Skip to main content
Top
Published in: Acta Neurologica Belgica 3/2020

01-06-2020 | Antiepileptic Drugs | Review article

Molecular insights into the role of AMPA receptors in the synaptic plasticity, pathogenesis and treatment of epilepsy: therapeutic potentials of perampanel and antisense oligonucleotide (ASO) technology

Authors: Saeid Charsouei, M. Reza Jabalameli, Amin Karimi-Moghadam

Published in: Acta Neurologica Belgica | Issue 3/2020

Login to get access

Abstract

Glutamate is considered as the predominant excitatory neurotransmitter in the mammalian central nervous systems (CNS). Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) are the main glutamate-gated ionotropic channels that mediate the majority of fast synaptic excitation in the brain. AMPARs are highly dynamic that constitutively move into and out of the postsynaptic membrane. Changes in the postsynaptic number of AMPARs play a key role in controlling synaptic plasticity and also brain functions such as memory formation and forgetting development. Impairments in the regulation of AMPAR function, trafficking, and signaling pathway may also contribute to neuronal hyperexcitability and epileptogenesis process, which offers AMPAR as a potential target for epilepsy therapy. Over the last decade, various types of AMPAR antagonists such as perampanel and talampanel have been developed to treat epilepsy, but they usually show limited efficacy at low doses and produce unwanted cognitive and motor side effects when administered at higher doses. In the present article, the latest findings in the field of molecular mechanisms controlling AMPAR biology, as well as the role of these mechanism dysfunctions in generating epilepsy will be reviewed. Also, a comprehensive summary of recent findings from clinical trials with perampanel, in treating epilepsy, glioma-associated epilepsy and Parkinson’s disease is provided. Finally, antisense oligonucleotide therapy as an alternative strategy for the efficient treatment of epilepsy is discussed.
Literature
1.
go back to reference Megiddo I, Colson A, Chisholm D, Dua T, Nandi A, Laxminarayan R (2016) Health and economic benefits of public financing of epilepsy treatment in India: an agent-based simulation model. Epilepsia 57(3):464–474PubMedPubMedCentralCrossRef Megiddo I, Colson A, Chisholm D, Dua T, Nandi A, Laxminarayan R (2016) Health and economic benefits of public financing of epilepsy treatment in India: an agent-based simulation model. Epilepsia 57(3):464–474PubMedPubMedCentralCrossRef
4.
go back to reference Koch U, Magnusson AK (2009) Unconventional GABA release: mechanisms and function. Curr Opin Neurobiol 19(3):305–310PubMedCrossRef Koch U, Magnusson AK (2009) Unconventional GABA release: mechanisms and function. Curr Opin Neurobiol 19(3):305–310PubMedCrossRef
5.
go back to reference Song I, Huganir RL (2002) Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci 25(11):578–588PubMedCrossRef Song I, Huganir RL (2002) Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci 25(11):578–588PubMedCrossRef
6.
go back to reference Ahmadian G, Ju W, Liu L et al (2004) Tyrosine phosphorylation of GluR2 is required for insulin-stimulated AMPA receptor endocytosis and LTD. EMBO J 23(5):1040–1050PubMedPubMedCentralCrossRef Ahmadian G, Ju W, Liu L et al (2004) Tyrosine phosphorylation of GluR2 is required for insulin-stimulated AMPA receptor endocytosis and LTD. EMBO J 23(5):1040–1050PubMedPubMedCentralCrossRef
7.
go back to reference Barria A, Muller D, Derkach V, Griffith LC, Soderling TR (1997) Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science 276(5321):2042–2045PubMedCrossRef Barria A, Muller D, Derkach V, Griffith LC, Soderling TR (1997) Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science 276(5321):2042–2045PubMedCrossRef
8.
go back to reference Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407):31–39PubMedCrossRef Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361(6407):31–39PubMedCrossRef
9.
go back to reference Szczurowska E, Mares P (2013) NMDA and AMPA receptors: development and status epilepticus. Physiol Res 62(suppl 1):S21–S38PubMedCrossRef Szczurowska E, Mares P (2013) NMDA and AMPA receptors: development and status epilepticus. Physiol Res 62(suppl 1):S21–S38PubMedCrossRef
10.
11.
12.
go back to reference Collingridge GL, Isaac JT, Wang YT (2004) Receptor trafficking and synaptic plasticity. Nat Rev Neurosci 5(12):952–962PubMedCrossRef Collingridge GL, Isaac JT, Wang YT (2004) Receptor trafficking and synaptic plasticity. Nat Rev Neurosci 5(12):952–962PubMedCrossRef
13.
go back to reference Lomeli H, Mosbacher J, Melcher T et al (1994) Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science 266(5191):1709–1713PubMedCrossRef Lomeli H, Mosbacher J, Melcher T et al (1994) Control of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science 266(5191):1709–1713PubMedCrossRef
14.
go back to reference Seeburg PH, Hartner J (2003) Regulation of ion channel/neurotransmitter receptor function by RNA editing. Curr Opin Neurobiol 13(3):279–283PubMedCrossRef Seeburg PH, Hartner J (2003) Regulation of ion channel/neurotransmitter receptor function by RNA editing. Curr Opin Neurobiol 13(3):279–283PubMedCrossRef
15.
go back to reference Sommer B, Keinanen K, Verdoorn TA et al (1990) Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS. Science 249(4976):1580–1585PubMedCrossRef Sommer B, Keinanen K, Verdoorn TA et al (1990) Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS. Science 249(4976):1580–1585PubMedCrossRef
16.
go back to reference Mosbacher J, Schöpfer R, Monyer H, Burnashev N, Seeburg PH, Ruppersberg JP (1994) A molecular determinant for submillisecond desensitization in glutamate receptors. Science 266(5187):1059–1062PubMedCrossRef Mosbacher J, Schöpfer R, Monyer H, Burnashev N, Seeburg PH, Ruppersberg JP (1994) A molecular determinant for submillisecond desensitization in glutamate receptors. Science 266(5187):1059–1062PubMedCrossRef
17.
go back to reference Greger IH, Watson JF, Cull-Candy SG (2017) Structural and functional architecture of AMPA-type glutamate receptors and their auxiliary proteins. Neuron 94(4):713–730PubMedCrossRef Greger IH, Watson JF, Cull-Candy SG (2017) Structural and functional architecture of AMPA-type glutamate receptors and their auxiliary proteins. Neuron 94(4):713–730PubMedCrossRef
18.
go back to reference Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51(1):7–62PubMed Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51(1):7–62PubMed
19.
go back to reference Casillas-Espinosa PM, Powell KL, O’Brien TJ (2012) Regulators of synaptic transmission: roles in the pathogenesis and treatment of epilepsy. Epilepsia 53(9):41–58PubMedCrossRef Casillas-Espinosa PM, Powell KL, O’Brien TJ (2012) Regulators of synaptic transmission: roles in the pathogenesis and treatment of epilepsy. Epilepsia 53(9):41–58PubMedCrossRef
20.
go back to reference Orlandi C, Barbon A, Barlati S (2012) Activity regulation of adenosine deaminases acting on RNA (ADARs). Mol Neurobiol 45(1):61–75PubMedCrossRef Orlandi C, Barbon A, Barlati S (2012) Activity regulation of adenosine deaminases acting on RNA (ADARs). Mol Neurobiol 45(1):61–75PubMedCrossRef
21.
go back to reference Hume RI, Dingledine R, Heinemann SF (1991) Identification of a site in glutamate receptor subunits that controls calcium permeability. Science 253(5023):1028–1031PubMedCrossRef Hume RI, Dingledine R, Heinemann SF (1991) Identification of a site in glutamate receptor subunits that controls calcium permeability. Science 253(5023):1028–1031PubMedCrossRef
22.
go back to reference Krampfl K, Schlesinger F, Zörner A, Kappler M, Dengler R, Bufler J (2002) Control of kinetic properties of GluR2 flop AMPA-type channels: impact of R/G nuclear editing. Eur J Neurosci 15(1):51–62PubMedCrossRef Krampfl K, Schlesinger F, Zörner A, Kappler M, Dengler R, Bufler J (2002) Control of kinetic properties of GluR2 flop AMPA-type channels: impact of R/G nuclear editing. Eur J Neurosci 15(1):51–62PubMedCrossRef
23.
24.
go back to reference Morris RG, Moser E, Riedel G et al (2003) Elements of a neurobiological theory of the hippocampus: the role of activity-dependent synaptic plasticity in memory. Philos Trans R Soc B 358(1432):773–786CrossRef Morris RG, Moser E, Riedel G et al (2003) Elements of a neurobiological theory of the hippocampus: the role of activity-dependent synaptic plasticity in memory. Philos Trans R Soc B 358(1432):773–786CrossRef
25.
26.
go back to reference Lüscher C, Malenka RC (2012) NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). CSH Perspect Biol 4(6):a005710 Lüscher C, Malenka RC (2012) NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). CSH Perspect Biol 4(6):a005710
27.
go back to reference Mayer ML, Westbrook GL, Guthrie PB (1984) Voltage-dependent block by Mg 2+ of NMDA responses in spinal cord neurones. Nature 309(5965):261–263PubMedCrossRef Mayer ML, Westbrook GL, Guthrie PB (1984) Voltage-dependent block by Mg 2+ of NMDA responses in spinal cord neurones. Nature 309(5965):261–263PubMedCrossRef
28.
go back to reference Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307(5950):462–465PubMedCrossRef Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307(5950):462–465PubMedCrossRef
29.
go back to reference Asrar S, Zhou Z, Ren W, Jia Z (2009) Ca2+ permeable AMPA receptor induced long-term potentiation requires PI3/MAP kinases but not Ca/CaM-dependent kinase II. PLoS ONE 4(2):e4339PubMedPubMedCentralCrossRef Asrar S, Zhou Z, Ren W, Jia Z (2009) Ca2+ permeable AMPA receptor induced long-term potentiation requires PI3/MAP kinases but not Ca/CaM-dependent kinase II. PLoS ONE 4(2):e4339PubMedPubMedCentralCrossRef
30.
go back to reference Fleming JJ, England PM (2010) AMPA receptors and synaptic plasticity: a chemist's perspective. Nat Chem Biol 6(2):89–97PubMedCrossRef Fleming JJ, England PM (2010) AMPA receptors and synaptic plasticity: a chemist's perspective. Nat Chem Biol 6(2):89–97PubMedCrossRef
31.
go back to reference Sweatt JD (2004) Mitogen-activated protein kinases in synaptic plasticity and memory. Curr Opin Neurobiol 14(3):311–317PubMedCrossRef Sweatt JD (2004) Mitogen-activated protein kinases in synaptic plasticity and memory. Curr Opin Neurobiol 14(3):311–317PubMedCrossRef
32.
go back to reference Thomas GM, Huganir RL (2004) MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosci 5(3):173–183PubMedCrossRef Thomas GM, Huganir RL (2004) MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosci 5(3):173–183PubMedCrossRef
33.
go back to reference Klann E (2002) Metaplastic protein phosphatases. Learn Memory 9(4):153–155CrossRef Klann E (2002) Metaplastic protein phosphatases. Learn Memory 9(4):153–155CrossRef
34.
go back to reference Wang JQ, Fibuch EE, Mao L (2007) Regulation of mitogen-activated protein kinases by glutamate receptors. J Neurochem 100(1):1–11PubMedCrossRef Wang JQ, Fibuch EE, Mao L (2007) Regulation of mitogen-activated protein kinases by glutamate receptors. J Neurochem 100(1):1–11PubMedCrossRef
36.
37.
38.
go back to reference Kapitein LC, Schlager MA, Kuijpers M et al (2010) Mixed microtubules steer dynein-driven cargo transport into dendrites. Curr Biol 20(4):290–299PubMedCrossRef Kapitein LC, Schlager MA, Kuijpers M et al (2010) Mixed microtubules steer dynein-driven cargo transport into dendrites. Curr Biol 20(4):290–299PubMedCrossRef
39.
go back to reference Perestenko PV, Henley JM (2003) Characterization of the intracellular transport of GluR1 and GluR2 α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunits in hippocampal neurons. J Biol Chem 278(44):43525–43532PubMedCrossRef Perestenko PV, Henley JM (2003) Characterization of the intracellular transport of GluR1 and GluR2 α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunits in hippocampal neurons. J Biol Chem 278(44):43525–43532PubMedCrossRef
40.
go back to reference Hayashi Y, Shi SH, Esteban JA, Piccini A, Poncer JC, Malinow R (2000) Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287(5461):2262–2267PubMedCrossRef Hayashi Y, Shi SH, Esteban JA, Piccini A, Poncer JC, Malinow R (2000) Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287(5461):2262–2267PubMedCrossRef
41.
go back to reference Shi SH, Hayashi Y, Esteban JA, Malinow R (2001) Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell 105(3):331–343PubMedCrossRef Shi SH, Hayashi Y, Esteban JA, Malinow R (2001) Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell 105(3):331–343PubMedCrossRef
42.
go back to reference Williams SL (2017) AMPA receptors in the development and treatment of epilepsy. UCL (University College London). Williams SL (2017) AMPA receptors in the development and treatment of epilepsy. UCL (University College London).
43.
go back to reference Lin DT, Makino Y, Sharma K et al (2009) Regulation of AMPA receptor extrasynaptic insertion by 4.1 N, phosphorylation and palmitoylation. Nat Neurosci 12(7):879–887PubMedPubMedCentralCrossRef Lin DT, Makino Y, Sharma K et al (2009) Regulation of AMPA receptor extrasynaptic insertion by 4.1 N, phosphorylation and palmitoylation. Nat Neurosci 12(7):879–887PubMedPubMedCentralCrossRef
44.
go back to reference Yang Y, Xb W, Frerking M, Zhou Q (2008) Delivery of AMPA receptors to perisynaptic sites precedes the full expression of long-term potentiation. Proc Natl Acad Sci USA 105(32):11388–11393PubMedPubMedCentralCrossRef Yang Y, Xb W, Frerking M, Zhou Q (2008) Delivery of AMPA receptors to perisynaptic sites precedes the full expression of long-term potentiation. Proc Natl Acad Sci USA 105(32):11388–11393PubMedPubMedCentralCrossRef
45.
46.
go back to reference Constals A, Penn AC, Compans B et al (2015) Glutamate-induced AMPA receptor desensitization increases their mobility and modulates short-term plasticity through unbinding from Stargazin. Neuron 85(4):787–803PubMedCrossRef Constals A, Penn AC, Compans B et al (2015) Glutamate-induced AMPA receptor desensitization increases their mobility and modulates short-term plasticity through unbinding from Stargazin. Neuron 85(4):787–803PubMedCrossRef
48.
go back to reference Beretta F, Sala C, Saglietti L, Hirling H, Sheng M, Passafaro M (2005) NSF interaction is important for direct insertion of GluR2 at synaptic sites. Mol Cell Neurosci 28(4):650–660PubMedCrossRef Beretta F, Sala C, Saglietti L, Hirling H, Sheng M, Passafaro M (2005) NSF interaction is important for direct insertion of GluR2 at synaptic sites. Mol Cell Neurosci 28(4):650–660PubMedCrossRef
49.
go back to reference Connor SA, Wang YT (2016) A place at the table: LTD as a mediator of memory genesis. Neurosci 22(4):359–371 Connor SA, Wang YT (2016) A place at the table: LTD as a mediator of memory genesis. Neurosci 22(4):359–371
50.
go back to reference Migues PV, Liu L, Archbold GE et al (2016) Blocking synaptic removal of GluA2-containing AMPA receptors prevents the natural forgetting of long-term memories. J Neurosci 36(12):3481–3494PubMedPubMedCentralCrossRef Migues PV, Liu L, Archbold GE et al (2016) Blocking synaptic removal of GluA2-containing AMPA receptors prevents the natural forgetting of long-term memories. J Neurosci 36(12):3481–3494PubMedPubMedCentralCrossRef
51.
go back to reference Collingridge GL, Peineau S, Howland JG, Wang YT (2010) Long-term depression in the CNS. Nat Rev Neurosci 11(7):459–473PubMedCrossRef Collingridge GL, Peineau S, Howland JG, Wang YT (2010) Long-term depression in the CNS. Nat Rev Neurosci 11(7):459–473PubMedCrossRef
52.
go back to reference Henley JM, Wilkinson KA (2013) AMPA receptor trafficking and the mechanisms underlying synaptic plasticity and cognitive aging. Dialogues Clin Neurosci 15(1):11–27PubMedPubMedCentralCrossRef Henley JM, Wilkinson KA (2013) AMPA receptor trafficking and the mechanisms underlying synaptic plasticity and cognitive aging. Dialogues Clin Neurosci 15(1):11–27PubMedPubMedCentralCrossRef
55.
go back to reference Daw MI, Chittajallu R, Bortolotto ZA et al (2000) PDZ proteins interacting with C-terminal GluR2/3 are involved in a PKC-dependent regulation of AMPA receptors at hippocampal synapses. Neuron 28(3):873–886PubMedCrossRef Daw MI, Chittajallu R, Bortolotto ZA et al (2000) PDZ proteins interacting with C-terminal GluR2/3 are involved in a PKC-dependent regulation of AMPA receptors at hippocampal synapses. Neuron 28(3):873–886PubMedCrossRef
56.
go back to reference Mao L, Takamiya K, Thomas G, Lin DT, Huganir RL (2010) GRIP1 and 2 regulate activity-dependent AMPA receptor recycling via exocyst complex interactions. Proc Natl Acad Sci USA 107(44):19038–19043PubMedPubMedCentralCrossRef Mao L, Takamiya K, Thomas G, Lin DT, Huganir RL (2010) GRIP1 and 2 regulate activity-dependent AMPA receptor recycling via exocyst complex interactions. Proc Natl Acad Sci USA 107(44):19038–19043PubMedPubMedCentralCrossRef
58.
go back to reference Hanley JG, Khatri L, Hanson PI, Ziff EB (2002) NSF ATPase and α-/β-SNAPs disassemble the AMPA receptor-PICK1 complex. Neuron 34(1):53–67PubMedCrossRef Hanley JG, Khatri L, Hanson PI, Ziff EB (2002) NSF ATPase and α-/β-SNAPs disassemble the AMPA receptor-PICK1 complex. Neuron 34(1):53–67PubMedCrossRef
59.
go back to reference Lee SH, Liu L, Wang YT, Sheng M (2002) Clathrin adaptor AP2 and NSF interact with overlapping sites of GluR2 and play distinct roles in AMPA receptor trafficking and hippocampal LTD. Neuron 36(4):661–674PubMedCrossRef Lee SH, Liu L, Wang YT, Sheng M (2002) Clathrin adaptor AP2 and NSF interact with overlapping sites of GluR2 and play distinct roles in AMPA receptor trafficking and hippocampal LTD. Neuron 36(4):661–674PubMedCrossRef
60.
go back to reference Perez JL, Khatri L, Chang C, Srivastava S, Osten P, Ziff EB (2001) PICK1 targets activated protein kinase Cα to AMPA receptor clusters in spines of hippocampal neurons and reduces surface levels of the AMPA-type glutamate receptor subunit 2. J Neurosci 21(15):5417–5428PubMedPubMedCentralCrossRef Perez JL, Khatri L, Chang C, Srivastava S, Osten P, Ziff EB (2001) PICK1 targets activated protein kinase Cα to AMPA receptor clusters in spines of hippocampal neurons and reduces surface levels of the AMPA-type glutamate receptor subunit 2. J Neurosci 21(15):5417–5428PubMedPubMedCentralCrossRef
61.
go back to reference Seidenman KJ, Steinberg JP, Huganir R, Malinow R (2003) Glutamate receptor subunit 2 Serine 880 phosphorylation modulates synaptic transmission and mediates plasticity in CA1 pyramidal cells. J Neurosci 23(27):9220–9228PubMedPubMedCentralCrossRef Seidenman KJ, Steinberg JP, Huganir R, Malinow R (2003) Glutamate receptor subunit 2 Serine 880 phosphorylation modulates synaptic transmission and mediates plasticity in CA1 pyramidal cells. J Neurosci 23(27):9220–9228PubMedPubMedCentralCrossRef
62.
63.
go back to reference Fiuza M, Rostosky CM, Parkinson GT et al (2017) PICK1 regulates AMPA receptor endocytosis via direct interactions with AP2 α-appendage and dynamin. J Cell Biol 216(10):3323–3338PubMedPubMedCentralCrossRef Fiuza M, Rostosky CM, Parkinson GT et al (2017) PICK1 regulates AMPA receptor endocytosis via direct interactions with AP2 α-appendage and dynamin. J Cell Biol 216(10):3323–3338PubMedPubMedCentralCrossRef
65.
go back to reference Chen K, Baram TZ, Soltesz I (1999) Febrile seizures in the developing brain result in persistent modification of neuronal excitability in limbic circuits. Nat Med 5(8):888–894PubMedPubMedCentralCrossRef Chen K, Baram TZ, Soltesz I (1999) Febrile seizures in the developing brain result in persistent modification of neuronal excitability in limbic circuits. Nat Med 5(8):888–894PubMedPubMedCentralCrossRef
66.
go back to reference Song I, Savtchenko L, Semyanov A (2011) Tonic excitation or inhibition is set by GABA A conductance in hippocampal interneurons. Nat Commun 2:376PubMedCrossRef Song I, Savtchenko L, Semyanov A (2011) Tonic excitation or inhibition is set by GABA A conductance in hippocampal interneurons. Nat Commun 2:376PubMedCrossRef
68.
go back to reference Machu TK, Firestone JA, Browning MD (1993) Ca2+/calmodulin-dependent protein kinase II and protein kinase C phosphorylate a synthetic peptide corresponding to a sequence that is specific for the γ2L subunit of the GABAA receptor. J Neurochem 61(1):375–377PubMedCrossRef Machu TK, Firestone JA, Browning MD (1993) Ca2+/calmodulin-dependent protein kinase II and protein kinase C phosphorylate a synthetic peptide corresponding to a sequence that is specific for the γ2L subunit of the GABAA receptor. J Neurochem 61(1):375–377PubMedCrossRef
69.
go back to reference Mcdonald BJ, Moss SJ (1997) Conserved phosphorylation of the intracellular domains of GABAA receptorβ2 and β3 subunits by cAMP-dependent protein kinase, cGMP-dependent protein kinase, protein kinase C and Ca2+/calmodulin type II-dependent protein kinase. Neuropharmacology 36(10):1377–1385PubMedCrossRef Mcdonald BJ, Moss SJ (1997) Conserved phosphorylation of the intracellular domains of GABAA receptorβ2 and β3 subunits by cAMP-dependent protein kinase, cGMP-dependent protein kinase, protein kinase C and Ca2+/calmodulin type II-dependent protein kinase. Neuropharmacology 36(10):1377–1385PubMedCrossRef
70.
go back to reference Marsden KC, Beattie JB, Friedenthal J, Carroll RC (2007) NMDA receptor activation potentiates inhibitory transmission through GABA receptor-associated protein-dependent exocytosis of GABAA receptors. J Neurosci 27(52):14326–14337PubMedPubMedCentralCrossRef Marsden KC, Beattie JB, Friedenthal J, Carroll RC (2007) NMDA receptor activation potentiates inhibitory transmission through GABA receptor-associated protein-dependent exocytosis of GABAA receptors. J Neurosci 27(52):14326–14337PubMedPubMedCentralCrossRef
71.
go back to reference Petrini EM, Ravasenga T, Hausrat TJ et al (2014) Synaptic recruitment of gephyrin regulates surface GABA A receptor dynamics for the expression of inhibitory LTP. Nat Commun 5:3921PubMedCrossRef Petrini EM, Ravasenga T, Hausrat TJ et al (2014) Synaptic recruitment of gephyrin regulates surface GABA A receptor dynamics for the expression of inhibitory LTP. Nat Commun 5:3921PubMedCrossRef
72.
go back to reference Abramian AM, Comenencia-Ortiz E, Vithlani M et al (2010) Protein kinase C phosphorylation regulates membrane insertion of GABAA receptor subtypes that mediate tonic inhibition. J Biol Chem 285(53):41795–41805PubMedPubMedCentralCrossRef Abramian AM, Comenencia-Ortiz E, Vithlani M et al (2010) Protein kinase C phosphorylation regulates membrane insertion of GABAA receptor subtypes that mediate tonic inhibition. J Biol Chem 285(53):41795–41805PubMedPubMedCentralCrossRef
73.
go back to reference Bright DP, Smart TG (2013) Protein kinase C regulates tonic GABAA receptor-mediated inhibition in the hippocampus and thalamus. Eur J Neurosci 38(10):3408–3423PubMedCrossRef Bright DP, Smart TG (2013) Protein kinase C regulates tonic GABAA receptor-mediated inhibition in the hippocampus and thalamus. Eur J Neurosci 38(10):3408–3423PubMedCrossRef
75.
76.
go back to reference Cendes F, Andermann F, Carpenter S, Zatorre RJ, Cashman NR (1995) Temporal lobe epilepsy caused by domoic acid intoxication: evidence for glutamate receptor–mediated excitotoxicity in humans. Ann Neurol 37(1):123–126PubMedCrossRef Cendes F, Andermann F, Carpenter S, Zatorre RJ, Cashman NR (1995) Temporal lobe epilepsy caused by domoic acid intoxication: evidence for glutamate receptor–mediated excitotoxicity in humans. Ann Neurol 37(1):123–126PubMedCrossRef
77.
78.
go back to reference Peng PL, Zhong X, Tu W et al (2006) ADAR2-dependent RNA editing of AMPA receptor subunit GluR2 determines vulnerability of neurons in forebrain ischemia. Neuron 49(5):719–733PubMedCrossRef Peng PL, Zhong X, Tu W et al (2006) ADAR2-dependent RNA editing of AMPA receptor subunit GluR2 determines vulnerability of neurons in forebrain ischemia. Neuron 49(5):719–733PubMedCrossRef
79.
go back to reference Wen W, Lin CY, Niu L (2017) R/G editing in GluA2R flop modulates the functional difference between GluA1 flip and flop variants in GluA1/2R heteromeric channels. Sci Rep 7(1):13654PubMedPubMedCentralCrossRef Wen W, Lin CY, Niu L (2017) R/G editing in GluA2R flop modulates the functional difference between GluA1 flip and flop variants in GluA1/2R heteromeric channels. Sci Rep 7(1):13654PubMedPubMedCentralCrossRef
80.
go back to reference Berry-Kravis E, Raspa M, Loggin-Hester L, Bishop E, Holiday D, Bailey DB Jr (2010) Seizures in fragile X syndrome: characteristics and comorbid diagnoses. Am J Intellect Dev Disabil 115(6):461–472PubMedCrossRef Berry-Kravis E, Raspa M, Loggin-Hester L, Bishop E, Holiday D, Bailey DB Jr (2010) Seizures in fragile X syndrome: characteristics and comorbid diagnoses. Am J Intellect Dev Disabil 115(6):461–472PubMedCrossRef
81.
go back to reference Bhogal B, Jepson JE, Savva YA, Pepper AS, Reenan RA, Jongens TA (2011) Modulation of dADAR-dependent RNA editing by the Drosophila fragile X mental retardation protein. Nat Neurosci 14(12):1517–1524PubMedPubMedCentralCrossRef Bhogal B, Jepson JE, Savva YA, Pepper AS, Reenan RA, Jongens TA (2011) Modulation of dADAR-dependent RNA editing by the Drosophila fragile X mental retardation protein. Nat Neurosci 14(12):1517–1524PubMedPubMedCentralCrossRef
82.
go back to reference La Via L, Bonini D, Russo I, Orlandi C, Barlati S, Barbon A (2012) Modulation of dendritic AMPA receptor mRNA trafficking by RNA splicing and editing. Nucleic Acids Res 41(1):617–631PubMedPubMedCentralCrossRef La Via L, Bonini D, Russo I, Orlandi C, Barlati S, Barbon A (2012) Modulation of dendritic AMPA receptor mRNA trafficking by RNA splicing and editing. Nucleic Acids Res 41(1):617–631PubMedPubMedCentralCrossRef
83.
go back to reference Pigeat R, Chausson P, Dreyfus FM, Leresche N, Lambert RC (2015) Sleep slow wave-related homo and heterosynaptic LTD of intrathalamic GABAAergic synapses: involvement of T-type Ca2+ channels and metabotropic glutamate receptors. J Neurosci 35(1):64–73PubMedPubMedCentralCrossRef Pigeat R, Chausson P, Dreyfus FM, Leresche N, Lambert RC (2015) Sleep slow wave-related homo and heterosynaptic LTD of intrathalamic GABAAergic synapses: involvement of T-type Ca2+ channels and metabotropic glutamate receptors. J Neurosci 35(1):64–73PubMedPubMedCentralCrossRef
84.
go back to reference Pribiag H, Stellwagen D (2013) TNF-α downregulates inhibitory neurotransmission through protein phosphatase 1-dependent trafficking of GABAA receptors. J Neurosci 33(40):15879–15893PubMedPubMedCentralCrossRef Pribiag H, Stellwagen D (2013) TNF-α downregulates inhibitory neurotransmission through protein phosphatase 1-dependent trafficking of GABAA receptors. J Neurosci 33(40):15879–15893PubMedPubMedCentralCrossRef
85.
go back to reference Terunuma M, Jang IS, Ha SH et al (2004) GABAA receptor phospho-dependent modulation is regulated by phospholipase C-related inactive protein type 1, a novel protein phosphatase 1 anchoring protein. J Neurosci 24(32):7074–7084PubMedPubMedCentralCrossRef Terunuma M, Jang IS, Ha SH et al (2004) GABAA receptor phospho-dependent modulation is regulated by phospholipase C-related inactive protein type 1, a novel protein phosphatase 1 anchoring protein. J Neurosci 24(32):7074–7084PubMedPubMedCentralCrossRef
86.
go back to reference Hirano T, Kawaguchi SY (2014) Regulation and functional roles of rebound potentiation at cerebellar stellate cell—Purkinje cell synapses. Front Cell Neurosci 8:42PubMedPubMedCentralCrossRef Hirano T, Kawaguchi SY (2014) Regulation and functional roles of rebound potentiation at cerebellar stellate cell—Purkinje cell synapses. Front Cell Neurosci 8:42PubMedPubMedCentralCrossRef
87.
go back to reference Kanematsu T, Mizokami A, Watanabe K, Hirata M (2007) Regulation of GABAA-receptor surface expression with special reference to the involvement of GABARAP (GABAA receptor-associated protein) and PRIP (phospholipase C-related, but catalytically inactive protein). J Pharmacol Sci 104(4):285–292PubMedCrossRef Kanematsu T, Mizokami A, Watanabe K, Hirata M (2007) Regulation of GABAA-receptor surface expression with special reference to the involvement of GABARAP (GABAA receptor-associated protein) and PRIP (phospholipase C-related, but catalytically inactive protein). J Pharmacol Sci 104(4):285–292PubMedCrossRef
89.
go back to reference Yen W, Williamson J, Bertram EH, Kapur J (2004) A comparison of three NMDA receptor antagonists in the treatment of prolonged status epilepticus. Epilepsy Res 59(1):43–50PubMedPubMedCentralCrossRef Yen W, Williamson J, Bertram EH, Kapur J (2004) A comparison of three NMDA receptor antagonists in the treatment of prolonged status epilepticus. Epilepsy Res 59(1):43–50PubMedPubMedCentralCrossRef
91.
go back to reference Gaspard N, Foreman B, Judd LM et al (2013) Intravenous ketamine for the treatment of refractory status epilepticus: a retrospective multicenter study. Epilepsia 54(8):1498–1503PubMedPubMedCentralCrossRef Gaspard N, Foreman B, Judd LM et al (2013) Intravenous ketamine for the treatment of refractory status epilepticus: a retrospective multicenter study. Epilepsia 54(8):1498–1503PubMedPubMedCentralCrossRef
92.
go back to reference Rogawski MA (2011) Revisiting AMPA receptors as an antiepileptic drug target: revisiting AMPA receptors as an antiepileptic drug target. Epilepsy Curr 11(2):56–63PubMedPubMedCentralCrossRef Rogawski MA (2011) Revisiting AMPA receptors as an antiepileptic drug target: revisiting AMPA receptors as an antiepileptic drug target. Epilepsy Curr 11(2):56–63PubMedPubMedCentralCrossRef
93.
go back to reference Patsalos PN (2015) The clinical pharmacology profile of the new antiepileptic drug perampanel: a novel noncompetitive AMPA receptor antagonist. Epilepsia 56(1):12–27PubMedCrossRef Patsalos PN (2015) The clinical pharmacology profile of the new antiepileptic drug perampanel: a novel noncompetitive AMPA receptor antagonist. Epilepsia 56(1):12–27PubMedCrossRef
94.
go back to reference Beretta S, Padovano G, Stabile A et al (2017) Efficacy and safety of perampanel oral loading in post-anoxic super-refractory status epilepticus: a case series. Epilepsia 58(Suppl 5):S5–S199 Beretta S, Padovano G, Stabile A et al (2017) Efficacy and safety of perampanel oral loading in post-anoxic super-refractory status epilepticus: a case series. Epilepsia 58(Suppl 5):S5–S199
95.
go back to reference Redecker J, Wittstock M, Benecke R, Rösche J (2015) Efficacy of perampanel in refractory nonconvulsive status epilepticus and simple partial status epilepticus. Epilepsy Behav 45:176–179PubMedCrossRef Redecker J, Wittstock M, Benecke R, Rösche J (2015) Efficacy of perampanel in refractory nonconvulsive status epilepticus and simple partial status epilepticus. Epilepsy Behav 45:176–179PubMedCrossRef
96.
go back to reference Brigo F, Lattanzi S, Rohracher A et al (2018) Perampanel in the treatment of status epilepticus: a systematic review of the literature. Epilepsy Behav 86:179–186PubMedCrossRef Brigo F, Lattanzi S, Rohracher A et al (2018) Perampanel in the treatment of status epilepticus: a systematic review of the literature. Epilepsy Behav 86:179–186PubMedCrossRef
97.
go back to reference Lange F, Weßlau K, Porath K et al (2019) AMPA receptor antagonist perampanel affects glioblastoma cell growth and glutamate release in vitro. PLoS ONE 14(2):e0211644PubMedPubMedCentralCrossRef Lange F, Weßlau K, Porath K et al (2019) AMPA receptor antagonist perampanel affects glioblastoma cell growth and glutamate release in vitro. PLoS ONE 14(2):e0211644PubMedPubMedCentralCrossRef
98.
go back to reference Corsi L, Mescola A, Alessandrini A (2019) Glutamate receptors and glioblastoma multiforme: an old “route” for new perspectives. Int J Mol Sci 20(7):1796PubMedCentralCrossRef Corsi L, Mescola A, Alessandrini A (2019) Glutamate receptors and glioblastoma multiforme: an old “route” for new perspectives. Int J Mol Sci 20(7):1796PubMedCentralCrossRef
99.
go back to reference Lattanzi S, Striano P (2019) The impact of perampanel and targeting AMPA transmission on anti-seizure drug discovery. Expert Opin Drug Discov 14(3):195–197PubMedCrossRef Lattanzi S, Striano P (2019) The impact of perampanel and targeting AMPA transmission on anti-seizure drug discovery. Expert Opin Drug Discov 14(3):195–197PubMedCrossRef
100.
go back to reference Izumoto S, Miyauchi M, Tasaki T et al (2018) Seizures and tumor progression in glioma patients with uncontrollable epilepsy treated with perampanel. Anticancer Res 38(7):4361–4366PubMedCrossRef Izumoto S, Miyauchi M, Tasaki T et al (2018) Seizures and tumor progression in glioma patients with uncontrollable epilepsy treated with perampanel. Anticancer Res 38(7):4361–4366PubMedCrossRef
101.
go back to reference Karimi-Moghadam A, Charsouei S, Bell B, Jabalameli MR (2018) Parkinson disease from mendelian forms to genetic susceptibility: new molecular insights into the neurodegeneration process. Cell Mol Neurobiol 38(6):1153–1178PubMedPubMedCentralCrossRef Karimi-Moghadam A, Charsouei S, Bell B, Jabalameli MR (2018) Parkinson disease from mendelian forms to genetic susceptibility: new molecular insights into the neurodegeneration process. Cell Mol Neurobiol 38(6):1153–1178PubMedPubMedCentralCrossRef
102.
go back to reference Johnson KA, Conn PJ, Niswender CM (2009) Niswender, Glutamate receptors as therapeutic targets for Parkinson's disease. CNS Neurol Disord 8(6):475–491CrossRef Johnson KA, Conn PJ, Niswender CM (2009) Niswender, Glutamate receptors as therapeutic targets for Parkinson's disease. CNS Neurol Disord 8(6):475–491CrossRef
103.
go back to reference Chase TN, Oh J, Konitsiotis S (2000) Antiparkinsonian and antidyskinetic activity of drugs targeting central glutamatergic mechanisms. J Neurol 247(2):II36–II42PubMed Chase TN, Oh J, Konitsiotis S (2000) Antiparkinsonian and antidyskinetic activity of drugs targeting central glutamatergic mechanisms. J Neurol 247(2):II36–II42PubMed
104.
go back to reference Lattanzi S, Grillo E, Brigo F, Silvestrini M (2018) Efficacy and safety of perampanel in Parkinson’s disease. A systematic review with meta-analysis. J Neurol 265(4):733–740PubMedCrossRef Lattanzi S, Grillo E, Brigo F, Silvestrini M (2018) Efficacy and safety of perampanel in Parkinson’s disease. A systematic review with meta-analysis. J Neurol 265(4):733–740PubMedCrossRef
105.
go back to reference Rogawski MA (2013) AMPA receptors as a molecular target in epilepsy therapy. Acta Neurol Scand 127(197):9–18CrossRef Rogawski MA (2013) AMPA receptors as a molecular target in epilepsy therapy. Acta Neurol Scand 127(197):9–18CrossRef
106.
go back to reference Danielsson I, Su KG, Kauer L et al (2004) Talampanel and human cortical excitability: EEG and TMS. Epilepsia 45:120–121 Danielsson I, Su KG, Kauer L et al (2004) Talampanel and human cortical excitability: EEG and TMS. Epilepsia 45:120–121
108.
go back to reference Penn AC, Greger IH (2009) Sculpting AMPA receptor formation and function by alternative RNA processing. RNA Biol 6(5):517–521PubMedCrossRef Penn AC, Greger IH (2009) Sculpting AMPA receptor formation and function by alternative RNA processing. RNA Biol 6(5):517–521PubMedCrossRef
109.
go back to reference Lykens NM, Coughlin DJ, Reddi JM, Lutz GJ, Tallent MK (2017) AMPA GluA1-flip targeted oligonucleotide therapy reduces neonatal seizures and hyperexcitability. PLoS ONE 12(2):e0171538PubMedPubMedCentralCrossRef Lykens NM, Coughlin DJ, Reddi JM, Lutz GJ, Tallent MK (2017) AMPA GluA1-flip targeted oligonucleotide therapy reduces neonatal seizures and hyperexcitability. PLoS ONE 12(2):e0171538PubMedPubMedCentralCrossRef
110.
go back to reference Gan Q, Salussolia CL, Wollmuth LP (2015) Assembly of AMPA receptors: mechanisms and regulation. J Physiol 593(1):39–48PubMedCrossRef Gan Q, Salussolia CL, Wollmuth LP (2015) Assembly of AMPA receptors: mechanisms and regulation. J Physiol 593(1):39–48PubMedCrossRef
111.
go back to reference Ismailov I, Kalikulov D, Inoue T, Friedlander MJ (2004) The kinetic profile of intracellular calcium predicts long-term potentiation and long-term depression. J Neurosci 24(44):9847–9861PubMedPubMedCentralCrossRef Ismailov I, Kalikulov D, Inoue T, Friedlander MJ (2004) The kinetic profile of intracellular calcium predicts long-term potentiation and long-term depression. J Neurosci 24(44):9847–9861PubMedPubMedCentralCrossRef
112.
Metadata
Title
Molecular insights into the role of AMPA receptors in the synaptic plasticity, pathogenesis and treatment of epilepsy: therapeutic potentials of perampanel and antisense oligonucleotide (ASO) technology
Authors
Saeid Charsouei
M. Reza Jabalameli
Amin Karimi-Moghadam
Publication date
01-06-2020
Publisher
Springer International Publishing
Published in
Acta Neurologica Belgica / Issue 3/2020
Print ISSN: 0300-9009
Electronic ISSN: 2240-2993
DOI
https://doi.org/10.1007/s13760-020-01318-1

Other articles of this Issue 3/2020

Acta Neurologica Belgica 3/2020 Go to the issue