S, Viergever MA. A discrete dynamic contour model. IEEE Trans Med Imaging. 1995;14:12–24.CrossRefPubMed Lobregt S, Viergever MA. A discrete dynamic contour model. IEEE Trans Med Imaging. 1995;14:12–24.CrossRefPubMed
43.
go back to reference Bescõs JO, Sonnemans J, Haberts R, Peters J, van den Bosch H, Leiner T. Vessel Explorer: a tool for quantitative measurements in CT and MR angiography. Med Muni. 2009;53:64–71. Bescõs JO, Sonnemans J, Haberts R, Peters J, van den Bosch H, Leiner T. Vessel Explorer: a tool for quantitative measurements in CT and MR angiography. Med Muni. 2009;53:64–71.
44.
go back to reference Hautvast G, Lobregt S, Breeuwer M, Gerritsen F. Automatic contour propagation in cine cardiac magnetic resonance images. IEEE Trans Med Imaging. 2006;25:1472–82.CrossRefPubMed Hautvast G, Lobregt S, Breeuwer M, Gerritsen F. Automatic contour propagation in cine cardiac magnetic resonance images. IEEE Trans Med Imaging. 2006;25:1472–82.CrossRefPubMed
45.
go back to reference Redheuil A, Yu WC, Mousseaux E, Harouni AA, Kachenoura N, Wu CO, Bluemke D, Lima JAC. Age-related changes in aortic arch geometry: Relationship with proximal aortic function and left ventricular mass and remodeling. J Am Coll Cardiol. 2011;58:1262–70.CrossRefPubMedPubMedCentral Redheuil A, Yu WC, Mousseaux E, Harouni AA, Kachenoura N, Wu CO, Bluemke D, Lima JAC. Age-related changes in aortic arch geometry: Relationship with proximal aortic function and left ventricular mass and remodeling. J Am Coll Cardiol. 2011;58:1262–70.CrossRefPubMedPubMedCentral
46.
go back to reference Boutouyrie P, Vermeersch SJ. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: Establishing normal and reference values. Eur Heart J. 2010;31:2338–50.CrossRef Boutouyrie P, Vermeersch SJ. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: Establishing normal and reference values. Eur Heart J. 2010;31:2338–50.CrossRef
Metadata
Title
Aortic length measurements for pulse wave velocity calculation: manual 2D vs automated 3D centreline extraction
Authors
Arna van Engelen
Miguel Silva Vieira
Isma Rafiq
Marina Cecelja
Torben Schneider
Hubrecht de Bliek
C. Alberto Figueroa
Tarique Hussain
Rene M. Botnar
Jordi Alastruey
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Cardiovascular Magnetic Resonance / Issue 1/2017
Electronic ISSN: 1532-429X
DOI
https://doi.org/10.1186/s12968-017-0341-y

Other articles of this Issue 1/2017

Journal of Cardiovascular Magnetic Resonance 1/2017 Go to the issue