Skip to main content
Top
Published in: Chinese Medicine 1/2015

Open Access 01-12-2015 | Research

Antifungal mode of action of macrocarpal C extracted from Eucalyptus globulus Labill (Lan An) towards the dermatophyte Trichophyton mentagrophytes

Authors: Jack Ho Wong, Kit-Man Lau, Yu-On Wu, Ling Cheng, Chun-Wai Wong, David Tai-Wai Yew, Ping-Chung Leung, Kwok-Pui Fung, Mamie Hui, Tzi-Bun Ng, Clara Bik-San Lau

Published in: Chinese Medicine | Issue 1/2015

Login to get access

Abstract

Background

The fresh leaves of Eucalyptus globulus Labill. (Lan An) have been used in Chinese medicine for many years to treat dermatomycosis. Macrocarpal C was isolated from this herb and identified as its major antifungal component by bioassay-guided purification. This study aims to investigate the antifungal activity of macrocarpal C against Trichophyton mentagrophytes, which can cause tinea pedis.

Methods

Fresh leaves of E. globulus were extracted with 95 % ethanol, and the resulting ethanolic extracts were dried before being partitioned with n-hexane. The n-hexane layer was then subjected to chromatographic purification to give macrocarpal C. The antifungal minimum inhibitory concentration (MIC) of macrocarpal C was determined using the standard M38-A2 method described by the Clinical Laboratory Standards Institute (CLSI). The mode of action of macrocarpal C was elucidated using three in vitro assays, including (1) a fungal membrane permeability test using SYTOX® Green; (2) a reactive oxygen species (ROS) production test using 5-(and-6)-carboxy-2′,7′-dihydrodichlorofluorescein diacetate as a cell-permeable fluorogenic probe; and (3) a DNA fragmentation test based on terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) detection. Terbinafine hydrochloride and nystatin were used as positive controls.

Results

The suppression in the growth of T. mentagrophytes following its treatment with macrocarpal C was associated with an increase in the permeability of the fungal membrane (P = 0.0043 when compared to control); an increase in the production of intracellular ROS (P = 0.0063); and the induction of apoptosis as a consequence of DNA fragmentation (P = 0.0007).

Conclusion

This study demonstrated that the antifungal action of macrocarpal C was associated with increases of membrane permeability, intracellular ROS and DNA fragmentation.
Literature
1.
go back to reference Budak A, Bogusz B, Tokarczyk M, Trojanowska D. Dermatophytes isolated from superficial fungal infections in Krakow, Poland, between 1995 and 2010. Mycoses. 2013;56:422–8.CrossRefPubMed Budak A, Bogusz B, Tokarczyk M, Trojanowska D. Dermatophytes isolated from superficial fungal infections in Krakow, Poland, between 1995 and 2010. Mycoses. 2013;56:422–8.CrossRefPubMed
2.
go back to reference Cheng S, Chong L. A prospective epidemiological study on tinea pedis and onychomycosis in Hong Kong. Chin Med J (Engl). 2002;115:860–5. Cheng S, Chong L. A prospective epidemiological study on tinea pedis and onychomycosis in Hong Kong. Chin Med J (Engl). 2002;115:860–5.
3.
go back to reference Bae JM, Ha B, Lee H, Park CK, Kim HJ, Park YM. Prevalence of common skin diseases and their associated factors among military personnel in Korea: a cross-sectional study. J Korean Med Sci. 2012;27:1248–54.PubMedCentralCrossRefPubMed Bae JM, Ha B, Lee H, Park CK, Kim HJ, Park YM. Prevalence of common skin diseases and their associated factors among military personnel in Korea: a cross-sectional study. J Korean Med Sci. 2012;27:1248–54.PubMedCentralCrossRefPubMed
4.
go back to reference Pichardo-Geisinger R, Muñoz-Ali D, Arcury TA, Blocker JN, Grzywacz JG, Mora DC, Chen H, Schulz MR, Feldman SR, Quandt SA. Dermatologist-diagnosed skin diseases among immigrant Latino poultry processors and other manual workers in North Carolina, USA. Int J Dermatol. 2013;52:1342–8.CrossRefPubMed Pichardo-Geisinger R, Muñoz-Ali D, Arcury TA, Blocker JN, Grzywacz JG, Mora DC, Chen H, Schulz MR, Feldman SR, Quandt SA. Dermatologist-diagnosed skin diseases among immigrant Latino poultry processors and other manual workers in North Carolina, USA. Int J Dermatol. 2013;52:1342–8.CrossRefPubMed
5.
go back to reference Kaštelan M, Utješinović-Gudelj V, Prpić-Massari L, Brajac I. Dermatophyte infections in Primorsko-Goranska County, Croatia: a 21-year survey. Acta Dermatovenerol Croat. 2014;22:175–9.PubMed Kaštelan M, Utješinović-Gudelj V, Prpić-Massari L, Brajac I. Dermatophyte infections in Primorsko-Goranska County, Croatia: a 21-year survey. Acta Dermatovenerol Croat. 2014;22:175–9.PubMed
6.
go back to reference Chan MK, Chong LY. Achilles Project Working Group in Hong Kong. A prospective epidemiologic survey on the prevalence of foot disease in Hong Kong. J Am Podiatr Med Assoc. 2002;92:450–6.CrossRefPubMed Chan MK, Chong LY. Achilles Project Working Group in Hong Kong. A prospective epidemiologic survey on the prevalence of foot disease in Hong Kong. J Am Podiatr Med Assoc. 2002;92:450–6.CrossRefPubMed
7.
go back to reference Ajit C, Suvannasankha A, Zaeri N, Munoz SJ. Terbinafine-associated hepatotoxicity. Am J Chin Med. 2003;325:292–5. Ajit C, Suvannasankha A, Zaeri N, Munoz SJ. Terbinafine-associated hepatotoxicity. Am J Chin Med. 2003;325:292–5.
8.
go back to reference Osborne CS, Leitner I, Hofbauer B, Fielding CA, Favre B, Ryder NS. Biological, biochemical, and molecular characterization of a new clinical Trichophyton rubrum isolate resistant to terbinafine. Antimicrob Agents Chemother. 2006;50:2234–6.PubMedCentralCrossRefPubMed Osborne CS, Leitner I, Hofbauer B, Fielding CA, Favre B, Ryder NS. Biological, biochemical, and molecular characterization of a new clinical Trichophyton rubrum isolate resistant to terbinafine. Antimicrob Agents Chemother. 2006;50:2234–6.PubMedCentralCrossRefPubMed
9.
go back to reference Hryncewicz-Gwóźdź A, Kalinowska K, Plomer-Niezgoda E, Bielecki J, Jagielski T. Increase in resistance to fluconazole and itraconazole in Trichophyton rubrum clinical isolates by sequential passages in vitro under drug pressure. Mycopathologia. 2013;176:49–55.CrossRefPubMed Hryncewicz-Gwóźdź A, Kalinowska K, Plomer-Niezgoda E, Bielecki J, Jagielski T. Increase in resistance to fluconazole and itraconazole in Trichophyton rubrum clinical isolates by sequential passages in vitro under drug pressure. Mycopathologia. 2013;176:49–55.CrossRefPubMed
10.
go back to reference Lau KM, Fu LH, Cheng L, Wong CW, Wong YL, Lau CP, Han SQB, Chan PKS, Fung KP, Lau CBS, Hui M, Leung PC. Two antifungal components isolated from Fructus Psoraleae and Folium Eucalypti Globuli by bioassay-guided purification. Am J Chin Med. 2010;38:1005–14.CrossRefPubMed Lau KM, Fu LH, Cheng L, Wong CW, Wong YL, Lau CP, Han SQB, Chan PKS, Fung KP, Lau CBS, Hui M, Leung PC. Two antifungal components isolated from Fructus Psoraleae and Folium Eucalypti Globuli by bioassay-guided purification. Am J Chin Med. 2010;38:1005–14.CrossRefPubMed
11.
go back to reference Anonymous. Eucalyptus globulus Labill. In: Chen J, editor. Flora Reipublicae Popularis Sinicae, vol. 53, issue 1. Beijing: Science Press; 1984. p. 47. Anonymous. Eucalyptus globulus Labill. In: Chen J, editor. Flora Reipublicae Popularis Sinicae, vol. 53, issue 1. Beijing: Science Press; 1984. p. 47.
12.
go back to reference CLSI: Reference method for broth dilution antifungal susceptibility testing of filamentous fungi; approved standard—second edition. CLSI document M38-A2. Wayne, PA: Clinical and Laboratory Standards Institute, 2008. CLSI: Reference method for broth dilution antifungal susceptibility testing of filamentous fungi; approved standard—second edition. CLSI document M38-A2. Wayne, PA: Clinical and Laboratory Standards Institute, 2008.
13.
go back to reference Wong JH, Ng TB, Legowska A, Rolka K, Hui M, Cho CH. Antifungal action of human cathelicidin fragment (LL13-37) on Candida albicans. Peptides. 2011;32:1996–2002.CrossRefPubMed Wong JH, Ng TB, Legowska A, Rolka K, Hui M, Cho CH. Antifungal action of human cathelicidin fragment (LL13-37) on Candida albicans. Peptides. 2011;32:1996–2002.CrossRefPubMed
14.
go back to reference Shirtliff ME, Krom BP, Meijering RA, Peters BM, Zhu J, Scheper MA, Harris ML, Jabra-Rizk MA. Farnesol-induced apoptosis in Candida albicans. Antimicrob Agents Chemother. 2009;53:2392–401.PubMedCentralCrossRefPubMed Shirtliff ME, Krom BP, Meijering RA, Peters BM, Zhu J, Scheper MA, Harris ML, Jabra-Rizk MA. Farnesol-induced apoptosis in Candida albicans. Antimicrob Agents Chemother. 2009;53:2392–401.PubMedCentralCrossRefPubMed
15.
go back to reference Takahashi T, Kokubo R, Sakaino M. Antimicrobial activities of eucalyptus leaf extracts and flavonoids from Eucalyptus maculate. Lett Appl Microbiol. 2004;39:60–4.CrossRefPubMed Takahashi T, Kokubo R, Sakaino M. Antimicrobial activities of eucalyptus leaf extracts and flavonoids from Eucalyptus maculate. Lett Appl Microbiol. 2004;39:60–4.CrossRefPubMed
16.
go back to reference Baltazar Lde M, Soares BM, Carneiro HC, Avila TV, Gouveia LF, Souza DG, Ferreira MV, Pinotti M, Santos Dde A, Cisalpino PS. Photodynamic inhibition of Trichophyton rubrum: in vitro activity and the role of oxidative and nitrosative bursts in fungal death. J Antimicrob Chemother. 2013;68:354–61.CrossRefPubMed Baltazar Lde M, Soares BM, Carneiro HC, Avila TV, Gouveia LF, Souza DG, Ferreira MV, Pinotti M, Santos Dde A, Cisalpino PS. Photodynamic inhibition of Trichophyton rubrum: in vitro activity and the role of oxidative and nitrosative bursts in fungal death. J Antimicrob Chemother. 2013;68:354–61.CrossRefPubMed
17.
go back to reference Scott EM, Gorman SP, Millership JS, Wright LR. Effect of miconazole and clotrimazole on K+ release and inhibition of ergosterol biosynthesis in Trichophyton mentagrophytes and related ultrastructural observations. J Antimicrob Chemother. 1986;17:423–32.CrossRefPubMed Scott EM, Gorman SP, Millership JS, Wright LR. Effect of miconazole and clotrimazole on K+ release and inhibition of ergosterol biosynthesis in Trichophyton mentagrophytes and related ultrastructural observations. J Antimicrob Chemother. 1986;17:423–32.CrossRefPubMed
18.
go back to reference Geria AN, Scheinfeld NS. Pramiconazole, a triazole compound for the treatment of fungal infections. IDrugs. 2008;11:661–70.PubMed Geria AN, Scheinfeld NS. Pramiconazole, a triazole compound for the treatment of fungal infections. IDrugs. 2008;11:661–70.PubMed
19.
go back to reference Culakova H, Dzugasova V, Gbelska Y, Subik J. CTBT (7-chlorotetrazolo[5,1-c]benzo[1, 2, 4]triazine) producing ROS affects growth and viability of filamentous fungi. FEMS Microbiol Lett. 2012;328:138–43.CrossRefPubMed Culakova H, Dzugasova V, Gbelska Y, Subik J. CTBT (7-chlorotetrazolo[5,1-c]benzo[1, 2, 4]triazine) producing ROS affects growth and viability of filamentous fungi. FEMS Microbiol Lett. 2012;328:138–43.CrossRefPubMed
20.
go back to reference Patra P, Mitra S, Debnath N, Goswami A. Biochemical-, biophysical-, and microarray-based antifungal evaluation of the buffer-mediated synthesized nano zinc oxide: an in vivo and in vitro toxicity study. Langmuir. 2012;28:16966–78.CrossRefPubMed Patra P, Mitra S, Debnath N, Goswami A. Biochemical-, biophysical-, and microarray-based antifungal evaluation of the buffer-mediated synthesized nano zinc oxide: an in vivo and in vitro toxicity study. Langmuir. 2012;28:16966–78.CrossRefPubMed
Metadata
Title
Antifungal mode of action of macrocarpal C extracted from Eucalyptus globulus Labill (Lan An) towards the dermatophyte Trichophyton mentagrophytes
Authors
Jack Ho Wong
Kit-Man Lau
Yu-On Wu
Ling Cheng
Chun-Wai Wong
David Tai-Wai Yew
Ping-Chung Leung
Kwok-Pui Fung
Mamie Hui
Tzi-Bun Ng
Clara Bik-San Lau
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Chinese Medicine / Issue 1/2015
Electronic ISSN: 1749-8546
DOI
https://doi.org/10.1186/s13020-015-0068-3

Other articles of this Issue 1/2015

Chinese Medicine 1/2015 Go to the issue