Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2016

Open Access 01-12-2016 | Research article

Antimicrobial, antioxidant, toxicity and phytochemical assessment of extracts from Acmella uliginosa, a leafy-vegetable consumed in Bénin, West Africa

Authors: Latifou Lagnika, Abdou Madjid O. Amoussa, Rafatou A. A. Adjileye, Anatole Laleye, Ambaliou Sanni

Published in: BMC Complementary Medicine and Therapies | Issue 1/2016

Login to get access

Abstract

Background

Acmella uliginosa (Asteraceae) is a flowering plant whose leaves are consumed as a vegetable in Benin. They are also traditionally used as an antibiotic in the treatment of infectious diseases. To evaluate the therapeutic potential and toxicity effect of this leafy-vegetable, the antibacterial, antifungal, antioxidant activities and, toxicity and phytochemical constituents were investigated.

Methods

Dichloromethane, methanol and aqueous extracts of Acmella uliginosa were evaluated for their antimicrobial activity against six bacterial and six fungi strains. Antibacterial and antifungal activities were investigated by microdilution method and agar diffusion method respectively. Antioxidant activity was assessed using the 2,2-diphenyl-1-picryl-hydrazyl assay and phytochemical screening was carried out using standard procedures. Finally, oral acute toxicity at a dose of 2000 mg/kg was done according to the Organization for Economic Co-operation and Development guideline n° 423.

Results

The antibacterial activity was broad spectrum, inhibiting both Gram-positive and Gram-negative bacteria. The minimum inhibitory concentration ranged from 0.625 to 5 mg/ml. The antifungal evaluation show that all the extracts inhibited mycelial growth and sporulation of fungi with percentages of inhibition ranging from 9.39 to 75.67 % and 22.04 to 99.77 %, respectively. In DPPH radical scavenging assay, the effect on reducing free radicals increased in a dose dependent manner. The percentage of inhibition of DPPH ranged from 0.94 to 73.07 %. Phytochemical screening revealed the presence of coumarin, flavonoid, naphtoquinone, anthracene derivative, saponin, lignan, triterpene and tannin. The dichloromethane and methanol extracts showed the best biological activities; they were also shown as the best extraction solvents of phytochemicals. In the acute toxicity evaluation, all animals were physically active and no deaths of rats were observed during the test. However, the aqueous extract promoted biochemical, hematological and histopathological alterations of treated rats at 2000 mg/kg body weight.

Conclusion

A. uliginosa extracts contains antimicrobial, antioxidant agents and was not lethal for rats when ingested. However, according to the results obtained for biochemical, hematological, and histopathological analysis, caution is required regarding its consumption.
Literature
1.
go back to reference Maundu PM, Kabuye CHS, Chweya JA. Proceedings of the indigenous food plants workshop. Nairobi: National museums of Kenya; 1993. Maundu PM, Kabuye CHS, Chweya JA. Proceedings of the indigenous food plants workshop. Nairobi: National museums of Kenya; 1993.
2.
go back to reference Fasuyi AO. Nutritional potentials of some tropical vegetable meals, chemical characterization and functional properties. Afr J Biotechnol. 2006;5:49–53. Fasuyi AO. Nutritional potentials of some tropical vegetable meals, chemical characterization and functional properties. Afr J Biotechnol. 2006;5:49–53.
3.
go back to reference Sharma HP, Kumar RA. Health security in ethnic communities through nutraceutical leafy vegetables. J Environ Res Develop. 2013;7:1423–9. Sharma HP, Kumar RA. Health security in ethnic communities through nutraceutical leafy vegetables. J Environ Res Develop. 2013;7:1423–9.
4.
go back to reference Yadav RK, Kalia P, Kumar R, Jain V. Antioxidant and nutritional activity studies of green leafy vegetables. Int J Agric Food Sci Tech. 2013;4:707–12. Yadav RK, Kalia P, Kumar R, Jain V. Antioxidant and nutritional activity studies of green leafy vegetables. Int J Agric Food Sci Tech. 2013;4:707–12.
5.
go back to reference Rich-Evan CA, Sampson J, Bramely PM, Hollwa DE. Why we do except carotenoids to be antioxidants in vivo. Free Rad Res. 1997;26:381–98.CrossRef Rich-Evan CA, Sampson J, Bramely PM, Hollwa DE. Why we do except carotenoids to be antioxidants in vivo. Free Rad Res. 1997;26:381–98.CrossRef
6.
go back to reference Jeyadevi R, Sivasudha T, Ilavarasi A, Thajuddin N. Chemical constituents and antimicrobial activity of indian green leafy vegetable Cardiospermum halicacabum. Indian J Microbiol. 2013;53:208–13.CrossRefPubMed Jeyadevi R, Sivasudha T, Ilavarasi A, Thajuddin N. Chemical constituents and antimicrobial activity of indian green leafy vegetable Cardiospermum halicacabum. Indian J Microbiol. 2013;53:208–13.CrossRefPubMed
7.
go back to reference Bhojane P, Damle S, Thite A, Dabholkar V. Anti-microbial effects of some leafy vegetables - A comparative analysis. Int Res J Biological Sci. 2014;3:26–32. Bhojane P, Damle S, Thite A, Dabholkar V. Anti-microbial effects of some leafy vegetables - A comparative analysis. Int Res J Biological Sci. 2014;3:26–32.
8.
go back to reference Oboh G, Akinyemi AJ, Ademiluyi AO, Bello FO. Inhibition of α-amylase and α-glucosidase activities by ethanolic extract of Amaranthus cruentus leaf as affected by blanching. Afr J Pharm Pharmacol. 2013;7:1026–32.CrossRef Oboh G, Akinyemi AJ, Ademiluyi AO, Bello FO. Inhibition of α-amylase and α-glucosidase activities by ethanolic extract of Amaranthus cruentus leaf as affected by blanching. Afr J Pharm Pharmacol. 2013;7:1026–32.CrossRef
9.
go back to reference Yamamura S, Ozawa K, Ohtani K, Kasai R, Yamasaki K. Antihistaminic flavones and aliphatic glycosides from Mentha spicata. Phytochem. 1998;48:131–6.CrossRef Yamamura S, Ozawa K, Ohtani K, Kasai R, Yamasaki K. Antihistaminic flavones and aliphatic glycosides from Mentha spicata. Phytochem. 1998;48:131–6.CrossRef
10.
go back to reference Khanna AK, Rizvi F, Chander R. Lipid lowering activity of Phyllanthus niruri in hyperlipemic rats. J Ethnopharmacol. 2002;82:19–22.CrossRefPubMed Khanna AK, Rizvi F, Chander R. Lipid lowering activity of Phyllanthus niruri in hyperlipemic rats. J Ethnopharmacol. 2002;82:19–22.CrossRefPubMed
11.
go back to reference Rajeshkumar NV, Joy KL, Kuttan G, Ramsewak RS, Nair MG, Kuttan R. Antitumour and anticarcinogenic activity of Phyllanthus amarus extract. J Ethnopharmacol. 2002;81:17–22.CrossRefPubMed Rajeshkumar NV, Joy KL, Kuttan G, Ramsewak RS, Nair MG, Kuttan R. Antitumour and anticarcinogenic activity of Phyllanthus amarus extract. J Ethnopharmacol. 2002;81:17–22.CrossRefPubMed
12.
go back to reference Pandey V, Agrawal V, Raghavendra K, Dash AP. Strong larvicidal activity of three species of Spilanthes (Akarkara) against malaria (Anopheles stephensi Liston, Anopheles culicifacies, species C) and filaria vector (Culex quinquefasciatus Say). Parasitol Res. 2007;102:171–4.CrossRefPubMed Pandey V, Agrawal V, Raghavendra K, Dash AP. Strong larvicidal activity of three species of Spilanthes (Akarkara) against malaria (Anopheles stephensi Liston, Anopheles culicifacies, species C) and filaria vector (Culex quinquefasciatus Say). Parasitol Res. 2007;102:171–4.CrossRefPubMed
13.
go back to reference Dansi A, Adjatin A, Adoukonou-Sagbadja H, Faladé V, Yedomonhan H, Odou D, et al. Traditional leafy vegetables and their use in the Benin Republic. Genet Resour Crop Evol. 2008;55:1239–56.CrossRef Dansi A, Adjatin A, Adoukonou-Sagbadja H, Faladé V, Yedomonhan H, Odou D, et al. Traditional leafy vegetables and their use in the Benin Republic. Genet Resour Crop Evol. 2008;55:1239–56.CrossRef
14.
go back to reference Etèka CA, Ahohuendo BC, Ahoton LE, Dabadé SD, Ahanchédé A. Seeds’ germination of four traditional leafy vegetables in Benin (LFT). Tropicultura. 2010;28:148–52. Etèka CA, Ahohuendo BC, Ahoton LE, Dabadé SD, Ahanchédé A. Seeds’ germination of four traditional leafy vegetables in Benin (LFT). Tropicultura. 2010;28:148–52.
15.
go back to reference Ong HM, Mohamad AS, Makhtar N, Khalid MH, Khalid S, Perimal EK, et al. Antinociceptive activity of methanolic extract of Acmella uliginosa (Sw.) Cass. J Ethnopharmacol. 2011;133:227–33.CrossRefPubMed Ong HM, Mohamad AS, Makhtar N, Khalid MH, Khalid S, Perimal EK, et al. Antinociceptive activity of methanolic extract of Acmella uliginosa (Sw.) Cass. J Ethnopharmacol. 2011;133:227–33.CrossRefPubMed
16.
go back to reference Wagner H, Bladt S. Plant drug analysis. 2nd ed. Berlin, Germany: Springer-Verlag; 2001. Wagner H, Bladt S. Plant drug analysis. 2nd ed. Berlin, Germany: Springer-Verlag; 2001.
17.
go back to reference Bruneton J. Pharmacognosie, phytochimie, plantes médicinales. 4th ed. TEC et DOC; Paris; 2009. p 456. Bruneton J. Pharmacognosie, phytochimie, plantes médicinales. 4th ed. TEC et DOC; Paris; 2009. p 456.
18.
go back to reference Eloff JN. A sensitive and quick method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med. 1998;64:711–3.CrossRefPubMed Eloff JN. A sensitive and quick method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med. 1998;64:711–3.CrossRefPubMed
19.
go back to reference Keymanesh K, Hamedi J, Moradi S, Mohammadipanah F, Sardari S. Antibacterial, antifongique and toxicity of rare Iranian plants. Int J Pharm. 2009;5:81–5.CrossRef Keymanesh K, Hamedi J, Moradi S, Mohammadipanah F, Sardari S. Antibacterial, antifongique and toxicity of rare Iranian plants. Int J Pharm. 2009;5:81–5.CrossRef
20.
go back to reference Eloff JN, Katerere DR, McGaw LJ. The biological activity and chemistry of the southern African combretaceae. J Ethnopharmacol. 2008;119:686–99.CrossRefPubMed Eloff JN, Katerere DR, McGaw LJ. The biological activity and chemistry of the southern African combretaceae. J Ethnopharmacol. 2008;119:686–99.CrossRefPubMed
21.
go back to reference Eloff JN. Quantification the bioactivity of plant extracts during screening and bioassay guided fractionation. Phytomedicine. 2004;11:370–1.CrossRefPubMed Eloff JN. Quantification the bioactivity of plant extracts during screening and bioassay guided fractionation. Phytomedicine. 2004;11:370–1.CrossRefPubMed
22.
23.
go back to reference Dohou N, Yamni K, Badoc A. Activité antifongique d'extraits de Thymelaea lythroides sur trois champignons pathogènes du riz. Bull Soc Pharm Bord. 2004;143:31–38. Dohou N, Yamni K, Badoc A. Activité antifongique d'extraits de Thymelaea lythroides sur trois champignons pathogènes du riz. Bull Soc Pharm Bord. 2004;143:31–38.
24.
go back to reference Velazquez E, Tournier HA, Buschiazzo MP, Saavedra G, Schinella GR. Antioxydant activity of Paraguayan plant extracts. Fitoterapia. 2003;74:91–7.CrossRefPubMed Velazquez E, Tournier HA, Buschiazzo MP, Saavedra G, Schinella GR. Antioxydant activity of Paraguayan plant extracts. Fitoterapia. 2003;74:91–7.CrossRefPubMed
25.
go back to reference Organization for Economic Cooperation and Development. “Guidelines for the testing of chemicals/section 4: Health effects test no. 423: Acute oral toxicity - Acute toxic class method,” Paris, France; 2002. Organization for Economic Cooperation and Development. “Guidelines for the testing of chemicals/section 4: Health effects test no. 423: Acute oral toxicity - Acute toxic class method,” Paris, France; 2002.
26.
go back to reference Kuete V. Potential of Cameroonian plants and derived products against microbial infections: a review. Planta Med. 2010;76:1479–91.CrossRefPubMed Kuete V. Potential of Cameroonian plants and derived products against microbial infections: a review. Planta Med. 2010;76:1479–91.CrossRefPubMed
27.
go back to reference Olson H, Betton G, Robinson D, Thomas K, Monro A, Kolaja G, et al. Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul Toxicol Pharmacol. 2000;32:56–67.CrossRefPubMed Olson H, Betton G, Robinson D, Thomas K, Monro A, Kolaja G, et al. Concordance of the toxicity of pharmaceuticals in humans and in animals. Regul Toxicol Pharmacol. 2000;32:56–67.CrossRefPubMed
28.
go back to reference Dong M, He X, Rui HL. Phytochemicals of black bean seed coats: isolation, structure elucidation, and their antiproliferative and antioxidative activities. J Agric Food Chem. 2007;55:6044–51.CrossRefPubMed Dong M, He X, Rui HL. Phytochemicals of black bean seed coats: isolation, structure elucidation, and their antiproliferative and antioxidative activities. J Agric Food Chem. 2007;55:6044–51.CrossRefPubMed
29.
30.
go back to reference Jain AK, Tiwari P. Nutritional value of some traditional edible plants used by tribal communities during emergency with reference to Central India. Indian J Trad Knowl. 2012;11:51–7. Jain AK, Tiwari P. Nutritional value of some traditional edible plants used by tribal communities during emergency with reference to Central India. Indian J Trad Knowl. 2012;11:51–7.
31.
go back to reference Eloff JN, McGaw LJ. Using African plant biodiversity to combat microbial infections. In Novel Plant Bioresources: Applications in food medicine and cosmetics. Edited by Gurib-Fakim A. Ltd: John Wiley and Sons; 2014. 163-173. doi: 10.1002/9781118460566.ch12. Eloff JN, McGaw LJ. Using African plant biodiversity to combat microbial infections. In Novel Plant Bioresources: Applications in food medicine and cosmetics. Edited by Gurib-Fakim A. Ltd: John Wiley and Sons; 2014. 163-173. doi: 10.​1002/​9781118460566.​ch12.
32.
go back to reference Özçelik B, Orhan DD, Özgen S, Ergun F. Antimicrobial activity of flavonoids against extended-spectrum β-lactamase (ESβL)-producing Klebsiella pneumoniae. Trop J Pharm Res. 2008;7:1151–7.CrossRef Özçelik B, Orhan DD, Özgen S, Ergun F. Antimicrobial activity of flavonoids against extended-spectrum β-lactamase (ESβL)-producing Klebsiella pneumoniae. Trop J Pharm Res. 2008;7:1151–7.CrossRef
33.
go back to reference Chen WH, Liu WJ, Wang Y, Song XP, Chen GY. A new naphthoquinone and other antibacterial constituents from the roots of Xanthium sibiricum. Nat Prod Res. 2015;29:739–44.CrossRefPubMed Chen WH, Liu WJ, Wang Y, Song XP, Chen GY. A new naphthoquinone and other antibacterial constituents from the roots of Xanthium sibiricum. Nat Prod Res. 2015;29:739–44.CrossRefPubMed
34.
go back to reference Ferreira Mdo P, Cardoso MF, da Silva FC, Ferreira VF, Lima ES, Souza JV. Antifungal activity of synthetic naphthoquinones against dermatophytes and opportunistic fungi: preliminary mechanism-of-action tests. Ann Clin Microbiol Antimicrob. 2014;13:26.CrossRefPubMed Ferreira Mdo P, Cardoso MF, da Silva FC, Ferreira VF, Lima ES, Souza JV. Antifungal activity of synthetic naphthoquinones against dermatophytes and opportunistic fungi: preliminary mechanism-of-action tests. Ann Clin Microbiol Antimicrob. 2014;13:26.CrossRefPubMed
35.
go back to reference Mandal S, Patra A, Samanta A, Roy S, Mandal A, Das Mahapatra T, et al. Analysis of phytochemical profile of Terminalia arjuna bark extract with antioxidative and antimicrobial properties. Asian Pac J Trop Biomed. 2013;3:960–6.CrossRefPubMedPubMedCentral Mandal S, Patra A, Samanta A, Roy S, Mandal A, Das Mahapatra T, et al. Analysis of phytochemical profile of Terminalia arjuna bark extract with antioxidative and antimicrobial properties. Asian Pac J Trop Biomed. 2013;3:960–6.CrossRefPubMedPubMedCentral
36.
go back to reference Cushnie TP, Lamb AJ. Antimicrobial activity of flavonoids. Int J Antimicrob Ag. 2005;26:343–56.CrossRef Cushnie TP, Lamb AJ. Antimicrobial activity of flavonoids. Int J Antimicrob Ag. 2005;26:343–56.CrossRef
37.
go back to reference Tandon VK, Yadav DB, Singh RV, Vaish M, Chaturvedi AK, Shukla PK. Synthesis and biological evaluation of novel 1,4-naphtoquinones derivatives as antibacterial and antiviral agents. Bioorg Med Chem Lett. 2005;15:3463–6.CrossRefPubMed Tandon VK, Yadav DB, Singh RV, Vaish M, Chaturvedi AK, Shukla PK. Synthesis and biological evaluation of novel 1,4-naphtoquinones derivatives as antibacterial and antiviral agents. Bioorg Med Chem Lett. 2005;15:3463–6.CrossRefPubMed
38.
go back to reference Mann A, Ibrahim K, Oyewale AO, Amupitan JO, Fatope MO, Okogun JI. Isolation and elucidation of three triterpenoids and its antimycobacterial activty of Terminalia Avicennioides. Am J Org Chem. 2012;2:14–20.CrossRef Mann A, Ibrahim K, Oyewale AO, Amupitan JO, Fatope MO, Okogun JI. Isolation and elucidation of three triterpenoids and its antimycobacterial activty of Terminalia Avicennioides. Am J Org Chem. 2012;2:14–20.CrossRef
39.
go back to reference Nitiema LW, Savadogo A, Simpore J, Dianou D, Traore AS. In vitro antimicrobial activity of some phenolic compounds (coumarin and quercetin) against gastroenteritis bacterial strains. Int J Microbiol Res. 2012;3:183–7. Nitiema LW, Savadogo A, Simpore J, Dianou D, Traore AS. In vitro antimicrobial activity of some phenolic compounds (coumarin and quercetin) against gastroenteritis bacterial strains. Int J Microbiol Res. 2012;3:183–7.
40.
go back to reference Basile A, Sorbo S, Spadaro V, Bruno M, Maggio A, Faraone N, et al. Antimicrobial and antioxidant activities of coumarins from the roots of Ferulago campestris (Apiaceae). Molecules. 2009;14:939–52.CrossRefPubMed Basile A, Sorbo S, Spadaro V, Bruno M, Maggio A, Faraone N, et al. Antimicrobial and antioxidant activities of coumarins from the roots of Ferulago campestris (Apiaceae). Molecules. 2009;14:939–52.CrossRefPubMed
41.
go back to reference Obasi Nnamdi L, Egbuonu ACC, Ukoha PO, Ejikeme PM. Comparative phytochemical and antimicrobial screening of some solvent extracts of Samanea saman (fabaceae or mimosaceae) pods. Afr J Pure Appl Chem. 2010;4:206–12. Obasi Nnamdi L, Egbuonu ACC, Ukoha PO, Ejikeme PM. Comparative phytochemical and antimicrobial screening of some solvent extracts of Samanea saman (fabaceae or mimosaceae) pods. Afr J Pure Appl Chem. 2010;4:206–12.
42.
go back to reference Goh SH, Yusoff F, Loh SP. A comparison of the antioxidant properties and total phenolic content in a Diatom, Chaetoceros sp. and a Green Microalga, Nannochloropsis sp. J Agric Sci. 2010;2:123–30. Goh SH, Yusoff F, Loh SP. A comparison of the antioxidant properties and total phenolic content in a Diatom, Chaetoceros sp. and a Green Microalga, Nannochloropsis sp. J Agric Sci. 2010;2:123–30.
43.
go back to reference Pereira DM, Valentão P, Pereira JA, Andrade PB. Phenolics: from chemistry to biology. Molecules. 2009;14:2202–11.CrossRef Pereira DM, Valentão P, Pereira JA, Andrade PB. Phenolics: from chemistry to biology. Molecules. 2009;14:2202–11.CrossRef
44.
go back to reference Zhang SJ, Lin YM, Zhou HC, Wei SD, Lin GH, Ye GF. Antioxidant tannins from stem bark and fine root of Casuarina equisetifolia. Molecules. 2010;15:5658–70.CrossRefPubMed Zhang SJ, Lin YM, Zhou HC, Wei SD, Lin GH, Ye GF. Antioxidant tannins from stem bark and fine root of Casuarina equisetifolia. Molecules. 2010;15:5658–70.CrossRefPubMed
46.
go back to reference Raza M, Al-Shabanath OA, El-Hadiyah TM, Al-Majed AA. Effect of prolonged vigabatrin treatment on hematological and biochemical parameters in plasma, liver and kidney of Swiss albino mice. Sci Pharm. 2002;70:135–45. Raza M, Al-Shabanath OA, El-Hadiyah TM, Al-Majed AA. Effect of prolonged vigabatrin treatment on hematological and biochemical parameters in plasma, liver and kidney of Swiss albino mice. Sci Pharm. 2002;70:135–45.
47.
go back to reference Teo S, Strlig D, Thomas S, Hoberman A, Kiorpes A, Khetani V. A 90-days oral gavage toxicity study of D-methylphenidate and D, L-methylphenidate in sprague-dawley rats. Toxicology. 2002;79:183–96.CrossRef Teo S, Strlig D, Thomas S, Hoberman A, Kiorpes A, Khetani V. A 90-days oral gavage toxicity study of D-methylphenidate and D, L-methylphenidate in sprague-dawley rats. Toxicology. 2002;79:183–96.CrossRef
48.
go back to reference Ashafa AOT, Yakubu MT, Grierson DS, Afolayan AJ. Effects of aqueous leaf extract from the leaves of Chrysocoma ciliate L. on some biochemical parameters of Wistar rats. Afr J Biotechnol. 2009;8:1425–30. Ashafa AOT, Yakubu MT, Grierson DS, Afolayan AJ. Effects of aqueous leaf extract from the leaves of Chrysocoma ciliate L. on some biochemical parameters of Wistar rats. Afr J Biotechnol. 2009;8:1425–30.
50.
go back to reference Pillaia PG, Suresha P, Gitanjali M, Annapurna M. Evaluation of the acute and sub-acute toxicity of the methanolic leaf extract of Plectranthus amboinicus (Lour) spreng in balb C mice. Eur J Exp Biol. 2011;1:236–45. Pillaia PG, Suresha P, Gitanjali M, Annapurna M. Evaluation of the acute and sub-acute toxicity of the methanolic leaf extract of Plectranthus amboinicus (Lour) spreng in balb C mice. Eur J Exp Biol. 2011;1:236–45.
51.
go back to reference Akah PA, Osigwe CC, Nworu CS. Reversal of coumarin-induced toxicity by the extracts and fractions of Ageratum conyzoides. Asian J Med Sci. 2010;2:121–6. Akah PA, Osigwe CC, Nworu CS. Reversal of coumarin-induced toxicity by the extracts and fractions of Ageratum conyzoides. Asian J Med Sci. 2010;2:121–6.
52.
go back to reference FAO. Pesticide Residues in Food 1992 - Report, FAO Plant Production and Protection. Rome: FAO; 1992. p. 63. Paper No. 116. FAO. Pesticide Residues in Food 1992 - Report, FAO Plant Production and Protection. Rome: FAO; 1992. p. 63. Paper No. 116.
Metadata
Title
Antimicrobial, antioxidant, toxicity and phytochemical assessment of extracts from Acmella uliginosa, a leafy-vegetable consumed in Bénin, West Africa
Authors
Latifou Lagnika
Abdou Madjid O. Amoussa
Rafatou A. A. Adjileye
Anatole Laleye
Ambaliou Sanni
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2016
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-016-1014-3

Other articles of this Issue 1/2016

BMC Complementary Medicine and Therapies 1/2016 Go to the issue