Skip to main content
Top
Published in: BMC Psychiatry 1/2020

Open Access 01-12-2020 | Anxiety or Fear-Related Disorders | Research article

Understanding the nature of association between anxiety phenotypes and anorexia nervosa: a triangulation approach

Authors: E. Caitlin Lloyd, Hannah M. Sallis, Bas Verplanken, Anne M. Haase, Marcus R. Munafò

Published in: BMC Psychiatry | Issue 1/2020

Login to get access

Abstract

Background

Evidence from observational studies suggests an association between anxiety disorders and anorexia nervosa (AN), but causal inference is complicated by the potential for confounding in these studies. We triangulate evidence across a longitudinal study and a Mendelian randomization (MR) study, to evaluate whether there is support for anxiety disorder phenotypes exerting a causal effect on AN risk.

Methods

Study One assessed longitudinal associations of childhood worry and anxiety disorders with lifetime AN in the Avon Longitudinal Study of Parents and Children cohort. Study Two used two-sample MR to evaluate: causal effects of worry, and genetic liability to anxiety disorders, on AN risk; causal effects of genetic liability to AN on anxiety outcomes; and the causal influence of worry on anxiety disorder development. The independence of effects of worry, relative to depressed affect, on AN and anxiety disorder outcomes, was explored using multivariable MR. Analyses were completed using summary statistics from recent genome-wide association studies.

Results

Study One did not support an association between worry and subsequent AN, but there was strong evidence for anxiety disorders predicting increased risk of AN. Study Two outcomes supported worry causally increasing AN risk, but did not support a causal effect of anxiety disorders on AN development, or of AN on anxiety disorders/worry. Findings also indicated that worry causally influences anxiety disorder development. Multivariable analysis estimates suggested the influence of worry on both AN and anxiety disorders was independent of depressed affect.

Conclusions

Overall our results provide mixed evidence regarding the causal role of anxiety exposures in AN aetiology. The inconsistency between outcomes of Studies One and Two may be explained by limitations surrounding worry assessment in Study One, confounding of the anxiety disorder and AN association in observational research, and low power in MR analyses probing causal effects of genetic liability to anxiety disorders. The evidence for worry acting as a causal risk factor for anxiety disorders and AN supports targeting worry for prevention of both outcomes. Further research should clarify how a tendency to worry translates into AN risk, and whether anxiety disorder pathology exerts any causal effect on AN.
Appendix
Available only for authorised users
Literature
1.
go back to reference American Psychiatric Association. Diagnostic and statistical manual of mental disorders (DSM-5®): American Psychiatric Pub; 2013.CrossRef American Psychiatric Association. Diagnostic and statistical manual of mental disorders (DSM-5®): American Psychiatric Pub; 2013.CrossRef
2.
go back to reference Micali N, Martini MG, Thomas JJ, Eddy KT, Kothari R, Russell E, et al. Lifetime and 12-month prevalence of eating disorders amongst women in mid-life: a population-based study of diagnoses and risk factors. BMC Med. 2017;15(1):12.PubMedPubMedCentralCrossRef Micali N, Martini MG, Thomas JJ, Eddy KT, Kothari R, Russell E, et al. Lifetime and 12-month prevalence of eating disorders amongst women in mid-life: a population-based study of diagnoses and risk factors. BMC Med. 2017;15(1):12.PubMedPubMedCentralCrossRef
3.
go back to reference Arcelus J, Mitchell AJ, Wales J, Nielsen S. Mortality rates in patients with anorexia nervosa and other eating disorders. A meta-analysis of 36 studies. Arch Gen Psychiatry. 2011;68(7):724–31.PubMedCrossRef Arcelus J, Mitchell AJ, Wales J, Nielsen S. Mortality rates in patients with anorexia nervosa and other eating disorders. A meta-analysis of 36 studies. Arch Gen Psychiatry. 2011;68(7):724–31.PubMedCrossRef
4.
go back to reference Brockmeyer T, Friederich HC, Schmidt U. Advances in the treatment of anorexia nervosa: a review of established and emerging interventions. Psychol Med. 2018;48(8):1228–56.PubMedCrossRef Brockmeyer T, Friederich HC, Schmidt U. Advances in the treatment of anorexia nervosa: a review of established and emerging interventions. Psychol Med. 2018;48(8):1228–56.PubMedCrossRef
5.
go back to reference Lloyd EC, Frampton I, Verplanken B, Haase AM. How extreme dieting becomes compulsive: A novel hypothesis for the role of anxiety in the development and maintenance of anorexia nervosa. Medical Hypotheses. 2017;108(Supplement C):144–50.PubMedCrossRef Lloyd EC, Frampton I, Verplanken B, Haase AM. How extreme dieting becomes compulsive: A novel hypothesis for the role of anxiety in the development and maintenance of anorexia nervosa. Medical Hypotheses. 2017;108(Supplement C):144–50.PubMedCrossRef
6.
go back to reference Kaye F. Paulus. New insights into symptoms and neurocircuit function of anorexia nervosa. Nat Rev Neurosci. 2009;10(8):573–84.PubMedCrossRef Kaye F. Paulus. New insights into symptoms and neurocircuit function of anorexia nervosa. Nat Rev Neurosci. 2009;10(8):573–84.PubMedCrossRef
7.
go back to reference Nunn K, Frampton I, Lask B. Anorexia nervosa--a noradrenergic dysregulation hypothesis. Med Hypotheses. 2012;78(5):580–4.PubMedCrossRef Nunn K, Frampton I, Lask B. Anorexia nervosa--a noradrenergic dysregulation hypothesis. Med Hypotheses. 2012;78(5):580–4.PubMedCrossRef
8.
go back to reference Pallister E, Waller G. Anxiety in the eating disorders: understanding the overlap. Clin Psychol Rev. 2008;28(3):366–86.PubMedCrossRef Pallister E, Waller G. Anxiety in the eating disorders: understanding the overlap. Clin Psychol Rev. 2008;28(3):366–86.PubMedCrossRef
9.
go back to reference Kaye WH, Bulik CM, Thornton L, Barbarich N, Masters K. Price Fdn collaborative G. comorbidity of anxiety disorders with anorexia and bulimia nervosa. Am J Psychiatr. 2004;161(12):2215–21.PubMedCrossRef Kaye WH, Bulik CM, Thornton L, Barbarich N, Masters K. Price Fdn collaborative G. comorbidity of anxiety disorders with anorexia and bulimia nervosa. Am J Psychiatr. 2004;161(12):2215–21.PubMedCrossRef
10.
go back to reference Swinbourne JM, Touyz SW. The co-morbidity of eating disorders and anxiety disorders: a review. Eur Eat Disord Rev. 2007;15(4):253–74.PubMedCrossRef Swinbourne JM, Touyz SW. The co-morbidity of eating disorders and anxiety disorders: a review. Eur Eat Disord Rev. 2007;15(4):253–74.PubMedCrossRef
11.
go back to reference Bulik CM, Sullivan PF, Fear JL, Joyce PR. Eating disorders and antecedent anxiety disorders: a controlled study. Acta Psychiatr Scand. 1997;96(2):101–7.PubMedCrossRef Bulik CM, Sullivan PF, Fear JL, Joyce PR. Eating disorders and antecedent anxiety disorders: a controlled study. Acta Psychiatr Scand. 1997;96(2):101–7.PubMedCrossRef
12.
go back to reference Meier SM, Bulik CM, Thornton LM, Mattheisen M, Mortensen PB, Petersen L. Diagnosed Anxiety Disorders and the Risk of Subsequent Anorexia Nervosa: A Danish Population Register Study. Eur Eat Disord Rev. 2015;23(6):524–30 Nov. 2015;23(6):524–30.PubMedCrossRef Meier SM, Bulik CM, Thornton LM, Mattheisen M, Mortensen PB, Petersen L. Diagnosed Anxiety Disorders and the Risk of Subsequent Anorexia Nervosa: A Danish Population Register Study. Eur Eat Disord Rev. 2015;23(6):524–30 Nov. 2015;23(6):524–30.PubMedCrossRef
13.
go back to reference Buckner JD, Silgado J, Lewinsohn PM. Delineation of differential temporal relations between specific eating and anxiety disorders. J Psychiatr Res. 2010;44(12):781–7.PubMedPubMedCentralCrossRef Buckner JD, Silgado J, Lewinsohn PM. Delineation of differential temporal relations between specific eating and anxiety disorders. J Psychiatr Res. 2010;44(12):781–7.PubMedPubMedCentralCrossRef
14.
go back to reference Ranta K, Vaananen J, Frojd S, Isomaa R, Kaltiala-Heino R, Marttunen M. Social phobia, depression and eating disorders during middle adolescence: longitudinal associations and treatment seeking. Nordic J Psychiatry. 2017;71(8):605–13.CrossRef Ranta K, Vaananen J, Frojd S, Isomaa R, Kaltiala-Heino R, Marttunen M. Social phobia, depression and eating disorders during middle adolescence: longitudinal associations and treatment seeking. Nordic J Psychiatry. 2017;71(8):605–13.CrossRef
15.
go back to reference Meier SM, Bulik CM, Thornton LM, Mattheisen M, Mortensen PB, Petersen L. Diagnosed anxiety disorders and the risk of subsequent anorexia nervosa: a Danish population register study. Eur Eat Disord Rev. 2015;23(6):524–30.PubMedCrossRef Meier SM, Bulik CM, Thornton LM, Mattheisen M, Mortensen PB, Petersen L. Diagnosed anxiety disorders and the risk of subsequent anorexia nervosa: a Danish population register study. Eur Eat Disord Rev. 2015;23(6):524–30.PubMedCrossRef
16.
go back to reference Schaumberg K, Zerwas S, Goodman E, Yilmaz Z, Bulik CM, Micali N. Anxiety disorder symptoms at age 10 predict eating disorder symptoms and diagnoses inadolescence; 2018. Schaumberg K, Zerwas S, Goodman E, Yilmaz Z, Bulik CM, Micali N. Anxiety disorder symptoms at age 10 predict eating disorder symptoms and diagnoses inadolescence; 2018.
17.
go back to reference Davey Smith G, Ebrahim S. ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease?*. Int J Epidemiol. 2003;32(1):1–22.CrossRef Davey Smith G, Ebrahim S. ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease?*. Int J Epidemiol. 2003;32(1):1–22.CrossRef
18.
go back to reference Lawlor DA, Tilling K, Davey SG. Triangulation in aetiological epidemiology. Int J Epidemiol. 2016;45(6):1866–86.PubMed Lawlor DA, Tilling K, Davey SG. Triangulation in aetiological epidemiology. Int J Epidemiol. 2016;45(6):1866–86.PubMed
19.
go back to reference Munafò MR, Davey SG. Robust research needs many lines of evidence. Nature. 2018;553(7689):399–401.PubMedCrossRef Munafò MR, Davey SG. Robust research needs many lines of evidence. Nature. 2018;553(7689):399–401.PubMedCrossRef
20.
go back to reference Borkovec TD, Robinson E, Pruzinsky T, DePree JA. Preliminary exploration of worry: some characteristics and processes. Behav Res Ther. 1983;21(1):9–16.PubMedCrossRef Borkovec TD, Robinson E, Pruzinsky T, DePree JA. Preliminary exploration of worry: some characteristics and processes. Behav Res Ther. 1983;21(1):9–16.PubMedCrossRef
21.
go back to reference Olatunji BO, Wolitzky-Taylor KB, Sawchuk CN, Ciesielski BG. Worry and the anxiety disorders: a meta-analytic synthesis of specificity to GAD. Appl Prev Psychol. 2010;14(1):1–24.CrossRef Olatunji BO, Wolitzky-Taylor KB, Sawchuk CN, Ciesielski BG. Worry and the anxiety disorders: a meta-analytic synthesis of specificity to GAD. Appl Prev Psychol. 2010;14(1):1–24.CrossRef
22.
go back to reference Topper M, Emmelkamp PM, Watkins E, TJBrat E. Prevention of anxiety disorders and depression by targeting excessive worry and rumination in adolescents and young adults: a randomized controlled trial. Randomized Controlled Trial. 2017;90:123–36. Topper M, Emmelkamp PM, Watkins E, TJBrat E. Prevention of anxiety disorders and depression by targeting excessive worry and rumination in adolescents and young adults: a randomized controlled trial. Randomized Controlled Trial. 2017;90:123–36.
23.
go back to reference Pierce BL, Burgess S. Efficient Design for Mendelian Randomization Studies: subsample and 2-sample instrumental variable estimators. Am J Epidemiol. 2013;178(7):1177–84.PubMedPubMedCentralCrossRef Pierce BL, Burgess S. Efficient Design for Mendelian Randomization Studies: subsample and 2-sample instrumental variable estimators. Am J Epidemiol. 2013;178(7):1177–84.PubMedPubMedCentralCrossRef
24.
25.
go back to reference Lee PH, Anttila V, Won H, Feng Y-CA, Rosenthal J, Zhu Z, et al. Genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders. Cell. 2019;179(7):1469–82. e11.CrossRef Lee PH, Anttila V, Won H, Feng Y-CA, Rosenthal J, Zhu Z, et al. Genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders. Cell. 2019;179(7):1469–82. e11.CrossRef
26.
27.
go back to reference Pettersson E, Larsson H, Lichtenstein P. Common psychiatric disorders share the same genetic origin: a multivariate sibling study of the Swedish population. Mol Psychiatry. 2016;21(5):717–21.PubMedCrossRef Pettersson E, Larsson H, Lichtenstein P. Common psychiatric disorders share the same genetic origin: a multivariate sibling study of the Swedish population. Mol Psychiatry. 2016;21(5):717–21.PubMedCrossRef
28.
go back to reference Watson HJ, Yilmaz Z, Thornton LM, Hübel C, JRI C, Gaspar HA, et al. Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa. Nat Gene. 2019;51:1207–14. Watson HJ, Yilmaz Z, Thornton LM, Hübel C, JRI C, Gaspar HA, et al. Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa. Nat Gene. 2019;51:1207–14.
29.
go back to reference Nagel M, Jansen PR, Stringer S, Watanabe K, de Leeuw CA, Bryois J, et al. Meta-analysis of genome-wide association studies for neuroticism in 449,484 individuals identifies novel genetic loci and pathways. Nat Genet. 2018;50(7):920–7.PubMedCrossRef Nagel M, Jansen PR, Stringer S, Watanabe K, de Leeuw CA, Bryois J, et al. Meta-analysis of genome-wide association studies for neuroticism in 449,484 individuals identifies novel genetic loci and pathways. Nat Genet. 2018;50(7):920–7.PubMedCrossRef
30.
go back to reference Dellava JE, Kendler KS, Neale MC. GENERALIZED ANXIETY DISORDER AND ANOREXIA NERVOSA: EVIDENCE OF SHARED GENETIC VARIATION. Depress Anxiety. 2011;28(8):728–33.PubMedPubMedCentralCrossRef Dellava JE, Kendler KS, Neale MC. GENERALIZED ANXIETY DISORDER AND ANOREXIA NERVOSA: EVIDENCE OF SHARED GENETIC VARIATION. Depress Anxiety. 2011;28(8):728–33.PubMedPubMedCentralCrossRef
31.
go back to reference McLaughlin KA, Borkovec TD, Sibrava NJ. The effects of worry and rumination on affect states and cognitive activity. Behav Ther. 2007;38(1):23–38.PubMedCrossRef McLaughlin KA, Borkovec TD, Sibrava NJ. The effects of worry and rumination on affect states and cognitive activity. Behav Ther. 2007;38(1):23–38.PubMedCrossRef
32.
go back to reference Fewell Z, Davey Smith G, Sterne JA. The impact of residual and unmeasured confounding in epidemiologic studies: a simulation study. Am J Epidemiol. 2007;166(6):646–55.PubMedCrossRef Fewell Z, Davey Smith G, Sterne JA. The impact of residual and unmeasured confounding in epidemiologic studies: a simulation study. Am J Epidemiol. 2007;166(6):646–55.PubMedCrossRef
33.
go back to reference Boyd A, Golding J, Macleod J, Lawlor DA, Fraser A, Henderson J, et al. Cohort profile: the 'children of the 90s'--the index offspring of the Avon longitudinal study of parents and children. Int J Epidemiol. 2013;42(1):111–27.PubMedCrossRef Boyd A, Golding J, Macleod J, Lawlor DA, Fraser A, Henderson J, et al. Cohort profile: the 'children of the 90s'--the index offspring of the Avon longitudinal study of parents and children. Int J Epidemiol. 2013;42(1):111–27.PubMedCrossRef
34.
go back to reference Fraser A, Macdonald-Wallis C, Tilling K, Boyd A, Golding J, Davey Smith G, et al. Cohort profile: the Avon longitudinal study of parents and children: ALSPAC mothers cohort. Int J Epidemiol. 2013;42(1):97–110.PubMedCrossRef Fraser A, Macdonald-Wallis C, Tilling K, Boyd A, Golding J, Davey Smith G, et al. Cohort profile: the Avon longitudinal study of parents and children: ALSPAC mothers cohort. Int J Epidemiol. 2013;42(1):97–110.PubMedCrossRef
35.
go back to reference Northstone K, Lewcock M, Groom A, Boyd A, Macleod J, Timpson N, et al. The Avon longitudinal study of parents and children (ALSPAC): an update on the enrolled sample of index children in 2019. Wellcome open research. 2019;4:51. Northstone K, Lewcock M, Groom A, Boyd A, Macleod J, Timpson N, et al. The Avon longitudinal study of parents and children (ALSPAC): an update on the enrolled sample of index children in 2019. Wellcome open research. 2019;4:51.
36.
go back to reference World Health Organization. Physical status: the use and interpretation of anthropometry. Report of a WHO Expert Committee. World Health Organ Tech Rep Ser. 1995;854:1–452. World Health Organization. Physical status: the use and interpretation of anthropometry. Report of a WHO Expert Committee. World Health Organ Tech Rep Ser. 1995;854:1–452.
37.
go back to reference Goodman R, Ford T, Richards H, Gatward R, Meltzer H. The development and well-being assessment: description and initial validation of an integrated assessment of child and adolescent psychopathology. J Child Psychol Psychiatry. 2000;41(5):645–55.PubMed Goodman R, Ford T, Richards H, Gatward R, Meltzer H. The development and well-being assessment: description and initial validation of an integrated assessment of child and adolescent psychopathology. J Child Psychol Psychiatry. 2000;41(5):645–55.PubMed
38.
go back to reference World Health Organization. The ICD-10 classification of mental and behavioural disorders: clinical descriptions and diagnostic guidelines. Geneva: World Health Organization; 1992. World Health Organization. The ICD-10 classification of mental and behavioural disorders: clinical descriptions and diagnostic guidelines. Geneva: World Health Organization; 1992.
39.
go back to reference Association AP. Diagnostic and statistical manual of mental disorders. Washington, Am Psychiatr Assoc; 1994. p. 143–6. Association AP. Diagnostic and statistical manual of mental disorders. Washington, Am Psychiatr Assoc; 1994. p. 143–6.
40.
go back to reference Goodman A, Heiervang E, Collishaw S, Goodman R. The 'DAWBA bands' as an ordered-categorical measure of child mental health: description and validation in British and Norwegian samples. Soc Psychiatry Psychiatr Epidemiol. 2011;46(6):521–32.PubMedCrossRef Goodman A, Heiervang E, Collishaw S, Goodman R. The 'DAWBA bands' as an ordered-categorical measure of child mental health: description and validation in British and Norwegian samples. Soc Psychiatry Psychiatr Epidemiol. 2011;46(6):521–32.PubMedCrossRef
41.
go back to reference Smink FR, van Hoeken D, Hoek HW. Epidemiology of eating disorders: incidence, prevalence and mortality rates. Curr Psychiatry Rep. 2012;14(4):406–14.PubMedPubMedCentralCrossRef Smink FR, van Hoeken D, Hoek HW. Epidemiology of eating disorders: incidence, prevalence and mortality rates. Curr Psychiatry Rep. 2012;14(4):406–14.PubMedPubMedCentralCrossRef
42.
go back to reference Lewinsohn PM, Gotlib IH, Lewinsohn M, Seeley JR, Allen NB. Gender differences in anxiety disorders and anxiety symptoms in adolescents. J Abnorm Psychol. 1998;107(1):109.PubMedCrossRef Lewinsohn PM, Gotlib IH, Lewinsohn M, Seeley JR, Allen NB. Gender differences in anxiety disorders and anxiety symptoms in adolescents. J Abnorm Psychol. 1998;107(1):109.PubMedCrossRef
43.
go back to reference Bould H, Sovio U, Koupil I, Dalman C, Micali N, Lewis G, et al. Do eating disorders in parents predict eating disorders in children? Evidence from a S wedish cohort. Acta Psychiatr Scand. 2015;132(1):51–9.PubMedCrossRef Bould H, Sovio U, Koupil I, Dalman C, Micali N, Lewis G, et al. Do eating disorders in parents predict eating disorders in children? Evidence from a S wedish cohort. Acta Psychiatr Scand. 2015;132(1):51–9.PubMedCrossRef
44.
go back to reference Martini MG, Barona-Martinez M, Micali N. Eating disorders mothers and their children: a systematic review of the literature. Archiv Womens Ment Health. 2020;23:1–19. Martini MG, Barona-Martinez M, Micali N. Eating disorders mothers and their children: a systematic review of the literature. Archiv Womens Ment Health. 2020;23:1–19.
45.
go back to reference Berkowitz SA, Witt AA, Gillberg C, Råstam M, Wentz E, Lowe MR. Childhood body mass index in adolescent-onset anorexia nervosa. Int J Eat Disord. 2016;49(11):1002–9.PubMedCrossRef Berkowitz SA, Witt AA, Gillberg C, Råstam M, Wentz E, Lowe MR. Childhood body mass index in adolescent-onset anorexia nervosa. Int J Eat Disord. 2016;49(11):1002–9.PubMedCrossRef
46.
go back to reference Yilmaz Z, Gottfredson NC, Zerwas SC, Bulik CM, Micali N. Developmental premorbid body mass index trajectories of adolescents with eating disorders in a longitudinal population cohort. J Am Acad Child Adolesc Psychiatry. 2019;58(2):191–9.PubMedCrossRef Yilmaz Z, Gottfredson NC, Zerwas SC, Bulik CM, Micali N. Developmental premorbid body mass index trajectories of adolescents with eating disorders in a longitudinal population cohort. J Am Acad Child Adolesc Psychiatry. 2019;58(2):191–9.PubMedCrossRef
47.
go back to reference Rofey DL, Kolko RP, Iosif AM, Silk JS, Bost JE, Feng W, et al. A longitudinal study of childhood depression and anxiety in relation to weight gain. Child Psychiatry Hum Dev. 2009;40(4):517–26.PubMedPubMedCentralCrossRef Rofey DL, Kolko RP, Iosif AM, Silk JS, Bost JE, Feng W, et al. A longitudinal study of childhood depression and anxiety in relation to weight gain. Child Psychiatry Hum Dev. 2009;40(4):517–26.PubMedPubMedCentralCrossRef
48.
go back to reference Micali N, Solmi F, Horton NJ, Crosby RD, Eddy KT, Calzo JP, et al. Adolescent eating disorders predict psychiatric, high-risk behaviors and weight outcomes in young adulthood. J Am Acad Child Adolesc Psychiatry. 2015;54(8):652–9.PubMedPubMedCentralCrossRef Micali N, Solmi F, Horton NJ, Crosby RD, Eddy KT, Calzo JP, et al. Adolescent eating disorders predict psychiatric, high-risk behaviors and weight outcomes in young adulthood. J Am Acad Child Adolesc Psychiatry. 2015;54(8):652–9.PubMedPubMedCentralCrossRef
49.
go back to reference Lloyd EC, Haase AM, Zerwas S, Micali N. Anxiety disorders predict fasting to control weight: a longitudinal large cohort study of adolescents. Eur Eat Disord Rev. 2020;28(3):269–81.PubMedCrossRef Lloyd EC, Haase AM, Zerwas S, Micali N. Anxiety disorders predict fasting to control weight: a longitudinal large cohort study of adolescents. Eur Eat Disord Rev. 2020;28(3):269–81.PubMedCrossRef
50.
go back to reference Cole TJ, Freeman JV, Preece MA. British 1990 growth reference centiles for weight, height, body mass index and head circumference fitted by maximum penalized likelihood. Stat Med. 1998;17(4):407–29.PubMedCrossRef Cole TJ, Freeman JV, Preece MA. British 1990 growth reference centiles for weight, height, body mass index and head circumference fitted by maximum penalized likelihood. Stat Med. 1998;17(4):407–29.PubMedCrossRef
51.
go back to reference StataCorp. Stata Statistical Software: Release 15. College Station: StataCorp LLC; 2017. StataCorp. Stata Statistical Software: Release 15. College Station: StataCorp LLC; 2017.
52.
go back to reference Madley-Dowd P, Hughes R, Tilling K, Heron J. The proportion of missing data should not be used to guide decisions on multiple imputation. J Clin Epidemiol. 2019;110:63–73.PubMedPubMedCentralCrossRef Madley-Dowd P, Hughes R, Tilling K, Heron J. The proportion of missing data should not be used to guide decisions on multiple imputation. J Clin Epidemiol. 2019;110:63–73.PubMedPubMedCentralCrossRef
53.
go back to reference Lloyd EC, Haase AM, Foster CE, Verplanken B. A systematic review of studies probing longitudinal associations between anxiety and anorexia nervosa. Psychiatry Res. 2019;276:175–85.PubMedCrossRef Lloyd EC, Haase AM, Foster CE, Verplanken B. A systematic review of studies probing longitudinal associations between anxiety and anorexia nervosa. Psychiatry Res. 2019;276:175–85.PubMedCrossRef
54.
go back to reference Micali N, Hagberg KW, Petersen I, Treasure JL. The incidence of eating disorders in the UK in 2000–2009: findings from the General Practice Research Database. BMJ Open. 2013;3(5), e002646. Micali N, Hagberg KW, Petersen I, Treasure JL. The incidence of eating disorders in the UK in 2000–2009: findings from the General Practice Research Database. BMJ Open. 2013;3(5), e002646.
55.
go back to reference Sternheim L, Startup H, Schmidt U. Anxiety-related processes in anorexia nervosa and their relation to eating disorder pathology, depression and anxiety. Advances in Eating Disorders. 2015;3(1):13–9.CrossRef Sternheim L, Startup H, Schmidt U. Anxiety-related processes in anorexia nervosa and their relation to eating disorder pathology, depression and anxiety. Advances in Eating Disorders. 2015;3(1):13–9.CrossRef
56.
go back to reference Comer JS, Kendall PC. A symptom-level examination of parent–child agreement in the diagnosis of anxious youths. J Am Acad Child Adolesc Psychiatry. 2004;43(7):878–86.PubMedCrossRef Comer JS, Kendall PC. A symptom-level examination of parent–child agreement in the diagnosis of anxious youths. J Am Acad Child Adolesc Psychiatry. 2004;43(7):878–86.PubMedCrossRef
57.
go back to reference Rozzell K, Klimek P, Brown T, Blashill AJ. Prevalence of eating disorders among us children aged 9 to 10 years: data from the adolescent brain cognitive development (ABCD) study. JAMA Pediatr. 2019;173(1):100–1.PubMedCrossRef Rozzell K, Klimek P, Brown T, Blashill AJ. Prevalence of eating disorders among us children aged 9 to 10 years: data from the adolescent brain cognitive development (ABCD) study. JAMA Pediatr. 2019;173(1):100–1.PubMedCrossRef
58.
go back to reference Purves KL, Coleman JR, Meier SM, Rayner C, Davis KA, Cheesman R, et al. A major role for common genetic variation in anxiety disorders. Mol Psychiatry. 2019:1–12. Purves KL, Coleman JR, Meier SM, Rayner C, Davis KA, Cheesman R, et al. A major role for common genetic variation in anxiety disorders. Mol Psychiatry. 2019:1–12.
59.
go back to reference Eysenck SBG, Eysenck HJ, Barrett P. A revised version of the psychoticism scale. Personal Individ Differ. 1985;6(1):21–9.CrossRef Eysenck SBG, Eysenck HJ, Barrett P. A revised version of the psychoticism scale. Personal Individ Differ. 1985;6(1):21–9.CrossRef
60.
go back to reference Mor N, Zinbarg RE, Craske MG, Mineka S, Uliaszek A, Rose R, et al. Evaluating the invariance of the factor structure of the EPQ-R-N among adolescents. J Pers Assess. 2008;90(1):66–75.PubMedCrossRef Mor N, Zinbarg RE, Craske MG, Mineka S, Uliaszek A, Rose R, et al. Evaluating the invariance of the factor structure of the EPQ-R-N among adolescents. J Pers Assess. 2008;90(1):66–75.PubMedCrossRef
61.
go back to reference Nagel M, Watanabe K, Stringer S, Posthuma D, van der Sluis S. Item-level analyses reveal genetic heterogeneity in neuroticism. Nat Commun. 2018;9(1):905.PubMedPubMedCentralCrossRef Nagel M, Watanabe K, Stringer S, Posthuma D, van der Sluis S. Item-level analyses reveal genetic heterogeneity in neuroticism. Nat Commun. 2018;9(1):905.PubMedPubMedCentralCrossRef
62.
go back to reference Team RC. R: a language and environment for statistical computing. R Foundation for Statistical Computing; 2017. Team RC. R: a language and environment for statistical computing. R Foundation for Statistical Computing; 2017.
63.
go back to reference Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The MR-base platform supports systematic causal inference across the human phenome. eLife. 2018;7:e34408.PubMedPubMedCentralCrossRef Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The MR-base platform supports systematic causal inference across the human phenome. eLife. 2018;7:e34408.PubMedPubMedCentralCrossRef
64.
go back to reference Zhu Z, Zheng, Z., Zhang, F., Yang, J. gsmr - a tool for SMR and HEIDI analysis. 1.0.9 ed 2017. p. A tool perform Generalized Summary-data-based Mendelian Randomization analysis (GSMR) and HEterogeneity In Dependent Instruments analysis to remove pleiotropic outliers (HEIDI-outlier). Zhu Z, Zheng, Z., Zhang, F., Yang, J. gsmr - a tool for SMR and HEIDI analysis. 1.0.9 ed 2017. p. A tool perform Generalized Summary-data-based Mendelian Randomization analysis (GSMR) and HEterogeneity In Dependent Instruments analysis to remove pleiotropic outliers (HEIDI-outlier).
65.
go back to reference Otowa T, Hek K, Lee M, Byrne EM, Mirza SS, Nivard MG, et al. Meta-analysis of genome-wide association studies of anxiety disorders. Mol Psychiatry. 2016;21(10):1391–9.PubMedPubMedCentralCrossRef Otowa T, Hek K, Lee M, Byrne EM, Mirza SS, Nivard MG, et al. Meta-analysis of genome-wide association studies of anxiety disorders. Mol Psychiatry. 2016;21(10):1391–9.PubMedPubMedCentralCrossRef
66.
go back to reference Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through egger regression. Int J Epidemiol. 2015;44(2):512–25.PubMedPubMedCentralCrossRef Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through egger regression. Int J Epidemiol. 2015;44(2):512–25.PubMedPubMedCentralCrossRef
67.
go back to reference Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol. 2017;46(6):1985–98.PubMedPubMedCentralCrossRef Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol. 2017;46(6):1985–98.PubMedPubMedCentralCrossRef
68.
go back to reference Zhu Z, Zheng Z, Zhang F, Wu Y, Trzaskowski M, Maier R, et al. Causal associations between risk factors and common diseases inferred from GWAS summary data. Nat Commun. 2018;9(1):1–12.CrossRef Zhu Z, Zheng Z, Zhang F, Wu Y, Trzaskowski M, Maier R, et al. Causal associations between risk factors and common diseases inferred from GWAS summary data. Nat Commun. 2018;9(1):1–12.CrossRef
69.
go back to reference Verbanck M, Chen C-Y, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. 2018;50(5):693–8.PubMedPubMedCentralCrossRef Verbanck M, Chen C-Y, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. 2018;50(5):693–8.PubMedPubMedCentralCrossRef
70.
go back to reference Ong JS, MacGregor S. Implementing MR-PRESSO and GCTA-GSMR for pleiotropy assessment in Mendelian randomization studies from a practitioner's perspective. Genet Epidemiol. 2019;43(6):609–16.PubMedPubMedCentral Ong JS, MacGregor S. Implementing MR-PRESSO and GCTA-GSMR for pleiotropy assessment in Mendelian randomization studies from a practitioner's perspective. Genet Epidemiol. 2019;43(6):609–16.PubMedPubMedCentral
71.
go back to reference Davey SG. Random allocation in observational data: how small but robust effects could facilitate hypothesis-free causal inference. Epidemiology. 2011;22(4):460–3 discussion 7-8.CrossRef Davey SG. Random allocation in observational data: how small but robust effects could facilitate hypothesis-free causal inference. Epidemiology. 2011;22(4):460–3 discussion 7-8.CrossRef
72.
go back to reference Bowden J, Del Greco MF, Minelli C, Davey Smith G, Sheehan N, Thompson J. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat Med. 2017;36(11):1783–802.PubMedPubMedCentralCrossRef Bowden J, Del Greco MF, Minelli C, Davey Smith G, Sheehan N, Thompson J. A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat Med. 2017;36(11):1783–802.PubMedPubMedCentralCrossRef
73.
go back to reference Hemani G, Tilling K, Davey SG. Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet. 2017;13(11):e1007081.PubMedPubMedCentralCrossRef Hemani G, Tilling K, Davey SG. Orienting the causal relationship between imprecisely measured traits using GWAS summary data. PLoS Genet. 2017;13(11):e1007081.PubMedPubMedCentralCrossRef
74.
go back to reference Byrne EM, Zhu Z, Qi T, Skene NG, Bryois J, Pardinas AF, et al. Conditional GWAS analysis to identify disorder-specific SNPs for psychiatric disorders. Mol Psychiatry. 2020:1–12. Byrne EM, Zhu Z, Qi T, Skene NG, Bryois J, Pardinas AF, et al. Conditional GWAS analysis to identify disorder-specific SNPs for psychiatric disorders. Mol Psychiatry. 2020:1–12.
75.
go back to reference Brion MJ, Shakhbazov K, Visscher PM. Calculating statistical power in Mendelian randomization studies. Int J Epidemiol. 2013;42(5):1497–501.PubMedCrossRef Brion MJ, Shakhbazov K, Visscher PM. Calculating statistical power in Mendelian randomization studies. Int J Epidemiol. 2013;42(5):1497–501.PubMedCrossRef
76.
go back to reference Rees JMB, Wood AM, Burgess S. Extending the MR-egger method for multivariable Mendelian randomization to correct for both measured and unmeasured pleiotropy. Stat Med. 2017;36(29):4705–18.PubMedPubMedCentralCrossRef Rees JMB, Wood AM, Burgess S. Extending the MR-egger method for multivariable Mendelian randomization to correct for both measured and unmeasured pleiotropy. Stat Med. 2017;36(29):4705–18.PubMedPubMedCentralCrossRef
78.
go back to reference Goldstein BL, Kotov R, Perlman G, Watson D, Klein DN. Trait and facet-level predictors of first-onset depressive and anxiety disorders in a community sample of adolescent girls. Psychol Med. 2018;48(8):1282–90.PubMedCrossRef Goldstein BL, Kotov R, Perlman G, Watson D, Klein DN. Trait and facet-level predictors of first-onset depressive and anxiety disorders in a community sample of adolescent girls. Psychol Med. 2018;48(8):1282–90.PubMedCrossRef
79.
go back to reference Kotov R, Gamez W, Schmidt F, Watson D. Linking "big" personality traits to anxiety, depressive, and substance use disorders: a meta-analysis. Psychol Bull. 2010;136(5):768–821.PubMedCrossRef Kotov R, Gamez W, Schmidt F, Watson D. Linking "big" personality traits to anxiety, depressive, and substance use disorders: a meta-analysis. Psychol Bull. 2010;136(5):768–821.PubMedCrossRef
80.
go back to reference Cassin SE, von Ranson KM. Personality and eating disorders: a decade in review. Clin Psychol Rev. 2005;25(7):895–916.PubMedCrossRef Cassin SE, von Ranson KM. Personality and eating disorders: a decade in review. Clin Psychol Rev. 2005;25(7):895–916.PubMedCrossRef
81.
go back to reference Pierce BL, Ahsan H, Vanderweele TJ. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants. Int J Epidemiol. 2011;40(3):740–52.PubMedCrossRef Pierce BL, Ahsan H, Vanderweele TJ. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants. Int J Epidemiol. 2011;40(3):740–52.PubMedCrossRef
82.
go back to reference Sternheim L, Startup H, Saeidi S, Morgan J, Hugo P, Russell A, et al. Understanding catastrophic worry in eating disorders: process and content characteristics. J Behav Ther Exp Psychiatry. 2012;43(4):1095–103.PubMedCrossRef Sternheim L, Startup H, Saeidi S, Morgan J, Hugo P, Russell A, et al. Understanding catastrophic worry in eating disorders: process and content characteristics. J Behav Ther Exp Psychiatry. 2012;43(4):1095–103.PubMedCrossRef
83.
go back to reference Hildebrandt T, Bacow T, Markella M, Loeb KL. Anxiety in anorexia nervosa and its management using family-based treatment. Eur Eat Disord Rev. 2012;20(1):e1–e16.PubMedCrossRef Hildebrandt T, Bacow T, Markella M, Loeb KL. Anxiety in anorexia nervosa and its management using family-based treatment. Eur Eat Disord Rev. 2012;20(1):e1–e16.PubMedCrossRef
84.
go back to reference Steinglass JE, Sysko R, Mayer L, Berner LA, Schebendach J, Wang YJ, et al. Pre-meal anxiety and food intake in anorexia nervosa. Appetite. 2010;55(2):214–8.PubMedPubMedCentralCrossRef Steinglass JE, Sysko R, Mayer L, Berner LA, Schebendach J, Wang YJ, et al. Pre-meal anxiety and food intake in anorexia nervosa. Appetite. 2010;55(2):214–8.PubMedPubMedCentralCrossRef
85.
go back to reference Strober M, Freeman R, Lampert C, Diamond J, Vinai P, Cardetti S, et al. The association of anxiety disorders and obsessive compulsive personality disorder with anorexia nervosa: evidence from a family study with discussion of nosological and neurodevelopmental implications. Int J Eat Disord. 2007;40(Suppl(3)):S46–51.PubMedCrossRef Strober M, Freeman R, Lampert C, Diamond J, Vinai P, Cardetti S, et al. The association of anxiety disorders and obsessive compulsive personality disorder with anorexia nervosa: evidence from a family study with discussion of nosological and neurodevelopmental implications. Int J Eat Disord. 2007;40(Suppl(3)):S46–51.PubMedCrossRef
86.
go back to reference Levey DF, Gelernter J, Polimanti R, Zhou H, Cheng Z, Aslan M, et al. Reproducible Risk Loci and Psychiatric Comorbidities in Anxiety: Results from ~200,000 Million Veteran Program Participants. bioRxiv. 2019:540245. Levey DF, Gelernter J, Polimanti R, Zhou H, Cheng Z, Aslan M, et al. Reproducible Risk Loci and Psychiatric Comorbidities in Anxiety: Results from ~200,000 Million Veteran Program Participants. bioRxiv. 2019:540245.
87.
go back to reference Le LK-D, Barendregt JJ, Hay P, Mihalopoulos C. Prevention of eating disorders: a systematic review and meta-analysis. Clin Psychol Rev. 2017;53:46–58.PubMedCrossRef Le LK-D, Barendregt JJ, Hay P, Mihalopoulos C. Prevention of eating disorders: a systematic review and meta-analysis. Clin Psychol Rev. 2017;53:46–58.PubMedCrossRef
88.
go back to reference Watson HJ, Joyce T, French E, Willan V, Kane RT, Tanner-Smith EE, et al. Prevention of eating disorders: a systematic review of randomized, controlled trials. Int J Eat Disord. 2016;49(9):833–62.PubMedCrossRef Watson HJ, Joyce T, French E, Willan V, Kane RT, Tanner-Smith EE, et al. Prevention of eating disorders: a systematic review of randomized, controlled trials. Int J Eat Disord. 2016;49(9):833–62.PubMedCrossRef
Metadata
Title
Understanding the nature of association between anxiety phenotypes and anorexia nervosa: a triangulation approach
Authors
E. Caitlin Lloyd
Hannah M. Sallis
Bas Verplanken
Anne M. Haase
Marcus R. Munafò
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Psychiatry / Issue 1/2020
Electronic ISSN: 1471-244X
DOI
https://doi.org/10.1186/s12888-020-02883-8

Other articles of this Issue 1/2020

BMC Psychiatry 1/2020 Go to the issue