Skip to main content
Top
Published in: Systematic Reviews 1/2022

Open Access 01-12-2022 | Methodology

Anticancer effects of disulfiram: a systematic review of in vitro, animal, and human studies

Authors: Ling Wang, Yang Yu, Cong Zhou, Run Wan, Yumin Li

Published in: Systematic Reviews | Issue 1/2022

Login to get access

Abstract

Background and objectives

Cancer morbidity and mortality rates remain high, and thus, at present, considerable efforts are focused on finding drugs with higher sensitivity against tumor cells and fewer side effects. Disulfiram (DSF), as an anti-alcoholic drug, kills the cancer cells by inducing apoptosis. Several preclinical and clinical studies have examined the potential of repurposing DSF as an anticancer treatment. This systematic review aimed to assess evidence regarding the antineoplastic activity of DSF in in vitro and in vivo models, as well as in humans.

Methods

Two authors independently conducted this systematic review of English and Chinese articles from the PubMed, Embase, and the Cochrane Library databases up to July 2019. Eligible in vitro studies needed to include assessments of the apoptosis rate by flow cytometry using annexin V/propidium iodide, and studies in animal models and clinical trials needed to examine tumor inhibition rates, and progression-free survival (PFS) and overall survival (OS), respectively. Data were analyzed using descriptive statistics.

Results

Overall, 35 studies, i.e., 21 performed in vitro, 11 based on animal models, and three clinical trials, were finally included. In vitro and animal studies indicated that DSF was associated with enhanced apoptosis and tumor inhibition rates, separately. Human studies showed that DSF prolongs PFS and OS. The greatest anti-tumor activity was observed when DSF was used as combination therapy or as a nanoparticle-encapsulated molecule. There was no noticeable body weight loss after DSF treatment, which indicated that there was no major toxicity of DSF.

Conclusions

This systematic review provides evidence regarding the anti-tumor activity of DSF in vitro, in animals, and in humans and indicates the optimal forms of treatment to be evaluated in future research.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.PubMedCrossRef Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.PubMedCrossRef
2.
go back to reference Kaitin KI. Deconstructing the drug development process: the new face of innovation. Clin Pharmacol Ther. 2010;87(3):356–61.PubMedCrossRef Kaitin KI. Deconstructing the drug development process: the new face of innovation. Clin Pharmacol Ther. 2010;87(3):356–61.PubMedCrossRef
3.
go back to reference Suh JJ, Pettinati HM, Kampman KM, O’Brien CP. The status of disulfiram: a half of a century later. J Clin Psychopharmacol. 2006;26(3):290–302.PubMedCrossRef Suh JJ, Pettinati HM, Kampman KM, O’Brien CP. The status of disulfiram: a half of a century later. J Clin Psychopharmacol. 2006;26(3):290–302.PubMedCrossRef
4.
go back to reference Eneanya DI, Bianchine JR, Duran DO, Andresen BD. The actions of metabolic fate of disulfiram. Annu Rev Pharmacol Toxicol. 1981;21:575–96.PubMedCrossRef Eneanya DI, Bianchine JR, Duran DO, Andresen BD. The actions of metabolic fate of disulfiram. Annu Rev Pharmacol Toxicol. 1981;21:575–96.PubMedCrossRef
6.
go back to reference Lewison EF. Spontaneous regression of breast cancer. Prog Clin Biol Res. 1977;12:47–53. Lewison EF. Spontaneous regression of breast cancer. Prog Clin Biol Res. 1977;12:47–53.
7.
go back to reference Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009;62(10):1006–12.PubMedCrossRef Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009;62(10):1006–12.PubMedCrossRef
8.
go back to reference Yang Z, Guo F, Albers AE, Sehouli J, Kaufmann AM. Disulfiram modulates ROS accumulation and overcomes synergistically cisplatin resistance in breast cancer cell lines. Biomed Pharmacother. 2019;113:108727.PubMedCrossRef Yang Z, Guo F, Albers AE, Sehouli J, Kaufmann AM. Disulfiram modulates ROS accumulation and overcomes synergistically cisplatin resistance in breast cancer cell lines. Biomed Pharmacother. 2019;113:108727.PubMedCrossRef
9.
go back to reference Wu L, Meng F, Dong L, et al. Disulfiram and BKM120 in combination with chemotherapy impede tumor progression and delay tumor recurrence in tumor initiating cell-rich TNBC. Sci Rep. 2019;9(1):236.PubMedPubMedCentralCrossRef Wu L, Meng F, Dong L, et al. Disulfiram and BKM120 in combination with chemotherapy impede tumor progression and delay tumor recurrence in tumor initiating cell-rich TNBC. Sci Rep. 2019;9(1):236.PubMedPubMedCentralCrossRef
10.
go back to reference Yang Y, Zhang K, Wang Y, et al. Disulfiram chelated with copper promotes apoptosis in human breast cancer cells by impairing the mitochondria functions. Scanning. 2016;38(6):825–36.PubMedCrossRef Yang Y, Zhang K, Wang Y, et al. Disulfiram chelated with copper promotes apoptosis in human breast cancer cells by impairing the mitochondria functions. Scanning. 2016;38(6):825–36.PubMedCrossRef
11.
go back to reference Kim JY, Cho Y, Oh E, et al. Disulfiram targets cancer stem-like properties and the HER2/Akt signaling pathway in HER2-positive breast cancer. Cancer Lett. 2016;379(1):39–48.PubMedCrossRef Kim JY, Cho Y, Oh E, et al. Disulfiram targets cancer stem-like properties and the HER2/Akt signaling pathway in HER2-positive breast cancer. Cancer Lett. 2016;379(1):39–48.PubMedCrossRef
12.
go back to reference Duan X, Xiao J, Yin Q, et al. Multi-targeted inhibition of tumor growth and lung metastasis by redox-sensitive shell crosslinked micelles loading disulfiram. Nanotechnology. 2014;25(12):125102.PubMedCrossRef Duan X, Xiao J, Yin Q, et al. Multi-targeted inhibition of tumor growth and lung metastasis by redox-sensitive shell crosslinked micelles loading disulfiram. Nanotechnology. 2014;25(12):125102.PubMedCrossRef
13.
go back to reference Wu X, Xue X, Wang L, et al. Suppressing autophagy enhances disulfiram/copper-induced apoptosis in non-small cell lung cancer. Eur J Pharmacol. 2018;827:1–12.PubMedCrossRef Wu X, Xue X, Wang L, et al. Suppressing autophagy enhances disulfiram/copper-induced apoptosis in non-small cell lung cancer. Eur J Pharmacol. 2018;827:1–12.PubMedCrossRef
14.
go back to reference Chen W, Yang W, Chen PY, Huang YZ, Li F. Disulfiram copper nanoparticles prepared with a stabilized metal ion ligand complex method for treating drug-resistant prostate cancers. ACS Appl Mater Interfaces. 2018;10(48):41118–28.PubMedCrossRef Chen W, Yang W, Chen PY, Huang YZ, Li F. Disulfiram copper nanoparticles prepared with a stabilized metal ion ligand complex method for treating drug-resistant prostate cancers. ACS Appl Mater Interfaces. 2018;10(48):41118–28.PubMedCrossRef
15.
go back to reference Butcher K, Kannappan V, Kilari RS, et al. Investigation of the key chemical structures involved in the anticancer activity of disulfiram in A549 non-small cell lung cancer cell line. BMC Cancer. 2018;18(1):753.PubMedPubMedCentralCrossRef Butcher K, Kannappan V, Kilari RS, et al. Investigation of the key chemical structures involved in the anticancer activity of disulfiram in A549 non-small cell lung cancer cell line. BMC Cancer. 2018;18(1):753.PubMedPubMedCentralCrossRef
16.
go back to reference Wang C, Yang J, Han H, et al. Disulfiram-loaded porous PLGA microparticle for inhibiting the proliferation and migration of non-small-cell lung cancer. Int J Nanomedicine. 2017;12:827–37.PubMedPubMedCentralCrossRef Wang C, Yang J, Han H, et al. Disulfiram-loaded porous PLGA microparticle for inhibiting the proliferation and migration of non-small-cell lung cancer. Int J Nanomedicine. 2017;12:827–37.PubMedPubMedCentralCrossRef
17.
go back to reference Sharma V, Verma V, Lal N, et al. Disulfiram and its novel derivative sensitize prostate cancer cells to the growth regulatory mechanisms of the cell by re-expressing the epigenetically repressed tumor suppressor-estrogen receptor beta. Mol Carcinog. 2016;55(11):1843–57.PubMedCrossRef Sharma V, Verma V, Lal N, et al. Disulfiram and its novel derivative sensitize prostate cancer cells to the growth regulatory mechanisms of the cell by re-expressing the epigenetically repressed tumor suppressor-estrogen receptor beta. Mol Carcinog. 2016;55(11):1843–57.PubMedCrossRef
18.
go back to reference Rezkk Y, Yang S, Bai K, et al. Disulfiram’s antineoplastic effects on ovarian cancer bulk tumor cells and the stem cell population: a study in ovarian cancer cell lines and in rodents. Gynecol Oncol. 2013;130(1):e135–6.CrossRef Rezkk Y, Yang S, Bai K, et al. Disulfiram’s antineoplastic effects on ovarian cancer bulk tumor cells and the stem cell population: a study in ovarian cancer cell lines and in rodents. Gynecol Oncol. 2013;130(1):e135–6.CrossRef
19.
go back to reference Dastjerdi MN, Babazadeh Z, Rabbani M, Gharagozloo M, Esmaeili A, Narimani M. Effects of disulfiram on apoptosis in PANC-1 human pancreatic cancer cell line. Res Pharm Sci. 2014;9(4):287–94.PubMedPubMedCentral Dastjerdi MN, Babazadeh Z, Rabbani M, Gharagozloo M, Esmaeili A, Narimani M. Effects of disulfiram on apoptosis in PANC-1 human pancreatic cancer cell line. Res Pharm Sci. 2014;9(4):287–94.PubMedPubMedCentral
20.
go back to reference Guo F, Yang Z, Kulbe H, Albers AE, Sehouli J. Inhibitory effect on ovarian cancer ALDH+ stem-like cells by Disulfiram and Copper treatment through ALDH and ROS modulation. Biomed Pharmacother. 2019;118:109371.PubMedCrossRef Guo F, Yang Z, Kulbe H, Albers AE, Sehouli J. Inhibitory effect on ovarian cancer ALDH+ stem-like cells by Disulfiram and Copper treatment through ALDH and ROS modulation. Biomed Pharmacother. 2019;118:109371.PubMedCrossRef
21.
go back to reference Kaufmann, Albers AE, Yao WH, Qian X, Kinghammer K, Ochsenreither S. Disulfiram (Antabuse®) acts as potent radio-chemo sensitizer of HNSCC and derived stem cells in vitro. Laryngo Rhino Otol. 2018;97(S 02):S73. Kaufmann, Albers AE, Yao WH, Qian X, Kinghammer K, Ochsenreither S. Disulfiram (Antabuse®) acts as potent radio-chemo sensitizer of HNSCC and derived stem cells in vitro. Laryngo Rhino Otol. 2018;97(S 02):S73.
22.
go back to reference Yang Y, Li M, Sun X, et al. The selective cytotoxicity of DSF-Cu attributes to the biomechanical properties and cytoskeleton rearrangements in the normal and cancerous nasopharyngeal epithelial cells. Int J Biochem Cell Biol. 2017;84:96–108.PubMedCrossRef Yang Y, Li M, Sun X, et al. The selective cytotoxicity of DSF-Cu attributes to the biomechanical properties and cytoskeleton rearrangements in the normal and cancerous nasopharyngeal epithelial cells. Int J Biochem Cell Biol. 2017;84:96–108.PubMedCrossRef
23.
go back to reference Abu-Serie MM, El-Rashidy FH. In vitro collapsing colon cancer cells by selectivity of disulfiram-loaded charge switchable nanoparticles against cancer stem cells. Recent Pat Anticancer Drug Discov. 2017;12(3):260–71.PubMedCrossRef Abu-Serie MM, El-Rashidy FH. In vitro collapsing colon cancer cells by selectivity of disulfiram-loaded charge switchable nanoparticles against cancer stem cells. Recent Pat Anticancer Drug Discov. 2017;12(3):260–71.PubMedCrossRef
24.
go back to reference Zhao Y, Xiao Z, Chen WN, Yang JS, Li T, Fan B. Disulfiram sensitizes pituitary adenoma cells to temozolomide by regulating O6-methylguanine-DNA methyltransferase expression. Mol Med Rep. 2015;12(2):2313–22.PubMedCrossRef Zhao Y, Xiao Z, Chen WN, Yang JS, Li T, Fan B. Disulfiram sensitizes pituitary adenoma cells to temozolomide by regulating O6-methylguanine-DNA methyltransferase expression. Mol Med Rep. 2015;12(2):2313–22.PubMedCrossRef
25.
go back to reference Zhang L, Tian B, Li Y, et al. A copper-mediated disulfiram-loaded pH-triggered PEG-shedding TAT peptide-modified lipid nanocapsules for use in tumor therapy. ACS Appl Mater Interfaces. 2015;7(45):25147–61.PubMedCrossRef Zhang L, Tian B, Li Y, et al. A copper-mediated disulfiram-loaded pH-triggered PEG-shedding TAT peptide-modified lipid nanocapsules for use in tumor therapy. ACS Appl Mater Interfaces. 2015;7(45):25147–61.PubMedCrossRef
26.
go back to reference Han JB, Liu LM, Yue XQ, Chang JJ, Shi WD, Hua YQ. A binuclear complex constituted by diethyldithiocarbamate and copper(I) functions as a proteasome activity inhibitor in pancreatic cancer cultures and xenografts. Toxicol Appl Pharmacol. 2013;273(3):477–83.PubMedCrossRef Han JB, Liu LM, Yue XQ, Chang JJ, Shi WD, Hua YQ. A binuclear complex constituted by diethyldithiocarbamate and copper(I) functions as a proteasome activity inhibitor in pancreatic cancer cultures and xenografts. Toxicol Appl Pharmacol. 2013;273(3):477–83.PubMedCrossRef
27.
go back to reference Cen DZ, Gonzalez RI, Buckmeier JA, Kahlon RS, Tohidian NB, Meyskens FL. Disulfiram induces apoptosis in human melanoma cells: a redox-related process. Mol Cancer Ther. 2002;1(3):197–204.PubMed Cen DZ, Gonzalez RI, Buckmeier JA, Kahlon RS, Tohidian NB, Meyskens FL. Disulfiram induces apoptosis in human melanoma cells: a redox-related process. Mol Cancer Ther. 2002;1(3):197–204.PubMed
28.
go back to reference Peng X, Pan Q, Zhang B, et al. Highly stable, coordinated polymeric nanoparticles loading copper (II) diethyldithiocarbamate for combinational chemo/chemodynamic therapy of cancer. Biomacromolecules. 2019;20(6):2372–83.PubMedCrossRef Peng X, Pan Q, Zhang B, et al. Highly stable, coordinated polymeric nanoparticles loading copper (II) diethyldithiocarbamate for combinational chemo/chemodynamic therapy of cancer. Biomacromolecules. 2019;20(6):2372–83.PubMedCrossRef
29.
go back to reference Banerjee P, Geng T, Mahanty A, Li TT, Zong L, Wang B. Integrating the drug, disulfiram into the vitamin E-TPGS-modified PEGylated nanostructured lipid carriers to synergize its repurposing for anti-cancer therapy of solid tumors. Int J Pharm. 2019;557:374–89.PubMedCrossRef Banerjee P, Geng T, Mahanty A, Li TT, Zong L, Wang B. Integrating the drug, disulfiram into the vitamin E-TPGS-modified PEGylated nanostructured lipid carriers to synergize its repurposing for anti-cancer therapy of solid tumors. Int J Pharm. 2019;557:374–89.PubMedCrossRef
30.
go back to reference Ji YB, Liu B, Yu RQ, et al. Preparation of disulfiram naonosuspensions and their anti-tumor efficacy in vitro and in vivo. Acta Pharm Sin. 2019;54(3):565–73. Ji YB, Liu B, Yu RQ, et al. Preparation of disulfiram naonosuspensions and their anti-tumor efficacy in vitro and in vivo. Acta Pharm Sin. 2019;54(3):565–73.
31.
go back to reference Tao X, Gou J, Zhang Q, et al. Synergistic breast tumor cell killing achieved by intracellular co-delivery of doxorubicin and disulfiram via core-shell-corona nanoparticles. Biomater Sci. 2018;6(7):1869–81.PubMedCrossRef Tao X, Gou J, Zhang Q, et al. Synergistic breast tumor cell killing achieved by intracellular co-delivery of doxorubicin and disulfiram via core-shell-corona nanoparticles. Biomater Sci. 2018;6(7):1869–81.PubMedCrossRef
32.
go back to reference Song W, Tang Z, Lei T, et al. Stable loading and delivery of disulfiram with mPEG-PLGA/PCL mixed nanoparticles for tumor therapy. Nanomedicine. 2016;12(2):377–86.PubMedCrossRef Song W, Tang Z, Lei T, et al. Stable loading and delivery of disulfiram with mPEG-PLGA/PCL mixed nanoparticles for tumor therapy. Nanomedicine. 2016;12(2):377–86.PubMedCrossRef
33.
go back to reference Fasehee H, Dinarvand R, Ghavamzadeh A, et al. Delivery of disulfiram into breast cancer cells using folate-receptor-targeted PLGA-PEG nanoparticles: in vitro and in vivo investigations. J Nanobiotechnology. 2016;14:32.PubMedPubMedCentralCrossRef Fasehee H, Dinarvand R, Ghavamzadeh A, et al. Delivery of disulfiram into breast cancer cells using folate-receptor-targeted PLGA-PEG nanoparticles: in vitro and in vivo investigations. J Nanobiotechnology. 2016;14:32.PubMedPubMedCentralCrossRef
34.
go back to reference Song W, Tang Z, Shen N, et al. Combining disulfiram and poly(l-glutamic acid)-cisplatin conjugates for combating cisplatin resistance. Control Release. 2016;231:94–102.CrossRef Song W, Tang Z, Shen N, et al. Combining disulfiram and poly(l-glutamic acid)-cisplatin conjugates for combating cisplatin resistance. Control Release. 2016;231:94–102.CrossRef
35.
go back to reference Choi SA, Choi JW, Wang KC, et al. Disulfiram modulates stemness and metabolism of brain tumor initiating cells in atypical teratoid/rhabdoid tumors. Neuro Oncol. 2015;17(6):810–21.PubMedCrossRef Choi SA, Choi JW, Wang KC, et al. Disulfiram modulates stemness and metabolism of brain tumor initiating cells in atypical teratoid/rhabdoid tumors. Neuro Oncol. 2015;17(6):810–21.PubMedCrossRef
36.
go back to reference Cheriyan VT, Wang Y, Muthu M, et al. Disulfiram suppresses growth of the malignant pleural mesothelioma cells in part by inducing apoptosis. PLoS One. 2014;9(4):e93711.PubMedPubMedCentralCrossRef Cheriyan VT, Wang Y, Muthu M, et al. Disulfiram suppresses growth of the malignant pleural mesothelioma cells in part by inducing apoptosis. PLoS One. 2014;9(4):e93711.PubMedPubMedCentralCrossRef
37.
go back to reference Zhou L, Yang L, Yang C, et al. Membrane loaded copper oleate PEGylated liposome combined with disulfiram for improving synergistic antitumor effect in vivo. Pharm Res. 2018;35(7):147.PubMedCrossRef Zhou L, Yang L, Yang C, et al. Membrane loaded copper oleate PEGylated liposome combined with disulfiram for improving synergistic antitumor effect in vivo. Pharm Res. 2018;35(7):147.PubMedCrossRef
38.
go back to reference Allensworth JL, Evans MK, Bertucci F, et al. Disulfiram (DSF) acts as a copper ionophore to induce copper-dependent oxidative stress and mediate anti-tumor efficacy in inflammatory breast cancer. Mol Oncol. 2015;9(6):1155–68.PubMedPubMedCentralCrossRef Allensworth JL, Evans MK, Bertucci F, et al. Disulfiram (DSF) acts as a copper ionophore to induce copper-dependent oxidative stress and mediate anti-tumor efficacy in inflammatory breast cancer. Mol Oncol. 2015;9(6):1155–68.PubMedPubMedCentralCrossRef
39.
go back to reference Huang J, Chaudhary R, Cohen AL, et al. A multicenter phase II study of temozolomide plus disulfiram and copper for recurrent temozolomide-resistant glioblastoma. J Neurooncol. 2019;142(3):537–44.PubMedCrossRef Huang J, Chaudhary R, Cohen AL, et al. A multicenter phase II study of temozolomide plus disulfiram and copper for recurrent temozolomide-resistant glioblastoma. J Neurooncol. 2019;142(3):537–44.PubMedCrossRef
40.
go back to reference Huang J, Campian JL, Gujar AD, et al. Final results of a phase I dose-escalation, dose-expansion study of adding disulfiram with or without copper to adjuvant temozolomide for newly diagnosed glioblastoma. J Neurooncol. 2018;138(1):105–11.PubMedCrossRef Huang J, Campian JL, Gujar AD, et al. Final results of a phase I dose-escalation, dose-expansion study of adding disulfiram with or without copper to adjuvant temozolomide for newly diagnosed glioblastoma. J Neurooncol. 2018;138(1):105–11.PubMedCrossRef
41.
go back to reference You SY, Rui W, Chen ST, et al. Process of immunogenic cell death caused by disulfiram as the anti-colorectal cancer candidate. Biochem Biophys Res Commun. 2019;513(4):891–7.PubMedCrossRef You SY, Rui W, Chen ST, et al. Process of immunogenic cell death caused by disulfiram as the anti-colorectal cancer candidate. Biochem Biophys Res Commun. 2019;513(4):891–7.PubMedCrossRef
42.
go back to reference Nechushtan H, Hamamreh Y, Nidal S, et al. A phase IIb trial assessing the addition of disulfiram to chemotherapy for the treatment of metastatic non-small cell lung cancer. Oncologist. 2015;20(4):366–7.PubMedPubMedCentralCrossRef Nechushtan H, Hamamreh Y, Nidal S, et al. A phase IIb trial assessing the addition of disulfiram to chemotherapy for the treatment of metastatic non-small cell lung cancer. Oncologist. 2015;20(4):366–7.PubMedPubMedCentralCrossRef
43.
go back to reference Ekinci E, Rohondia S, Khan R, Dou QP. Repurposing disulfiram as an anti-cancer agent: updated review on literature and patents. Recent Pat Anticancer Drug Discov. 2019;14(2):113–32.PubMedCrossRef Ekinci E, Rohondia S, Khan R, Dou QP. Repurposing disulfiram as an anti-cancer agent: updated review on literature and patents. Recent Pat Anticancer Drug Discov. 2019;14(2):113–32.PubMedCrossRef
44.
go back to reference D’Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 2019;43(6):582–92.PubMedCrossRef D’Arcy MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 2019;43(6):582–92.PubMedCrossRef
45.
go back to reference Schmitt SM, Frezza M, Dou QP. New applications of old metal-binding drugs in the treatment of human cancer. Front Biosci (Schol Ed). 2012;4:375–91.CrossRef Schmitt SM, Frezza M, Dou QP. New applications of old metal-binding drugs in the treatment of human cancer. Front Biosci (Schol Ed). 2012;4:375–91.CrossRef
46.
go back to reference Banti CN, Hadjikakou SK. Anti-proliferative and anti-tumor activity of silver(I) compounds. Metallomics. 2013;5(6):569–96.PubMedCrossRef Banti CN, Hadjikakou SK. Anti-proliferative and anti-tumor activity of silver(I) compounds. Metallomics. 2013;5(6):569–96.PubMedCrossRef
47.
go back to reference Agarwal RP, Phillips M, McPherson RA, Hensley P. Serum albumin and the metabolism of disulfiram. Biochem Pharmacol. 1986;35(19):3341–7.PubMedCrossRef Agarwal RP, Phillips M, McPherson RA, Hensley P. Serum albumin and the metabolism of disulfiram. Biochem Pharmacol. 1986;35(19):3341–7.PubMedCrossRef
48.
go back to reference Salem K, McCormick ML, Wendlandt E, Zhan FH, Goel A. Copper-zinc superoxide dismutase-mediated redox regulation of bortezomib resistance in multiple myeloma. Redox Biol. 2015;4:23–33.PubMedCrossRef Salem K, McCormick ML, Wendlandt E, Zhan FH, Goel A. Copper-zinc superoxide dismutase-mediated redox regulation of bortezomib resistance in multiple myeloma. Redox Biol. 2015;4:23–33.PubMedCrossRef
49.
go back to reference Majera D, Skrott Z, Bouchal J, et al. Targeting genotoxic and proteotoxic stress-response pathways in human prostate cancer by clinically available PARP inhibitors, vorinostat and disulfiram. Prostate. 2019;79(4):352–62.PubMedCrossRef Majera D, Skrott Z, Bouchal J, et al. Targeting genotoxic and proteotoxic stress-response pathways in human prostate cancer by clinically available PARP inhibitors, vorinostat and disulfiram. Prostate. 2019;79(4):352–62.PubMedCrossRef
50.
go back to reference Calderon-Aparicio A, Cornejo A, Orue A, Rieber M. Anticancer response to disulfiram may be enhanced by co-treatment with MEK inhibitor or oxaliplatin: modulation by tetrathiomolybdate, KRAS/BRAF mutations and c-MYC/p53 status. Ecancermedicalscience. 2019;13:890.PubMedPubMedCentral Calderon-Aparicio A, Cornejo A, Orue A, Rieber M. Anticancer response to disulfiram may be enhanced by co-treatment with MEK inhibitor or oxaliplatin: modulation by tetrathiomolybdate, KRAS/BRAF mutations and c-MYC/p53 status. Ecancermedicalscience. 2019;13:890.PubMedPubMedCentral
51.
go back to reference Miao L, Su J, Zhuo X, et al. mPEG5k- b-PLGA2k/PCL3.4k/MCT Mixed micelles as carriers of disulfiram for improving plasma stability and antitumor effect in vivo. Mol Pharm. 2018;15(4):1556–64.PubMedCrossRef Miao L, Su J, Zhuo X, et al. mPEG5k- b-PLGA2k/PCL3.4k/MCT Mixed micelles as carriers of disulfiram for improving plasma stability and antitumor effect in vivo. Mol Pharm. 2018;15(4):1556–64.PubMedCrossRef
52.
go back to reference Estey E, Othus M, Lee SJ, Appelbaum FR, Gale RP. New drug approvals in acute myeloid leukemia: what’s the best end point? Leukemia. 2016;30(3):521–5.PubMedCrossRef Estey E, Othus M, Lee SJ, Appelbaum FR, Gale RP. New drug approvals in acute myeloid leukemia: what’s the best end point? Leukemia. 2016;30(3):521–5.PubMedCrossRef
53.
go back to reference Huo Q, Zhu J, Niu Y, et al. pH-triggered surface charge-switchable polymer micelles for the co-delivery of paclitaxel/disulfiram and overcoming multidrug resistance in cancer. Int J Nanomedicine. 2017;12:8631–47.PubMedPubMedCentralCrossRef Huo Q, Zhu J, Niu Y, et al. pH-triggered surface charge-switchable polymer micelles for the co-delivery of paclitaxel/disulfiram and overcoming multidrug resistance in cancer. Int J Nanomedicine. 2017;12:8631–47.PubMedPubMedCentralCrossRef
Metadata
Title
Anticancer effects of disulfiram: a systematic review of in vitro, animal, and human studies
Authors
Ling Wang
Yang Yu
Cong Zhou
Run Wan
Yumin Li
Publication date
01-12-2022
Publisher
BioMed Central
Published in
Systematic Reviews / Issue 1/2022
Electronic ISSN: 2046-4053
DOI
https://doi.org/10.1186/s13643-021-01858-4

Other articles of this Issue 1/2022

Systematic Reviews 1/2022 Go to the issue