Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2014

Open Access 01-12-2014 | Research article

Antioxidant potential of Sutherlandia frutescens and its protective effects against oxidative stress in various cell cultures

Authors: Shakila Tobwala, Weili Fan, Connor J Hines, William R Folk, Nuran Ercal

Published in: BMC Complementary Medicine and Therapies | Issue 1/2014

Login to get access

Abstract

Background

Sutherlandia frutescens (L.) R.Br. (SF) is a South African plant that is widely used to treat stress, infections, cancer, and chronic diseases, many of which involve oxidative stress. The aim of the study was to quantitatively assess the antioxidant potential of SF extracts in cell-free system as well as in cell lines.

Methods

Dried SF vegetative parts were extracted using six different solvents, and the extracts were assessed for total phenolic and flavonoid contents, total reducing power, iron chelating capacity, and free radical scavenging power, including, scavenging of hydroxyl radicals, superoxide anions, nitric oxide, and hydrogen peroxide. We further investigated the freeze-dried hot water extract of SF (SFE) to assess its effect against oxidative stress induced by tert-butyl hydroperoxide (t-BHP), an organic peroxide. Three different cell lines: Chinese hamster ovary (CHO), human hepatoma (HepaRG), and human pulmonary alveolar carcinoma (A549) cells, were employed to determine cell viability, intracellular reactive oxygen species (ROS) levels, and reduced to oxidized glutathione levels (GSH/GSSG).

Results

The results indicated that: (1) SF extracts have significant antioxidant potential that is dependent upon the nature of the extraction solvent and (2) SFE protects against tBHP-induced oxidative stress in cells by scavenging ROS and preserving intracellular GSH/GSSG.

Conclusion

Oxidative stress is implicated in a number of disorders, and due to the public’s concerns about synthetic antioxidants, various natural antioxidants are being explored for their therapeutic potential. Our findings support claims for S. frutescens being a promising adjunctive therapeutic for oxidative stress-related health problems.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hayes JD, McLellan LI: Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic Res. 1999, 31: 273-300.CrossRefPubMed Hayes JD, McLellan LI: Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic Res. 1999, 31: 273-300.CrossRefPubMed
2.
go back to reference Nakabeppu Y, Tsuchimoto D, Furuichi M, Sakumi K: The defense mechanisms in mammalian cells against oxidative damage in nucleic acids and their involvement in the suppression of mutagenesis and cell death. Free Radic Res. 2004, 38: 423-429.CrossRefPubMed Nakabeppu Y, Tsuchimoto D, Furuichi M, Sakumi K: The defense mechanisms in mammalian cells against oxidative damage in nucleic acids and their involvement in the suppression of mutagenesis and cell death. Free Radic Res. 2004, 38: 423-429.CrossRefPubMed
4.
go back to reference Morel I, Lescoat G, Cillard P, Cillard J: Role of flavonoids and iron chelation in antioxidant action. Methods Enzymol. 1994, 234: 437-443.CrossRefPubMed Morel I, Lescoat G, Cillard P, Cillard J: Role of flavonoids and iron chelation in antioxidant action. Methods Enzymol. 1994, 234: 437-443.CrossRefPubMed
6.
go back to reference Krinsky NI: Mechanism of action of biological antioxidants. Proc Soc Exp Biol Med. 1992, 200: 248-254.CrossRefPubMed Krinsky NI: Mechanism of action of biological antioxidants. Proc Soc Exp Biol Med. 1992, 200: 248-254.CrossRefPubMed
7.
go back to reference van Wyk BE, Albrecht C: A review of the taxonomy, ethnobotany, chemistry and pharmacology of Sutherlandia frutescens (Fabaceae). J Ethnopharmacol. 2008, 119: 620-629.CrossRefPubMed van Wyk BE, Albrecht C: A review of the taxonomy, ethnobotany, chemistry and pharmacology of Sutherlandia frutescens (Fabaceae). J Ethnopharmacol. 2008, 119: 620-629.CrossRefPubMed
8.
go back to reference Robak J, Gryglewski RJ: Flavonoids are scavengers of superoxide anions. Biochem Pharmacol. 1988, 37: 837-841.CrossRefPubMed Robak J, Gryglewski RJ: Flavonoids are scavengers of superoxide anions. Biochem Pharmacol. 1988, 37: 837-841.CrossRefPubMed
9.
go back to reference Chen JW, Zhu ZQ, Hu TX, Zhu DY: Structure-activity relationship of natural flavonoids in hydroxyl radical-scavenging effects. Acta Pharmacol Sin. 2002, 23: 667-672.PubMed Chen JW, Zhu ZQ, Hu TX, Zhu DY: Structure-activity relationship of natural flavonoids in hydroxyl radical-scavenging effects. Acta Pharmacol Sin. 2002, 23: 667-672.PubMed
10.
go back to reference Rice-Evans C, Packer L: Flavonoids in health and disease. 1998, New York: Marcel Dekker Rice-Evans C, Packer L: Flavonoids in health and disease. 1998, New York: Marcel Dekker
11.
go back to reference Fu X, Li XC, Wang YH, Avula B, Smillie TJ, Mabusela W, Syce J, Johnson Q, Folk W, Khan IA: Flavonol glycosides from the south African medicinal plant Sutherlandia frutescens. Planta Med. 2010, 76: 178-181.CrossRefPubMed Fu X, Li XC, Wang YH, Avula B, Smillie TJ, Mabusela W, Syce J, Johnson Q, Folk W, Khan IA: Flavonol glycosides from the south African medicinal plant Sutherlandia frutescens. Planta Med. 2010, 76: 178-181.CrossRefPubMed
12.
go back to reference Fernandes AC, Cromarty AD, Albrecht C, van Rensburg CE: The antioxidant potential of Sutherlandia frutescens. J Ethnopharmacol. 2004, 95: 1-5.CrossRefPubMed Fernandes AC, Cromarty AD, Albrecht C, van Rensburg CE: The antioxidant potential of Sutherlandia frutescens. J Ethnopharmacol. 2004, 95: 1-5.CrossRefPubMed
13.
go back to reference Katerere DR, Eloff JN: Antibacterial and antioxidant activity of Sutherlandia frutescens (Fabaceae), a reputed anti-HIV/AIDS phytomedicine. Phytother Res. 2005, 19: 779-781.CrossRefPubMed Katerere DR, Eloff JN: Antibacterial and antioxidant activity of Sutherlandia frutescens (Fabaceae), a reputed anti-HIV/AIDS phytomedicine. Phytother Res. 2005, 19: 779-781.CrossRefPubMed
14.
go back to reference Koleva II, van Beek TA, Linssen JP, de Groot A, Evstatieva LN: Screening of plant extracts for antioxidant activity: a comparative study on three testing methods. Phytochem Anal. 2002, 13: 8-17.CrossRefPubMed Koleva II, van Beek TA, Linssen JP, de Groot A, Evstatieva LN: Screening of plant extracts for antioxidant activity: a comparative study on three testing methods. Phytochem Anal. 2002, 13: 8-17.CrossRefPubMed
15.
go back to reference Konaté K, Kiendrébéogo M, Ouattara MM, Souza A, Lamien-Meda A, Nongasida Y, Barro N, Millogo-Rasolodimby J, Nacoulma OG: Antibacterial potential of aqueous acetone extracts from five medicinal plants used traditionally to treat infectious diseases in burkina faso. Curr Res J Biol Sci. 2011, 3: 8- Konaté K, Kiendrébéogo M, Ouattara MM, Souza A, Lamien-Meda A, Nongasida Y, Barro N, Millogo-Rasolodimby J, Nacoulma OG: Antibacterial potential of aqueous acetone extracts from five medicinal plants used traditionally to treat infectious diseases in burkina faso. Curr Res J Biol Sci. 2011, 3: 8-
16.
go back to reference Kalava V, Menon S: In-vitro free radical scavenging activity of aqueous extract from the mycella of volvariella volvacea (bulliard ex fries) singer. Int J Current Pharmaceutical Res. 2012, 4: 7- Kalava V, Menon S: In-vitro free radical scavenging activity of aqueous extract from the mycella of volvariella volvacea (bulliard ex fries) singer. Int J Current Pharmaceutical Res. 2012, 4: 7-
17.
go back to reference Jayanthi P, Lalitha P: Reducing Power of the solvent extracts of eichhornia crassipes (Mart.) solms. Int J Pharmacy Pharmaceutical Sci. 2011, 3: 3- Jayanthi P, Lalitha P: Reducing Power of the solvent extracts of eichhornia crassipes (Mart.) solms. Int J Pharmacy Pharmaceutical Sci. 2011, 3: 3-
18.
go back to reference Shyamala S, Vasantha K: Free radical scavenging and antioxidant activity of leaves from Agathi (Sesbania grandiflora) (L.) Pers. Am Eurasian J Sci Res. 2010, 5: 6- Shyamala S, Vasantha K: Free radical scavenging and antioxidant activity of leaves from Agathi (Sesbania grandiflora) (L.) Pers. Am Eurasian J Sci Res. 2010, 5: 6-
19.
go back to reference Ozyurek M, Bektasoglu B, Guclu K, Gungor N, Apak R: A novel hydrogen peroxide scavenging assay of phenolics and flavonoids using cupric reducing antioxidant capacity (CUPRAC) methodology. J Food Compos Anal. 2010, 23: 10-CrossRef Ozyurek M, Bektasoglu B, Guclu K, Gungor N, Apak R: A novel hydrogen peroxide scavenging assay of phenolics and flavonoids using cupric reducing antioxidant capacity (CUPRAC) methodology. J Food Compos Anal. 2010, 23: 10-CrossRef
20.
go back to reference Pramod K, Devala RG, Lakshmayya B, Ramachandra SS: Nephroprotective and nitric oxide scavenging activity of tubers of momordica tuberosa in rats. Avicenna J Med Biotechnol. 2011, 3: 87-93.PubMedPubMedCentral Pramod K, Devala RG, Lakshmayya B, Ramachandra SS: Nephroprotective and nitric oxide scavenging activity of tubers of momordica tuberosa in rats. Avicenna J Med Biotechnol. 2011, 3: 87-93.PubMedPubMedCentral
21.
go back to reference Bajpai VK, Sharma A, Kang SC, Baek KH: Antioxidant, lipid peroxidation inhibition and free radical scavenging efficacy of a diterpenoid compound sugiol isolated from Metasequoia glyptostroboides. Asian Pac J Trop Med. 2014, 7: 9-15.CrossRefPubMed Bajpai VK, Sharma A, Kang SC, Baek KH: Antioxidant, lipid peroxidation inhibition and free radical scavenging efficacy of a diterpenoid compound sugiol isolated from Metasequoia glyptostroboides. Asian Pac J Trop Med. 2014, 7: 9-15.CrossRefPubMed
22.
go back to reference Kunchandy E, Rao MNA: Oxygen radical scavenging activity of curcumin. Int J Pharm. 1990, 58: 4-CrossRef Kunchandy E, Rao MNA: Oxygen radical scavenging activity of curcumin. Int J Pharm. 1990, 58: 4-CrossRef
23.
go back to reference Manda K, Adams C, Ercal N: Biologically important thiols in aqueous extracts of spices and evaluation of their in vitro antioxidant properties. Food Chem. 2010, 118: 5-CrossRef Manda K, Adams C, Ercal N: Biologically important thiols in aqueous extracts of spices and evaluation of their in vitro antioxidant properties. Food Chem. 2010, 118: 5-CrossRef
24.
go back to reference Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976, 72: 248-254.CrossRefPubMed Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976, 72: 248-254.CrossRefPubMed
25.
go back to reference Wang B-J, Lien Y-H, Yu Z-R: Supercritical fluid extractive fractionation – study of the antioxidant activities of propolis. Food Chem. 2004, 86: 7- Wang B-J, Lien Y-H, Yu Z-R: Supercritical fluid extractive fractionation – study of the antioxidant activities of propolis. Food Chem. 2004, 86: 7-
26.
go back to reference Stohs SJ, Bagchi D: Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med. 1995, 18: 321-336.CrossRefPubMed Stohs SJ, Bagchi D: Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med. 1995, 18: 321-336.CrossRefPubMed
27.
go back to reference Marcocci L, Maguire JJ, Droy-Lefaix MT, Packer L: The nitric oxide-scavenging properties of Ginkgo biloba extract EGb 761. Biochem Biophys Res Commun. 1994, 201: 748-755.CrossRefPubMed Marcocci L, Maguire JJ, Droy-Lefaix MT, Packer L: The nitric oxide-scavenging properties of Ginkgo biloba extract EGb 761. Biochem Biophys Res Commun. 1994, 201: 748-755.CrossRefPubMed
28.
go back to reference Wink DA, Kasprzak KS, Maragos CM, Elespuru RK, Misra M, Dunams TM, Cebula TA, Koch WH, Andrews AW, Allen JS, Keefer LK: DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science. 1991, 254: 1001-1003.CrossRefPubMed Wink DA, Kasprzak KS, Maragos CM, Elespuru RK, Misra M, Dunams TM, Cebula TA, Koch WH, Andrews AW, Allen JS, Keefer LK: DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science. 1991, 254: 1001-1003.CrossRefPubMed
29.
go back to reference Halliwell B: Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am J Med. 1991, 91: 14S-22S.CrossRefPubMed Halliwell B: Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am J Med. 1991, 91: 14S-22S.CrossRefPubMed
30.
go back to reference Cook N, Samman S: Flavonoids—Chemistry, metabolism, cardioprotective effects, and dietary sources. J Nutr Biochem. 1996, 7: 11-CrossRef Cook N, Samman S: Flavonoids—Chemistry, metabolism, cardioprotective effects, and dietary sources. J Nutr Biochem. 1996, 7: 11-CrossRef
32.
go back to reference Phulukdaree A, Moodley D, Chuturgoon A: The effects of Sutherlandia frutescens extracts in cultured renal proximal and distal tubule epithelial cells. S Afr J Sci. 2010, 106: 5- Phulukdaree A, Moodley D, Chuturgoon A: The effects of Sutherlandia frutescens extracts in cultured renal proximal and distal tubule epithelial cells. S Afr J Sci. 2010, 106: 5-
33.
go back to reference Ngcobo M, Gqaleni N, Chelule PK, Serumula M, Assounga A: Effects of Sutherlandia frutescens extracts on normal T-lymphocytes in vitro. Afr J Tradit Complement Altern Med. 2012, 9: 73-80.PubMed Ngcobo M, Gqaleni N, Chelule PK, Serumula M, Assounga A: Effects of Sutherlandia frutescens extracts on normal T-lymphocytes in vitro. Afr J Tradit Complement Altern Med. 2012, 9: 73-80.PubMed
34.
go back to reference Seier JV, Mdhluli M, Dhansay M, Loza J, Laubscher R: A toxicity study of Sutherlandia leaf powder (Sutherlandia microphylla) consumption. Medical Research Council, National Research Foundation (NRF) of South Africa. 2002, 1-35. Seier JV, Mdhluli M, Dhansay M, Loza J, Laubscher R: A toxicity study of Sutherlandia leaf powder (Sutherlandia microphylla) consumption. Medical Research Council, National Research Foundation (NRF) of South Africa. 2002, 1-35.
35.
go back to reference Johnson Q, Syce J, Nell H, Rudeen K, Folk WR: A randomized, double-blind, placebo-controlled trial of Lessertia frutescens in healthy adults. PLoS Clin trials. 2007, 2: e16-CrossRefPubMedPubMedCentral Johnson Q, Syce J, Nell H, Rudeen K, Folk WR: A randomized, double-blind, placebo-controlled trial of Lessertia frutescens in healthy adults. PLoS Clin trials. 2007, 2: e16-CrossRefPubMedPubMedCentral
36.
go back to reference Stander A, Marais S, Stivaktas V, Vorster C, Albrecht C, Lottering ML, Joubert AM: In vitro effects of Sutherlandia frutescens water extracts on cell numbers, morphology, cell cycle progression and cell death in a tumorigenic and a non-tumorigenic epithelial breast cell line. J Ethnopharmacol. 2009, 124: 45-60.CrossRefPubMed Stander A, Marais S, Stivaktas V, Vorster C, Albrecht C, Lottering ML, Joubert AM: In vitro effects of Sutherlandia frutescens water extracts on cell numbers, morphology, cell cycle progression and cell death in a tumorigenic and a non-tumorigenic epithelial breast cell line. J Ethnopharmacol. 2009, 124: 45-60.CrossRefPubMed
37.
go back to reference Tai J, Cheung S, Chan E, Hasman D: In vitro culture studies of Sutherlandia frutescens on human tumor cell lines. J Ethnopharmacol. 2004, 93: 9-19.CrossRefPubMed Tai J, Cheung S, Chan E, Hasman D: In vitro culture studies of Sutherlandia frutescens on human tumor cell lines. J Ethnopharmacol. 2004, 93: 9-19.CrossRefPubMed
38.
go back to reference Chinkwo KA: Sutherlandia frutescens extracts can induce apoptosis in cultured carcinoma cells. J Ethnopharmacol. 2005, 98: 163-170.CrossRefPubMed Chinkwo KA: Sutherlandia frutescens extracts can induce apoptosis in cultured carcinoma cells. J Ethnopharmacol. 2005, 98: 163-170.CrossRefPubMed
39.
go back to reference Vorster C, Stander A, Joubert A: Differential signaling involved in Sutherlandia frutescens-induced cell death in MCF-7 and MCF-12A cells. J Ethnopharmacol. 2012, 140: 123-130.CrossRefPubMed Vorster C, Stander A, Joubert A: Differential signaling involved in Sutherlandia frutescens-induced cell death in MCF-7 and MCF-12A cells. J Ethnopharmacol. 2012, 140: 123-130.CrossRefPubMed
40.
go back to reference Wink M, Wiley InterScience (Online service): Functions And Biotechnology Of Plant Secondary Metabolites. Book Functions And Biotechnology Of Plant Secondary Metabolites. 2010, Wiley-Blackwell, 2CrossRef Wink M, Wiley InterScience (Online service): Functions And Biotechnology Of Plant Secondary Metabolites. Book Functions And Biotechnology Of Plant Secondary Metabolites. 2010, Wiley-Blackwell, 2CrossRef
41.
go back to reference Nycobo M: The biochemical effects of Sutherlandia Frutescens in cultured H9 cancerous T cells and normal human T lymphocytes. MMedSci Thesis, University of KwaZulu-Natal. 2008 Nycobo M: The biochemical effects of Sutherlandia Frutescens in cultured H9 cancerous T cells and normal human T lymphocytes. MMedSci Thesis, University of KwaZulu-Natal. 2008
Metadata
Title
Antioxidant potential of Sutherlandia frutescens and its protective effects against oxidative stress in various cell cultures
Authors
Shakila Tobwala
Weili Fan
Connor J Hines
William R Folk
Nuran Ercal
Publication date
01-12-2014
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2014
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/1472-6882-14-271

Other articles of this Issue 1/2014

BMC Complementary Medicine and Therapies 1/2014 Go to the issue