Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2021

Open Access 01-12-2021 | Research article

Antifungal and anti-biofilm activity of a new Spanish extract of propolis against Candida glabrata

Authors: María Coronada Fernández-Calderón, Laura Hernández-González, Carolina Gómez-Navia, María Teresa Blanco-Blanco, Rosa Sánchez-Silos, Leopoldo Lucio, Ciro Pérez-Giraldo

Published in: BMC Complementary Medicine and Therapies | Issue 1/2021

Login to get access

Abstract

Background

Resistance to traditional antifungal agents is a considerable health problem nowadays, aggravated by infectious processes related to biofilm formation, usually on implantable devices. Therefore, it is necessary to identify new antimicrobial molecules, such as natural products, to develop new therapeutic strategies to prevent and eradicate these infections. One promising product is propolis, a natural resin produced by honeybees with substances from various botanical sources, beeswax and salivary enzymes. The aim of this work was to study the effect of a new Spanish ethanolic extract of propolis (SEEP) on growth, cell surface hydrophobicity, adherence and biofilm formation of Candida glabrata, a yeast capable of achieving high levels of resistance to available anti-fungal agents.

Methods

The antifungal activity of SEEP was evaluated in the planktonic cells of 12 clinical isolates of C. glabrata. The minimum inhibitory concentration (MIC) of propolis was determined by quantifying visible growth inhibition by serial plate dilutions. The minimum fungicide concentration (MFC) was evaluated as the lowest concentration of propolis that produced a 95% decrease in cfu/mL, and is presented as MFC50 and MFC90, which corresponds to the minimum concentrations at which 50 and 90% of the C. glabrata isolates were inhibited, respectively. Influence on cell surface hydrophobicity (CSH) was determined by the method of microbial adhesion to hydrocarbons (MATH). The propolis effect on adhesion and biofilm formation was determined in microtiter plates by measurement of optical density (OD) and metabolic activity (XTT-assay) in the presence of sub-MIC concentrations of SEEP.

Results

SEEP had antifungal capacity against C. glabrata isolates, with a MIC50 of 0.2% (v/v) and an MFC50 of 0.4%, even in azole-resistant strains. SEEP did not have a clear effect on surface hydrophobicity and adhesion, but an inhibitory effect on biofilm formation was observed at subinhibitory concentrations (0.1 and 0.05%) with a significant decrease in biofilm metabolism.

Conclusions

The novel Spanish ethanolic extract of propolis shows antifungal activity against C. glabrata, and decreases biofilm formation. These results suggest its possible use in the control of fungal infections associated with biofilms.
Literature
1.
go back to reference Álvez F, Figueras C, Roselló E. Infecciones fúngicas invasivas emergentes. Anales españoles de pediatría. 2010;73(1):52.CrossRef Álvez F, Figueras C, Roselló E. Infecciones fúngicas invasivas emergentes. Anales españoles de pediatría. 2010;73(1):52.CrossRef
3.
go back to reference Schell WA, Jones AM, Borroto-Esoda K,Alexander BD. 2017. Antifungal activity of SCY-078 and standard antifungal agents against 178 clinical isolates of resistant and susceptible Candida species. Antimicrob Agents Chemother. 61:e01102–17. https://doi.org/10.1128/AAC.01102-17. Schell WA, Jones AM, Borroto-Esoda K,Alexander BD. 2017. Antifungal activity of SCY-078 and standard antifungal agents against 178 clinical isolates of resistant and susceptible Candida species. Antimicrob Agents Chemother. 61:e01102–17. https://​doi.​org/​10.​1128/​AAC.​01102-17.
4.
go back to reference Vale-Silva LA, Sanglard D. Tipping the balance both ways: drug resistance and virulence in Candida glabrata. FEMS Yeast Res. 2015;15(4):fov025.CrossRef Vale-Silva LA, Sanglard D. Tipping the balance both ways: drug resistance and virulence in Candida glabrata. FEMS Yeast Res. 2015;15(4):fov025.CrossRef
5.
go back to reference Diaz MC, Camponovo R, Araya I, Cerda A, Santander MP, Carrillo-Muñoz AJ. Identification and in vitro antifungal susceptibility of vaginal Candida spp. isolates to fluconazole, clotrimazole and nystatin. Rev Esp Quimioter. 2016;29(3):151–4.PubMed Diaz MC, Camponovo R, Araya I, Cerda A, Santander MP, Carrillo-Muñoz AJ. Identification and in vitro antifungal susceptibility of vaginal Candida spp. isolates to fluconazole, clotrimazole and nystatin. Rev Esp Quimioter. 2016;29(3):151–4.PubMed
14.
go back to reference Crane E. In: Mizrahi A, Lensky Y, editors. The Past and Present Importance of Bee Products to Man, in Bee Products: Properties, Applications, and Apitherapy. Boston: Springer US; 1997. p. 1–13. Crane E. In: Mizrahi A, Lensky Y, editors. The Past and Present Importance of Bee Products to Man, in Bee Products: Properties, Applications, and Apitherapy. Boston: Springer US; 1997. p. 1–13.
16.
go back to reference Boisard S, et al. Antifungal and antibacterial metabolites from a French poplar type propolis. Evid Based Complement Alternat Med. 2015;2015:319240.CrossRef Boisard S, et al. Antifungal and antibacterial metabolites from a French poplar type propolis. Evid Based Complement Alternat Med. 2015;2015:319240.CrossRef
21.
go back to reference Szweda P, Gucwa K, Kurzyk E, Romanowska E, Dzierżanowska-Fangrat K, Zielińska Jurek A, et al. Essential oils, silver nanoparticles and Propolis as alternative agents against fluconazole resistant Candida albicans, Candida glabrata and Candida krusei clinical isolates. Indian J Microbiol. 2015;55(2):175–83. https://doi.org/10.1007/s12088-014-0508-2.CrossRefPubMed Szweda P, Gucwa K, Kurzyk E, Romanowska E, Dzierżanowska-Fangrat K, Zielińska Jurek A, et al. Essential oils, silver nanoparticles and Propolis as alternative agents against fluconazole resistant Candida albicans, Candida glabrata and Candida krusei clinical isolates. Indian J Microbiol. 2015;55(2):175–83. https://​doi.​org/​10.​1007/​s12088-014-0508-2.CrossRefPubMed
22.
go back to reference Fernández-Calderón MC, Navarro-Pérez ML, Blanco-Roca MT, Gómez-Navia C, Pérez-Giraldo C, Vadillo-Rodríguez V. Chemical Profile and Antibacterial Activity of a Novel Spanish Propolis with New Polyphenols also Found in Olive Oil and High Amounts of Flavonoids. Molecules. 2020;25(15):3318; https://doi.org/10.3390/molecules25153318. Fernández-Calderón MC, Navarro-Pérez ML, Blanco-Roca MT, Gómez-Navia C, Pérez-Giraldo C, Vadillo-Rodríguez V. Chemical Profile and Antibacterial Activity of a Novel Spanish Propolis with New Polyphenols also Found in Olive Oil and High Amounts of Flavonoids. Molecules. 2020;25(15):3318; https://​doi.​org/​10.​3390/​molecules2515331​8.
25.
go back to reference CLSI. Reference method for broth dilution antifungal susceptibility testing of yeasts – fourth edition. CLSI document M27-A4. Wayne: Clinical and Laboratory Standards Institute; 2017. CLSI. Reference method for broth dilution antifungal susceptibility testing of yeasts – fourth edition. CLSI document M27-A4. Wayne: Clinical and Laboratory Standards Institute; 2017.
27.
go back to reference Blanco MT, Falcón MA, Chordi A. Interaction established between Staphylococcus aureus and Pseudomonas aeruginosa when they are cultivated together in a semi-synthetic medium. Microbiol Esp. 1982;35:33–41.PubMed Blanco MT, Falcón MA, Chordi A. Interaction established between Staphylococcus aureus and Pseudomonas aeruginosa when they are cultivated together in a semi-synthetic medium. Microbiol Esp. 1982;35:33–41.PubMed
28.
go back to reference Molina MR, Rodríguez AC. Determinación de la curva de crecimiento microbiano Saccharomyces Boulardii en Tunta variedades Chaska y Negra; 2019. Molina MR, Rodríguez AC. Determinación de la curva de crecimiento microbiano Saccharomyces Boulardii en Tunta variedades Chaska y Negra; 2019.
31.
go back to reference Galán-Ladero MA, Blanco-Blanco MT, Hurtado C, Pérez-Giraldo C, Blanco MT, Gómez-García AC. Determination of biofilm production by Candida tropicalis isolated from hospitalized patients and its relation to cellular surface hydrophobicity, plastic adherence and filamentation ability. Yeast. 2013;30(9):331–9. https://doi.org/10.1002/yea.2965.CrossRefPubMed Galán-Ladero MA, Blanco-Blanco MT, Hurtado C, Pérez-Giraldo C, Blanco MT, Gómez-García AC. Determination of biofilm production by Candida tropicalis isolated from hospitalized patients and its relation to cellular surface hydrophobicity, plastic adherence and filamentation ability. Yeast. 2013;30(9):331–9. https://​doi.​org/​10.​1002/​yea.​2965.CrossRefPubMed
34.
go back to reference Biswas C, Chen SCA, Halliday C, Martinez E, Rockett RJ, Wang Q, et al. Whole Genome Sequencing of Candida glabrata for Detection of Markers of Antifungal Drug Resistance. J. Vis. Exp. 2017;(130):e56714, https://doi.org/10.3791/56714. Biswas C, Chen SCA, Halliday C, Martinez E, Rockett RJ, Wang Q, et al. Whole Genome Sequencing of Candida glabrata for Detection of Markers of Antifungal Drug Resistance. J. Vis. Exp. 2017;(130):e56714, https://​doi.​org/​10.​3791/​56714.
36.
go back to reference Castro Méndez C, Sánchez EG, Martín-Mazuelos E. Updating of in vitro antifungal susceptibility tests. Enferm Infecc Microbiol Clin. 2019;37(Suppl 1):32–9.CrossRef Castro Méndez C, Sánchez EG, Martín-Mazuelos E. Updating of in vitro antifungal susceptibility tests. Enferm Infecc Microbiol Clin. 2019;37(Suppl 1):32–9.CrossRef
46.
go back to reference das Neves MVM, et al. Isoflavone formononetin from red propolis acts as a fungicide against Candida sp. Brazil J Microbiol. 2016;47(1):159–66.CrossRef das Neves MVM, et al. Isoflavone formononetin from red propolis acts as a fungicide against Candida sp. Brazil J Microbiol. 2016;47(1):159–66.CrossRef
50.
go back to reference Shaik YB, Castellani ML, Perrella A, Conti F, Salini V, Tete S, et al. Role of quercetin (a natural herbal compound) in allergy and inflammation. J Biol Regul Homeost Agents. 2006;20(3–4):47–52.PubMed Shaik YB, Castellani ML, Perrella A, Conti F, Salini V, Tete S, et al. Role of quercetin (a natural herbal compound) in allergy and inflammation. J Biol Regul Homeost Agents. 2006;20(3–4):47–52.PubMed
51.
go back to reference Pippi B, Lana AJD, Moraes RC, Güez CM, Machado M, de Oliveira LFS, et al. In vitro evaluation of the acquisition of resistance, antifungal activity and synergism of Brazilian red propolis with antifungal drugs on Candida spp. J Appl Microbiol. 2015;118(4):839–50. https://doi.org/10.1111/jam.12746.CrossRefPubMed Pippi B, Lana AJD, Moraes RC, Güez CM, Machado M, de Oliveira LFS, et al. In vitro evaluation of the acquisition of resistance, antifungal activity and synergism of Brazilian red propolis with antifungal drugs on Candida spp. J Appl Microbiol. 2015;118(4):839–50. https://​doi.​org/​10.​1111/​jam.​12746.CrossRefPubMed
Metadata
Title
Antifungal and anti-biofilm activity of a new Spanish extract of propolis against Candida glabrata
Authors
María Coronada Fernández-Calderón
Laura Hernández-González
Carolina Gómez-Navia
María Teresa Blanco-Blanco
Rosa Sánchez-Silos
Leopoldo Lucio
Ciro Pérez-Giraldo
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2021
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-021-03323-0

Other articles of this Issue 1/2021

BMC Complementary Medicine and Therapies 1/2021 Go to the issue