Skip to main content
Top
Published in: BMC Psychiatry 1/2020

Open Access 01-12-2020 | Antidepressant Drugs | Research article

Abnormal expression of rno_circRNA_014900 and rno_circRNA_005442 induced by ketamine in the rat hippocampus

Authors: Jing Mao, Tianmei Li, Di Fan, Hongli Zhou, Jianguo Feng, Li Liu, Chunxiang Zhang, Xiaobin Wang

Published in: BMC Psychiatry | Issue 1/2020

Login to get access

Abstract

Background

Recent studies have shown that circular RNA (circRNA) is rich in microRNA (miRNA) binding sites. We have previously demonstrated that the antidepressant effect of ketamine is related to the abnormal expression of various miRNAs in the brain. This study determined the expression profile of circRNAs in the hippocampus of rats treated with ketamine.

Methods

The aberrantly expressed circRNAs in rat hippocampus after ketamine injection were analyzed by microarray chip, and we further validated these circRNAs by quantitative reverse-transcription PCR (qRT-PCR). The target genes of the different circRNAs were predicted using bioinformatic analyses, and the functions and signal pathways of these target genes were investigated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses.

Results

Microarray analysis showed that five circRNAs were aberrantly expressed in rat hippocampus after ketamine injection (fold change > 2.0, p < 0.05). The results from the qRT-PCR showed that one of the circRNAs was significantly increased (rno_circRNA_014900; fold change = 2.37; p = 0.03), while one was significantly reduced (rno_circRNA_005442; fold change = 0.37; p = 0.01). We discovered a significant enrichment in several GO terms and pathways associated with depression.

Conclusion

Our findings showed the abnormal expression of ketamine-induced hippocampal circRNAs in rats.
Appendix
Available only for authorised users
Literature
1.
go back to reference Duman RS, Aghajanian GK. Synaptic dysfunction in depression: potential therapeutic targets. Science. 2012;338(6103):68–72.CrossRef Duman RS, Aghajanian GK. Synaptic dysfunction in depression: potential therapeutic targets. Science. 2012;338(6103):68–72.CrossRef
2.
go back to reference Machado-Vieira R, Salvadore G, Diazgranados N, Zarate CA. Ketamine and the next generation of antidepressants with a rapid onset of action. Pharmacol Ther. 2009;123(2):143–50.CrossRef Machado-Vieira R, Salvadore G, Diazgranados N, Zarate CA. Ketamine and the next generation of antidepressants with a rapid onset of action. Pharmacol Ther. 2009;123(2):143–50.CrossRef
3.
go back to reference Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry. 2000;47(4):351–4.CrossRef Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry. 2000;47(4):351–4.CrossRef
4.
go back to reference Wang XB, Chen YL, Zhou X, Liu F, Zhang T, Zhang C. Effects of propofol and ketamine as the combined anesthesia for electroconvulsive therapy in patients with depressive disorder. J ECT. 2012;28(2):128–32.CrossRef Wang XB, Chen YL, Zhou X, Liu F, Zhang T, Zhang C. Effects of propofol and ketamine as the combined anesthesia for electroconvulsive therapy in patients with depressive disorder. J ECT. 2012;28(2):128–32.CrossRef
5.
go back to reference Garcia LS, Comim CM, Valvassori SS, Réus GZ, Barbosa LM, Andreazza AC, et al. Acute administration of ketamine induces antidepressant-like effects in the forced swimming test and increases BDNF levels in the rat hippocampus. Prog Neuropsychopharmacol. 2008;32(1):140–4.CrossRef Garcia LS, Comim CM, Valvassori SS, Réus GZ, Barbosa LM, Andreazza AC, et al. Acute administration of ketamine induces antidepressant-like effects in the forced swimming test and increases BDNF levels in the rat hippocampus. Prog Neuropsychopharmacol. 2008;32(1):140–4.CrossRef
6.
go back to reference Sun HL, Zhou ZQ, Zhang GF, Yang C, Wang XM, Shen JC, et al. Role of hippocampal p11 in the sustained antidepressant effect of ketamine in the chronic unpredictable mild stress model. Transl Psychiatry. 2016;6:e741.CrossRef Sun HL, Zhou ZQ, Zhang GF, Yang C, Wang XM, Shen JC, et al. Role of hippocampal p11 in the sustained antidepressant effect of ketamine in the chronic unpredictable mild stress model. Transl Psychiatry. 2016;6:e741.CrossRef
7.
go back to reference Yang JJ, Wang N, Yang C, Shi JY, Yu HY, Hashimoto K. Serum interleukin-6 is a predictive biomarker for ketamine’s antidepressant effect in treatment-resistant patients with major depression. Biol Psychiatry. 2015;77(3):e19–20.CrossRef Yang JJ, Wang N, Yang C, Shi JY, Yu HY, Hashimoto K. Serum interleukin-6 is a predictive biomarker for ketamine’s antidepressant effect in treatment-resistant patients with major depression. Biol Psychiatry. 2015;77(3):e19–20.CrossRef
8.
go back to reference Murrough JW, Iosifescu DV, Chang LC, Jurdi RK, Green CE, Perez AM, et al. Antidepressant efficacy of ketamine in treatment resistant major depression: a two-site randomized controlledtrial. Am J Psychiatry. 2013;170(10):1134–42.CrossRef Murrough JW, Iosifescu DV, Chang LC, Jurdi RK, Green CE, Perez AM, et al. Antidepressant efficacy of ketamine in treatment resistant major depression: a two-site randomized controlledtrial. Am J Psychiatry. 2013;170(10):1134–42.CrossRef
9.
go back to reference Yang X, Yang Q, Wang X, Luo C, Wan Y, Li J, et al. MicroRNA expression profile and functional analysis reveal that miR-206 is a critical novel gene for the expression of BDNF induced by ketamine. NeuroMolecular Med. 2014;16(3):594–605.CrossRef Yang X, Yang Q, Wang X, Luo C, Wan Y, Li J, et al. MicroRNA expression profile and functional analysis reveal that miR-206 is a critical novel gene for the expression of BDNF induced by ketamine. NeuroMolecular Med. 2014;16(3):594–605.CrossRef
10.
go back to reference Van Rossum D, Verheijen BM, Pasterkamp RJ. Circular RNAs: novel regulators of neuronal development. Front Mol Neurosci. 2016;9:74.PubMedPubMedCentral Van Rossum D, Verheijen BM, Pasterkamp RJ. Circular RNAs: novel regulators of neuronal development. Front Mol Neurosci. 2016;9:74.PubMedPubMedCentral
11.
go back to reference Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition. Nature. 2014;505(7483):344–52.CrossRef Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition. Nature. 2014;505(7483):344–52.CrossRef
12.
go back to reference Wang MZ, Su PX, Liu Y, Zhang XT, Yan J, An XG, et al. Abnormal expression of circRNA_089763 in the plasma exosomes of patients with post operative cognitive dysfunction after coronary artery bypass grafting. Mol Med Rep. 2019;20:2549–62.PubMedPubMedCentral Wang MZ, Su PX, Liu Y, Zhang XT, Yan J, An XG, et al. Abnormal expression of circRNA_089763 in the plasma exosomes of patients with post operative cognitive dysfunction after coronary artery bypass grafting. Mol Med Rep. 2019;20:2549–62.PubMedPubMedCentral
13.
go back to reference Ferrari AJ, Charlson FJ, Norman RE, Patten SB, Freedman G, Murray CJ, et al. Burden of depressive disorders by country, sex, age, and year: findings from the global burden of disease study. PLoS Med. 2010;10(11):e1001547.CrossRef Ferrari AJ, Charlson FJ, Norman RE, Patten SB, Freedman G, Murray CJ, et al. Burden of depressive disorders by country, sex, age, and year: findings from the global burden of disease study. PLoS Med. 2010;10(11):e1001547.CrossRef
14.
go back to reference Newcomer JW, Farber NB, Jevtovic-Todorovic V, Selke G, Melson AK, Hershey T, et al. Ketamine-induced NMDA receptor hypofunction as a model of memory impairment and psychosis. Neuropsychopharmacology. 1999;20(2):106–18.CrossRef Newcomer JW, Farber NB, Jevtovic-Todorovic V, Selke G, Melson AK, Hershey T, et al. Ketamine-induced NMDA receptor hypofunction as a model of memory impairment and psychosis. Neuropsychopharmacology. 1999;20(2):106–18.CrossRef
15.
go back to reference Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2013;19(2):141–57.CrossRef Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 2013;19(2):141–57.CrossRef
16.
go back to reference Malki K, Tosto MG, Jumabhoy I, Lourdusamy A, Sluyter F, Craig I, et al. Integrative mouse and human mRNA studies using WGCNA nominates novel candidate genes involved in the pathogenesis of major depressive disorder. Pharmacogenomics. 2013;14(16):1979–90.CrossRef Malki K, Tosto MG, Jumabhoy I, Lourdusamy A, Sluyter F, Craig I, et al. Integrative mouse and human mRNA studies using WGCNA nominates novel candidate genes involved in the pathogenesis of major depressive disorder. Pharmacogenomics. 2013;14(16):1979–90.CrossRef
17.
go back to reference Kim J, Lee S, Kang S, Jeon TI, Kang MJ, Lee TH, et al. Regulator of G-protein signaling 4 (RGS4) controls morphine reward by glutamate receptor activation in the nucleus Accumbens of mouse brain. Mol Cells. 2018;41(5):454–64.PubMedPubMedCentral Kim J, Lee S, Kang S, Jeon TI, Kang MJ, Lee TH, et al. Regulator of G-protein signaling 4 (RGS4) controls morphine reward by glutamate receptor activation in the nucleus Accumbens of mouse brain. Mol Cells. 2018;41(5):454–64.PubMedPubMedCentral
18.
go back to reference Zeng D, He S, Yu S, Li G, Ma C, Wen Y, et al. Analysis of the association of MIR124-1 and its target gene RGS4 polymorphisms with major depressive disorder and antidepressant response. Neuropsychiatr Dis Treat. 2018;14:715–23.CrossRef Zeng D, He S, Yu S, Li G, Ma C, Wen Y, et al. Analysis of the association of MIR124-1 and its target gene RGS4 polymorphisms with major depressive disorder and antidepressant response. Neuropsychiatr Dis Treat. 2018;14:715–23.CrossRef
19.
go back to reference Stratinaki M, Varidaki A, Mitsi V, Ghose S, Magida J, Dias C, et al. Regulator of G protein signaling 4 [corrected] is a crucial modulator of antidepressant drug action in depression and neuropathic pain models. Proc Natl Acad Sci U S A. 2013;110(20):8254–9.CrossRef Stratinaki M, Varidaki A, Mitsi V, Ghose S, Magida J, Dias C, et al. Regulator of G protein signaling 4 [corrected] is a crucial modulator of antidepressant drug action in depression and neuropathic pain models. Proc Natl Acad Sci U S A. 2013;110(20):8254–9.CrossRef
20.
go back to reference Mirnics K, Middleton FA, Stanwood GD, Lewis DA, Levitt P. Disease-specific changes in regulator of G-protein signaling 4 (RGS4) expression in schizophrenia. Mol Psychiatry. 2001;6(3):293–301.CrossRef Mirnics K, Middleton FA, Stanwood GD, Lewis DA, Levitt P. Disease-specific changes in regulator of G-protein signaling 4 (RGS4) expression in schizophrenia. Mol Psychiatry. 2001;6(3):293–301.CrossRef
21.
go back to reference Nätt D, Johansson I, Faresjö T, Ludvigsson J, Thorsell A. High cortisol in 5-year-old children causes loss of DNA methylation in SINE retrotransposons: a possible role for ZNF263 in stress-related diseases. Clin Epigenetics. 2015;7:91.CrossRef Nätt D, Johansson I, Faresjö T, Ludvigsson J, Thorsell A. High cortisol in 5-year-old children causes loss of DNA methylation in SINE retrotransposons: a possible role for ZNF263 in stress-related diseases. Clin Epigenetics. 2015;7:91.CrossRef
22.
go back to reference Grados MA, Specht MW, Sung HM, Fortune D. Glutamate drugs and pharmacogenetics of OCD: a pathway-based exploratory approach. Expert Opin Drug Discov. 2013;8(12):1515–27.CrossRef Grados MA, Specht MW, Sung HM, Fortune D. Glutamate drugs and pharmacogenetics of OCD: a pathway-based exploratory approach. Expert Opin Drug Discov. 2013;8(12):1515–27.CrossRef
23.
go back to reference Douglas LN, McGuire AB, Manzardo AM, Butler MG. High-resolution chromosome ideogram representation of recognized genes for bipolar disorder. Gene. 2016;586(1):136–47.CrossRef Douglas LN, McGuire AB, Manzardo AM, Butler MG. High-resolution chromosome ideogram representation of recognized genes for bipolar disorder. Gene. 2016;586(1):136–47.CrossRef
24.
go back to reference Gao L, Gao Y, Xu E, Xie J. Microarray analysis of the major depressive disorder mRNA profile data. Psychiatry Investig. 2015;12(3):388–96.CrossRef Gao L, Gao Y, Xu E, Xie J. Microarray analysis of the major depressive disorder mRNA profile data. Psychiatry Investig. 2015;12(3):388–96.CrossRef
25.
go back to reference Benoist M, Palenzuela R, Rozas C, Rojas P, Tortosa E, Morales B, et al. MAP 1B- dependent Rac activation is required for AMPA receptor endocytosis during long-term depression. EMBO J. 2013;32(16):2287–99.CrossRef Benoist M, Palenzuela R, Rozas C, Rojas P, Tortosa E, Morales B, et al. MAP 1B- dependent Rac activation is required for AMPA receptor endocytosis during long-term depression. EMBO J. 2013;32(16):2287–99.CrossRef
26.
go back to reference Ni X, Liao Y, Li L, Zhang X, Wu Z. Therapeutic role of long non-coding RNA TCONS_00019174 in depressive disorders is dependent on Wnt/β-catenin signaling pathway. J Integr Neurosci. 2018;17(2):203–15.CrossRef Ni X, Liao Y, Li L, Zhang X, Wu Z. Therapeutic role of long non-coding RNA TCONS_00019174 in depressive disorders is dependent on Wnt/β-catenin signaling pathway. J Integr Neurosci. 2018;17(2):203–15.CrossRef
27.
go back to reference Martin PM, Stanley RE, Ross AP, Freitas AE, Moyer CE, Brumback AC, et al. DIXDC1 contributes to psychiatric susceptibility by regulating dendritic spine and glutamatergic synapse density via GSK3 and Wnt/β-catenin signaling. Mol Psychiatry. 2018;23(2):467–75.CrossRef Martin PM, Stanley RE, Ross AP, Freitas AE, Moyer CE, Brumback AC, et al. DIXDC1 contributes to psychiatric susceptibility by regulating dendritic spine and glutamatergic synapse density via GSK3 and Wnt/β-catenin signaling. Mol Psychiatry. 2018;23(2):467–75.CrossRef
28.
go back to reference Zhou WJ, Xu N, Kong L, Sun SC, Xu XF, Jia MZ, et al. The antidepressant roles of Wnt2 and Wnt3 in stress-induced depression-like behaviors. Transl Psychiatry. 2016;6(9):e892.CrossRef Zhou WJ, Xu N, Kong L, Sun SC, Xu XF, Jia MZ, et al. The antidepressant roles of Wnt2 and Wnt3 in stress-induced depression-like behaviors. Transl Psychiatry. 2016;6(9):e892.CrossRef
29.
go back to reference Cunha MP, Budni J, Ludka FK, Pazini FL, Rosa JM, Oliveira Á, Lopes MW, et al. Involvement of PI3K/Akt signaling pathway and its downstream intracellular targets in the antidepressant-like effect of Creatine. Mol Neurobiol. 2016;53(5):2954–68.CrossRef Cunha MP, Budni J, Ludka FK, Pazini FL, Rosa JM, Oliveira Á, Lopes MW, et al. Involvement of PI3K/Akt signaling pathway and its downstream intracellular targets in the antidepressant-like effect of Creatine. Mol Neurobiol. 2016;53(5):2954–68.CrossRef
30.
go back to reference Shi HS, Zhu WL, Liu JF, Luo YX, Si JJ, Wang SJ, et al. PI3K/Akt signaling pathway in the basolateral amygdala mediates the rapid antidepressant-like effects of trefoil factor 3. Neuropsychopharmacology. 2012;37(12):2671–83.CrossRef Shi HS, Zhu WL, Liu JF, Luo YX, Si JJ, Wang SJ, et al. PI3K/Akt signaling pathway in the basolateral amygdala mediates the rapid antidepressant-like effects of trefoil factor 3. Neuropsychopharmacology. 2012;37(12):2671–83.CrossRef
31.
go back to reference Lima IVA, Almeida-Santos AF, Ferreira-Vieira TH, Aguiar DC, Ribeiro FM, Campos AC, et al. Antidepressant-like effect of valproic acid-possible involvement of PI3K/Akt/mTOR pathway. Behav Brain Res. 2017;329:166–71.CrossRef Lima IVA, Almeida-Santos AF, Ferreira-Vieira TH, Aguiar DC, Ribeiro FM, Campos AC, et al. Antidepressant-like effect of valproic acid-possible involvement of PI3K/Akt/mTOR pathway. Behav Brain Res. 2017;329:166–71.CrossRef
32.
go back to reference Pazini FL, Cunha MP, Rosa JM, Colla AR, Lieberknecht V, et al. Creatine, similar to ketamine, counteracts depressive-like behavior induced by Corticosterone via PI3K/Akt/mTOR pathway. Mol Neurobiol. 2016;53(10):6818–34.CrossRef Pazini FL, Cunha MP, Rosa JM, Colla AR, Lieberknecht V, et al. Creatine, similar to ketamine, counteracts depressive-like behavior induced by Corticosterone via PI3K/Akt/mTOR pathway. Mol Neurobiol. 2016;53(10):6818–34.CrossRef
33.
go back to reference Zhou W, Dong L, Wang N, Shi JY, Yang JJ, Zuo ZY, et al. Akt mediates GSK-3β phosphorylation in the rat prefrontal cortex during the process of ketamine exerting rapid antidepressant actions. Neuroimmunomodulation. 2014;21(4):183–8.CrossRef Zhou W, Dong L, Wang N, Shi JY, Yang JJ, Zuo ZY, et al. Akt mediates GSK-3β phosphorylation in the rat prefrontal cortex during the process of ketamine exerting rapid antidepressant actions. Neuroimmunomodulation. 2014;21(4):183–8.CrossRef
Metadata
Title
Abnormal expression of rno_circRNA_014900 and rno_circRNA_005442 induced by ketamine in the rat hippocampus
Authors
Jing Mao
Tianmei Li
Di Fan
Hongli Zhou
Jianguo Feng
Li Liu
Chunxiang Zhang
Xiaobin Wang
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Psychiatry / Issue 1/2020
Electronic ISSN: 1471-244X
DOI
https://doi.org/10.1186/s12888-019-2374-2

Other articles of this Issue 1/2020

BMC Psychiatry 1/2020 Go to the issue