Skip to main content
Top
Published in: Molecular Brain 1/2021

Open Access 01-12-2021 | Anxiety | Micro report

Optogenetic inhibition of medial entorhinal cortex inputs to the hippocampus during a short period of time right after learning disrupts contextual fear memory formation

Authors: Min Soo Kang, Jin-Hee Han

Published in: Molecular Brain | Issue 1/2021

Login to get access

Abstract

Formation of temporal association memory and context-specific fear memory is thought to require medial entorhinal cortex (MEC) inputs to the hippocampus during learning events. However, whether the MEC inputs are also involved in memory formation during a post-learning period has not been directly tested yet. To examine this possibility, we optogenetically inhibited axons and terminals originating from bilateral dorsal MEC excitatory neurons in the dorsal hippocampus for 5 min right after contextual fear conditioning (CFC). Mice expressing eNpHR3.0 exhibited significantly less freezing compared to control mice expressing EGFP alone during retrieval test in the conditioned context 1 day after learning. In contrast, the same optogenetic inhibition of MEC inputs performed 30 min before retrieval test did not affect freezing during retrieval test, excluding the possibility of non-specific deleterious effect of optical inhibition on retrieval process. These results support that contextual fear memory formation requires MEC inputs to the hippocampus during a post-learning period.
Appendix
Available only for authorised users
Literature
1.
go back to reference Eichenbaum H. A cortical–hippocampal system for declarative memory. Nat Rev Neurosci. 2000;1(1):41–50.CrossRef Eichenbaum H. A cortical–hippocampal system for declarative memory. Nat Rev Neurosci. 2000;1(1):41–50.CrossRef
2.
go back to reference Suh J, Rivest AJ, Nakashiba T, Tominaga T, Tonegawa S. Entorhinal cortex layer III input to the hippocampus is crucial for temporal association memory. Science. 2011;334(6061):1415–20.CrossRef Suh J, Rivest AJ, Nakashiba T, Tominaga T, Tonegawa S. Entorhinal cortex layer III input to the hippocampus is crucial for temporal association memory. Science. 2011;334(6061):1415–20.CrossRef
3.
go back to reference Kitamura T, Pignatelli M, Suh J, Kohara K, Yoshiki A, Abe K, et al. Island cells control temporal association memory. Science. 2014;343(6173):896–901.CrossRef Kitamura T, Pignatelli M, Suh J, Kohara K, Yoshiki A, Abe K, et al. Island cells control temporal association memory. Science. 2014;343(6173):896–901.CrossRef
4.
go back to reference Kitamura T, Sun C, Martin J, Kitch LJ, Schnitzer MJ, Tonegawa S. Entorhinal cortical ocean cells encode specific contexts and drive context-specific fear memory. Neuron. 2015;87(6):1317–31.CrossRef Kitamura T, Sun C, Martin J, Kitch LJ, Schnitzer MJ, Tonegawa S. Entorhinal cortical ocean cells encode specific contexts and drive context-specific fear memory. Neuron. 2015;87(6):1317–31.CrossRef
5.
go back to reference Buzsaki G, Horvath Z, Urioste R, Hetke J, Wise K. High-frequency network oscillation in the hippocampus. Science. 1992;256(5059):1025–7.CrossRef Buzsaki G, Horvath Z, Urioste R, Hetke J, Wise K. High-frequency network oscillation in the hippocampus. Science. 1992;256(5059):1025–7.CrossRef
6.
go back to reference Bragin A, Jando G, Nadasdy Z, Vanlandeghem M, Buzsaki G. Dentate EEG spikes and associated interneuronal population bursts in the hippocampal hilar region of the rat. J Neurophysiol. 1995;73(4):1691–705.CrossRef Bragin A, Jando G, Nadasdy Z, Vanlandeghem M, Buzsaki G. Dentate EEG spikes and associated interneuronal population bursts in the hippocampal hilar region of the rat. J Neurophysiol. 1995;73(4):1691–705.CrossRef
7.
go back to reference Chrobak JJ, Lorincz A, Buzsaki G. Physiological patterns in the hippocampo-entorhinal cortex system. Hippocampus. 2000;10(4):457–65.CrossRef Chrobak JJ, Lorincz A, Buzsaki G. Physiological patterns in the hippocampo-entorhinal cortex system. Hippocampus. 2000;10(4):457–65.CrossRef
8.
go back to reference Girardeau G, Zugaro M. Hippocampal ripples and memory consolidation. Curr Opin Neurobiol. 2011;21(3):452–9.CrossRef Girardeau G, Zugaro M. Hippocampal ripples and memory consolidation. Curr Opin Neurobiol. 2011;21(3):452–9.CrossRef
9.
go back to reference Yamamoto J, Tonegawa S. Direct medial entorhinal cortex input to hippocampal CA1 is crucial for extended quiet awake replay. Neuron. 2017;96(1):217–27.CrossRef Yamamoto J, Tonegawa S. Direct medial entorhinal cortex input to hippocampal CA1 is crucial for extended quiet awake replay. Neuron. 2017;96(1):217–27.CrossRef
10.
go back to reference Nokia MS, Gureviciene I, Waselius T, Tanila H, Penttonen M. Hippocampal electrical stimulation disrupts associative learning when targeted at dentate spikes. J Physiol-London. 2017;595(14):4961–71.CrossRef Nokia MS, Gureviciene I, Waselius T, Tanila H, Penttonen M. Hippocampal electrical stimulation disrupts associative learning when targeted at dentate spikes. J Physiol-London. 2017;595(14):4961–71.CrossRef
11.
go back to reference Wehner JM, Silva A. Importance of strain differences in evaluations of learning and memory processes in null mutants. Ment Retard Dev Disabil Res Rev. 1996;2(4):243–8.CrossRef Wehner JM, Silva A. Importance of strain differences in evaluations of learning and memory processes in null mutants. Ment Retard Dev Disabil Res Rev. 1996;2(4):243–8.CrossRef
12.
go back to reference Vetere G, Kenney JW, Tran LM, Xia F, Steadman PE, Parkinson J, et al. Chemogenetic interrogation of a brain-wide fear memory network in mice. Neuron. 2017;94(2):363–74.CrossRef Vetere G, Kenney JW, Tran LM, Xia F, Steadman PE, Parkinson J, et al. Chemogenetic interrogation of a brain-wide fear memory network in mice. Neuron. 2017;94(2):363–74.CrossRef
13.
go back to reference Insausti R, Herrero MT, Witter MP. Entorhinal cortex of the rat: cytoarchitectonic subdivisions and the origin and distribution of cortical efferents. Hippocampus. 1997;7(2):146–83.CrossRef Insausti R, Herrero MT, Witter MP. Entorhinal cortex of the rat: cytoarchitectonic subdivisions and the origin and distribution of cortical efferents. Hippocampus. 1997;7(2):146–83.CrossRef
14.
go back to reference Lu Y, Zhu Z-G, Ma Q-Q, Su Y-T, Han Y, Wang X, et al. A critical time-window for the selective induction of hippocampal memory consolidation by a brief episode of slow-wave sleep. Neuroscience Bulletin. 2018;34(6):1091–9.CrossRef Lu Y, Zhu Z-G, Ma Q-Q, Su Y-T, Han Y, Wang X, et al. A critical time-window for the selective induction of hippocampal memory consolidation by a brief episode of slow-wave sleep. Neuroscience Bulletin. 2018;34(6):1091–9.CrossRef
15.
go back to reference Remondes M, Schuman EM. Role for a cortical input to hippocampal area CA1 in the consolidation of a long-term memory. Nature. 2004;431(7009):699–703.CrossRef Remondes M, Schuman EM. Role for a cortical input to hippocampal area CA1 in the consolidation of a long-term memory. Nature. 2004;431(7009):699–703.CrossRef
16.
go back to reference O'Neill J, Boccara CN, Stella F, Schoenenberger P, Csicsvari J. Superficial layers of the medial entorhinal cortex replay independently of the hippocampus. Science. 2017;355(6321):184–8.CrossRef O'Neill J, Boccara CN, Stella F, Schoenenberger P, Csicsvari J. Superficial layers of the medial entorhinal cortex replay independently of the hippocampus. Science. 2017;355(6321):184–8.CrossRef
Metadata
Title
Optogenetic inhibition of medial entorhinal cortex inputs to the hippocampus during a short period of time right after learning disrupts contextual fear memory formation
Authors
Min Soo Kang
Jin-Hee Han
Publication date
01-12-2021
Publisher
BioMed Central
Keyword
Anxiety
Published in
Molecular Brain / Issue 1/2021
Electronic ISSN: 1756-6606
DOI
https://doi.org/10.1186/s13041-020-00719-w

Other articles of this Issue 1/2021

Molecular Brain 1/2021 Go to the issue