Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2010

Open Access 01-12-2010 | Research

Antisense oligonucleotide targeting Livin induces apoptosis of human bladder cancer cell via a mechanism involving caspase 3

Authors: Liu Chuan, Wu Xiaohou, Luo Chunli, Hu Zili, Yin Zhikang, He Yunfeng, Du Hu, Zhang Weili, Jiang Qing, Lin Yanjun

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2010

Login to get access

Abstract

Background and Aim

in recent years, Livin, a new member of IAPs family, is found to be a key molecule in cancers. Researchers consider Livin may become a new target for tumor therapy; however, the role of it in bladder cancer is still unclear. The purpose of this article is to investigate Antisense Oligonucleotide (ASODN) of Livin on treating bladder cancer cell and underlying mechanisms.

Methods

Phosphorathioate modifying was used to synthesize antisense oligonucleotides targeting Livin, followed by transfection into human bladder cancer cell 5637. After transfection, Livin mRNA and protein level, cell proliferation and apoptosis changes, caspase3 level and its effect on human bladder cancer transplantable tumor in nude mice were measured.

Result

results showed Livin ASODN effectively inhibited Livin expression and tumor cell proliferation, and these effects probably through enhanced caspase3 activity and apoptosis of tumor cells. In nude mice transplantable tumor model, Livin expressions were inhibited meanwhile caspase3 expression was increased. Tumor growth slowed down and apoptosis was enhanced.

Conclusion

Our data suggest that Livin plays an important role in inhibiting apoptosis of bladder cancer cells. Livin ASODN may promote cell apoptosis, inhibit bladder cancer growth, and become one of the methods of gene therapy for bladder cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference Roy N, Mahadevan MS, McLean M: The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell. 1995, 80 (1): 167-178. 10.1016/0092-8674(95)90461-1.CrossRef Roy N, Mahadevan MS, McLean M: The gene for neuronal apoptosis inhibitory protein is partially deleted in individuals with spinal muscular atrophy. Cell. 1995, 80 (1): 167-178. 10.1016/0092-8674(95)90461-1.CrossRef
2.
go back to reference Richter BW, Mir SS, Eiben LJ: Molecular cloning of ILP-2, a novel member of the inhibitor of apoptosis protein family. Mol Cell Biol. 2001, 21 (13): 4292-4301. 10.1128/MCB.21.13.4292-4301.2001.CrossRef Richter BW, Mir SS, Eiben LJ: Molecular cloning of ILP-2, a novel member of the inhibitor of apoptosis protein family. Mol Cell Biol. 2001, 21 (13): 4292-4301. 10.1128/MCB.21.13.4292-4301.2001.CrossRef
3.
go back to reference Rothe M, Pan MG, Henzel WJ: The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell. 1995, 83 (7): 1243-1252. 10.1016/0092-8674(95)90149-3.CrossRef Rothe M, Pan MG, Henzel WJ: The TNFR2-TRAF signaling complex contains two novel proteins related to baculoviral inhibitor of apoptosis proteins. Cell. 1995, 83 (7): 1243-1252. 10.1016/0092-8674(95)90149-3.CrossRef
4.
go back to reference Liston P, Roy N, Tamai K: Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature. 1996, 379 (6563): 349-353. 10.1038/379349a0.CrossRef Liston P, Roy N, Tamai K: Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature. 1996, 379 (6563): 349-353. 10.1038/379349a0.CrossRef
5.
go back to reference Chen Z, Naito M, Hori S: A human IAP-family gene, apollon, expressed in human brain cancer cells. Biochem Biophys Res Commun. 1996, 264 (3): 847-854. 10.1006/bbrc.1999.1585.CrossRef Chen Z, Naito M, Hori S: A human IAP-family gene, apollon, expressed in human brain cancer cells. Biochem Biophys Res Commun. 1996, 264 (3): 847-854. 10.1006/bbrc.1999.1585.CrossRef
6.
go back to reference Ambrosini G, Adida C, Altieri DC: A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med. 1997, 3 (8): 917-921. 10.1038/nm0897-917.CrossRef Ambrosini G, Adida C, Altieri DC: A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med. 1997, 3 (8): 917-921. 10.1038/nm0897-917.CrossRef
7.
go back to reference Salvesen GS, Duckett CS: IAP proteins: blocking the road to death's door. Nat Rev Mol Cell Biol. 2002, 3 (6): 401-410. 10.1038/nrm830.CrossRef Salvesen GS, Duckett CS: IAP proteins: blocking the road to death's door. Nat Rev Mol Cell Biol. 2002, 3 (6): 401-410. 10.1038/nrm830.CrossRef
8.
go back to reference Chang Hong, Shimmer Aaron: Livin/melanoma inhibitor of apoptosis protein as a potential therapeutic target for the treatment of malignancy. Mol Cancer Ther. 2007, 6 (1): 24-30. 10.1158/1535-7163.MCT-06-0443.CrossRef Chang Hong, Shimmer Aaron: Livin/melanoma inhibitor of apoptosis protein as a potential therapeutic target for the treatment of malignancy. Mol Cancer Ther. 2007, 6 (1): 24-30. 10.1158/1535-7163.MCT-06-0443.CrossRef
9.
go back to reference Liu B, Han M, Wen JK, Wang L: Livin/ML-IAP as a new target for cancer treatment. Cancer Lett. 2007, 250 (2): 168-176. 10.1016/j.canlet.2006.09.024.CrossRef Liu B, Han M, Wen JK, Wang L: Livin/ML-IAP as a new target for cancer treatment. Cancer Lett. 2007, 250 (2): 168-176. 10.1016/j.canlet.2006.09.024.CrossRef
10.
go back to reference Gazzaniga P, Gradilone A, Giuliani L: Expression and prognostic significance of LIVIN, SURVIVIN and other apoptosis-related genes in the Progression of superficial bladder cancer. Ann Oncol. 2003, 14 (1): 85-89. 10.1093/annonc/mdg002.CrossRef Gazzaniga P, Gradilone A, Giuliani L: Expression and prognostic significance of LIVIN, SURVIVIN and other apoptosis-related genes in the Progression of superficial bladder cancer. Ann Oncol. 2003, 14 (1): 85-89. 10.1093/annonc/mdg002.CrossRef
11.
go back to reference Huadong Zhang, Shoujun Yuan, Huipeng Chen: Induction effects of antisense phosphorothioate oligodeoxynucleotide of livin mRNA on apoptosis in MCF-7 cells. Chin J Clin Pharmacol Ther. 2004, 9 (12): 1353-1356. Huadong Zhang, Shoujun Yuan, Huipeng Chen: Induction effects of antisense phosphorothioate oligodeoxynucleotide of livin mRNA on apoptosis in MCF-7 cells. Chin J Clin Pharmacol Ther. 2004, 9 (12): 1353-1356.
12.
go back to reference Vucic D, Stennicke HR, Pisabarro MT: ML-IAP, a novel inhibitor of apoptosis that is preferentially expressed in human melanomas. Curr Biol. 2000, 10 (21): 1359-1366. 10.1016/S0960-9822(00)00781-8.CrossRef Vucic D, Stennicke HR, Pisabarro MT: ML-IAP, a novel inhibitor of apoptosis that is preferentially expressed in human melanomas. Curr Biol. 2000, 10 (21): 1359-1366. 10.1016/S0960-9822(00)00781-8.CrossRef
13.
go back to reference Kasof GM, Gomes BC: Livin, a novel inhibitor of apoptosis protein family member. J Biol Chem. 2001, 276 (5): 3238-3246. 10.1074/jbc.M003670200.CrossRef Kasof GM, Gomes BC: Livin, a novel inhibitor of apoptosis protein family member. J Biol Chem. 2001, 276 (5): 3238-3246. 10.1074/jbc.M003670200.CrossRef
14.
go back to reference Ashhab Y, Alian A, Polliack A: Two splicing variants of a new inhibitor of apoptosis gene with different biological properties and tissue distribution pattern. FEBS Lett. 2001, 495 (1-2): 56-60. 10.1016/S0014-5793(01)02366-3.CrossRef Ashhab Y, Alian A, Polliack A: Two splicing variants of a new inhibitor of apoptosis gene with different biological properties and tissue distribution pattern. FEBS Lett. 2001, 495 (1-2): 56-60. 10.1016/S0014-5793(01)02366-3.CrossRef
15.
go back to reference Hariu H, Hirohashi Y, Torigoe T: Aberrant expression and potency as a cancer immunotherapy target of inhibitor of apoptosis protein family, Livin/ML-IAP in lung cancer. Clin Cancer Res. 2005, 11 (3): 1000-1009. Hariu H, Hirohashi Y, Torigoe T: Aberrant expression and potency as a cancer immunotherapy target of inhibitor of apoptosis protein family, Livin/ML-IAP in lung cancer. Clin Cancer Res. 2005, 11 (3): 1000-1009.
16.
go back to reference Augello C, Caruso L, Maggioni M: Inhibitors of apoptosis proteins (IAPs) expression and their prognostic significance in hepatocellular carcinoma. BMC Cancer. 2009, 9 (125): 1471-2407. Augello C, Caruso L, Maggioni M: Inhibitors of apoptosis proteins (IAPs) expression and their prognostic significance in hepatocellular carcinoma. BMC Cancer. 2009, 9 (125): 1471-2407.
17.
go back to reference Kempkensteffen C, Hinz S, Christoph F: Expression of the apoptosis inhibitor Livin in renal cell carcinomas: correlations with pathology and outcome. Tumour Biol. 2007, 28 (3): 132-138. 10.1159/000103008.CrossRef Kempkensteffen C, Hinz S, Christoph F: Expression of the apoptosis inhibitor Livin in renal cell carcinomas: correlations with pathology and outcome. Tumour Biol. 2007, 28 (3): 132-138. 10.1159/000103008.CrossRef
18.
go back to reference Crnković-Mertens I, Wagener N, Semzow J: Targeted inhibition of Livin resensitizes renal cancer cells towards apoptosis. Cell Mol Life Sci. 2007, 64 (9): 1137-1144. 10.1007/s00018-007-6510-7.CrossRef Crnković-Mertens I, Wagener N, Semzow J: Targeted inhibition of Livin resensitizes renal cancer cells towards apoptosis. Cell Mol Life Sci. 2007, 64 (9): 1137-1144. 10.1007/s00018-007-6510-7.CrossRef
19.
go back to reference Adis International Limited: Oblimersen: Augmerosen, BCL-2 antisense oligonucleotide - Genta, G 3139 GC 3139, oblimersen sodium. Drugs R D. 2007, 8 (5): 321-334. 10.2165/00126839-200708050-00006.CrossRef Adis International Limited: Oblimersen: Augmerosen, BCL-2 antisense oligonucleotide - Genta, G 3139 GC 3139, oblimersen sodium. Drugs R D. 2007, 8 (5): 321-334. 10.2165/00126839-200708050-00006.CrossRef
20.
go back to reference Geary RS, Bradley JD, Watanabe T: Lack of pharmacokinetic interaction for ISIS 113715, a 2'-0-methoxyethyl modified antisense oligonucleotide targeting protein tyrosine phosphatase 1B messenger RNA, with oral antidiabetic compounds metformin, glipizide or rosiglitazone. Clin Pharmacokinet. 2006, 45 (8): 789-801. 10.2165/00003088-200645080-00003.CrossRef Geary RS, Bradley JD, Watanabe T: Lack of pharmacokinetic interaction for ISIS 113715, a 2'-0-methoxyethyl modified antisense oligonucleotide targeting protein tyrosine phosphatase 1B messenger RNA, with oral antidiabetic compounds metformin, glipizide or rosiglitazone. Clin Pharmacokinet. 2006, 45 (8): 789-801. 10.2165/00003088-200645080-00003.CrossRef
21.
go back to reference Chi KN, Eisenhauer E, Fazli L: A phase I pharmacokinetic and pharmacodynamic study of OGX-011, a 2'-methoxyethyl antisense oligonucleotide to clusterin, in patients with localized prostate cancer. J Natl Cancer Inst. 2005, 97 (17): 1287-1296. 10.1093/jnci/dji252.CrossRef Chi KN, Eisenhauer E, Fazli L: A phase I pharmacokinetic and pharmacodynamic study of OGX-011, a 2'-methoxyethyl antisense oligonucleotide to clusterin, in patients with localized prostate cancer. J Natl Cancer Inst. 2005, 97 (17): 1287-1296. 10.1093/jnci/dji252.CrossRef
22.
go back to reference Vucic D, Franklin MC, Wallweber HJ: Engineering ML-IAP to produce an extraordinarily potent caspase 9 inhibitor: implications for Smac-dependent anti-apoptotic activity of ML-IAP. Biochem J. 2005, 385 (Pt 1): 11-20.CrossRef Vucic D, Franklin MC, Wallweber HJ: Engineering ML-IAP to produce an extraordinarily potent caspase 9 inhibitor: implications for Smac-dependent anti-apoptotic activity of ML-IAP. Biochem J. 2005, 385 (Pt 1): 11-20.CrossRef
Metadata
Title
Antisense oligonucleotide targeting Livin induces apoptosis of human bladder cancer cell via a mechanism involving caspase 3
Authors
Liu Chuan
Wu Xiaohou
Luo Chunli
Hu Zili
Yin Zhikang
He Yunfeng
Du Hu
Zhang Weili
Jiang Qing
Lin Yanjun
Publication date
01-12-2010
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2010
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/1756-9966-29-63

Other articles of this Issue 1/2010

Journal of Experimental & Clinical Cancer Research 1/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine