Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2015

Open Access 01-12-2015 | Research article

Antibiotic additive and synergistic action of rutin, morin and quercetin against methicillin resistant Staphylococcus aureus

Authors: Muhammad Usman Amin, Muhammad Khurram, Baharullah Khattak, Jafar Khan

Published in: BMC Complementary Medicine and Therapies | Issue 1/2015

Login to get access

Abstract

Background

To determine the effect of flavonoids in conjunction with antibiotics in methicillin resistant Staphylococcus aureus (MRSA) a study was designed. The flavonoids included Rutin, Morin, Qurecetin while antibiotics included ampicillin, amoxicillin, cefixime, ceftriaxone, vancomycin, methicillin, cephradine, erythromycin, imipenem, sulphamethoxazole/trimethoprim, ciprofloxacin and levolfloxacin. Test antibiotics were mostly found resistant with only Imipenem and Erythromycin found to be sensitive against 100 MRSA clinical isolates and S. aureus (ATCC 43300). The flavonoids were tested alone and also in different combinations with selected antibiotics.

Methods

Antibiotics and flavonoids sensitivity assays were carried using disk diffusion method. The combinations found to be effective were sifted through MIC assays by broth macro dilution method. Exact MICs were determined using an incremental increase approach. Fractional inhibitory concentration indices (FICI) were determined to evaluate relationship between antibiotics and flavonoids is synergistic or additive. Potassium release was measured to determine the effect of antibiotic-flavonoids combinations on the cytoplasmic membrane of test bacteria.

Results

Antibiotic and flavonoids screening assays indicated activity of flavanoids against test bacteria. The inhibitory zones increased when test flavonoids were combined with antibiotics facing resistance. MICs of test antibiotics and flavonoids reduced when they were combined. Quercetin was the most effective flavonoid (MIC 260 μg/ml) while morin + rutin + quercetin combination proved most efficient with MIC of 280 + 280 + 140 μg/ml. Quercetin + morin + rutin with amoxicillin, ampicillin, cephradine, ceftriaxone, imipenem, and methicillin showed synergism, while additive relationship was indicated between morin + rutin and amoxicillin, cephradine, ceftriaxone, imipenem, and methicillin. Quercetin alone had an additive effect with ampicillin, cephradine, ceftriaxone, imipenem, and methicillin. Potassium leakage was highest for morin + rutin + quercetin that improved further in combination with imipenem. Morin and rutin alone had no activity but in combination showed activity against test bacteria.

Conclusions

The flavonoids when used in combination with antibiotics were found to increase each other activity against test bacteria. The relationship between the flavonoids and antibiotics in most of the cases was additive. However in a few cases synergism was also observed. Flavonoids alone or in combinations also damaged bacterial cell membrane.
Literature
1.
go back to reference Mazid M, Khan TA, Mohammad F. Role of secondary metabolites in defense mechanisms of plants. Biol Med. 2011;3(2):232–49. Mazid M, Khan TA, Mohammad F. Role of secondary metabolites in defense mechanisms of plants. Biol Med. 2011;3(2):232–49.
2.
go back to reference Bandi AK, Lee DU. Secondary metabolites of plants from the genus Cipadessa: chemistry and biological activity. Chem Biodivers. 2012;9(8):1403–21.CrossRefPubMed Bandi AK, Lee DU. Secondary metabolites of plants from the genus Cipadessa: chemistry and biological activity. Chem Biodivers. 2012;9(8):1403–21.CrossRefPubMed
3.
go back to reference Wang YF, Ni ZY, Dong M, Cong B, Shi QW, Gu YC, et al. Secondary metabolites of plants from the genus Saussurea chemistry and biological activity. Chem Biodivers. 2010;7(11):2623–59.CrossRefPubMed Wang YF, Ni ZY, Dong M, Cong B, Shi QW, Gu YC, et al. Secondary metabolites of plants from the genus Saussurea chemistry and biological activity. Chem Biodivers. 2010;7(11):2623–59.CrossRefPubMed
4.
go back to reference Cushnie TP, Lamb AJ. Detection of galangin-induced cytoplasmic membrane damage in Staphylococcus aureus by measuring potassium loss. J Ehanopharmacol. 2005;101:243–8.CrossRef Cushnie TP, Lamb AJ. Detection of galangin-induced cytoplasmic membrane damage in Staphylococcus aureus by measuring potassium loss. J Ehanopharmacol. 2005;101:243–8.CrossRef
5.
go back to reference Bylka W, Matlawska I, Pilewski NA. Natural flavonoids as antimicrobial agents. J Am Nutraceutical Assoc. 2004;7(2):24–31. Bylka W, Matlawska I, Pilewski NA. Natural flavonoids as antimicrobial agents. J Am Nutraceutical Assoc. 2004;7(2):24–31.
6.
go back to reference Cushnie TP, Lamb AJ. Antimicrobial activity of flavonoids. Int J of Antimicrob Agents. 2005;26:343–56.CrossRef Cushnie TP, Lamb AJ. Antimicrobial activity of flavonoids. Int J of Antimicrob Agents. 2005;26:343–56.CrossRef
7.
go back to reference Xu HX, Lee SF. Activity of plant flavonoids against antibiotic-resistant bacteria. Phytother Res. 2001;15:39–43.CrossRefPubMed Xu HX, Lee SF. Activity of plant flavonoids against antibiotic-resistant bacteria. Phytother Res. 2001;15:39–43.CrossRefPubMed
8.
go back to reference Shibata H, Kondo K, Katsuyama R, Kawazoe K, Sato Y, Murakami K, et al. Alkyl gallates, intensifiers of beta lactam susceptibility in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2005;49:549–55.CrossRefPubMedPubMedCentral Shibata H, Kondo K, Katsuyama R, Kawazoe K, Sato Y, Murakami K, et al. Alkyl gallates, intensifiers of beta lactam susceptibility in methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2005;49:549–55.CrossRefPubMedPubMedCentral
9.
go back to reference Mutao CA, Jarnigan JA, Ostrowsky BE, Richet HM, Jarvis WR, Boyce JM, et al. SHEA guidelines for preventive Nosocomial transmission of multiresistant strains of Staphlococcus aureus and Enterococcus. Infect Control Hosp Epidemiol. 2004;24:362–8.CrossRef Mutao CA, Jarnigan JA, Ostrowsky BE, Richet HM, Jarvis WR, Boyce JM, et al. SHEA guidelines for preventive Nosocomial transmission of multiresistant strains of Staphlococcus aureus and Enterococcus. Infect Control Hosp Epidemiol. 2004;24:362–8.CrossRef
10.
go back to reference Idrees F, Jabeen K, Khan MS, Zafar A. Antimicrobial resistance profile of Methicillin Resistant Staphylococcal Aureus from skin and soft tissue isolates. J Pak Assoc. 2009;59(5):266–9. Idrees F, Jabeen K, Khan MS, Zafar A. Antimicrobial resistance profile of Methicillin Resistant Staphylococcal Aureus from skin and soft tissue isolates. J Pak Assoc. 2009;59(5):266–9.
11.
go back to reference Engelkirk PG, Duben-Engelkirk JL. Laboratory Diagnosis of Infectious Diseases, Essential of Diagnostic Microbiology. In: Gram positive Cocci. Philadelphia PA: Lippincott Williams & Wilkins; 2008. p. 215–9. Engelkirk PG, Duben-Engelkirk JL. Laboratory Diagnosis of Infectious Diseases, Essential of Diagnostic Microbiology. In: Gram positive Cocci. Philadelphia PA: Lippincott Williams & Wilkins; 2008. p. 215–9.
12.
go back to reference Bannerman TL. Staphylococcus, Micrococcus, and other catalase-positive cocci that grow aerobically. In: Murray PR, Baron EJ, Jorgensen JH, Pfaller MA, Yolken RH, editors. Manual of clinical microbiology. 8th ed. Washington, D.C: American Society for Microbiology Press; 2003. Bannerman TL. Staphylococcus, Micrococcus, and other catalase-positive cocci that grow aerobically. In: Murray PR, Baron EJ, Jorgensen JH, Pfaller MA, Yolken RH, editors. Manual of clinical microbiology. 8th ed. Washington, D.C: American Society for Microbiology Press; 2003.
13.
go back to reference Ergene A, Guler P, Tan S, Mirici S, Hamzaoglu E, Duran A. Antimicrobial and antifungal activity of Heracleum sphondylium subsp. artivinense. Afr J Biotechnol. 2006;5(11):1087–9. Ergene A, Guler P, Tan S, Mirici S, Hamzaoglu E, Duran A. Antimicrobial and antifungal activity of Heracleum sphondylium subsp. artivinense. Afr J Biotechnol. 2006;5(11):1087–9.
14.
go back to reference Sakharkar MK, Jayaraman P, Soe WM, Chow VTK, Sing LC, Sakharkar K. In vitro combinations of antibiotics and phytochemicals against Pseudomonas aeruginosa. J Microbiol Immunol Infect. 2009;42:364–70.PubMed Sakharkar MK, Jayaraman P, Soe WM, Chow VTK, Sing LC, Sakharkar K. In vitro combinations of antibiotics and phytochemicals against Pseudomonas aeruginosa. J Microbiol Immunol Infect. 2009;42:364–70.PubMed
15.
go back to reference Arima H, Ashida H, Danno G. Rutin-enhanced antibacterial activities of flavonoids against Bacillus cereus and Salmonella enteritidis. Biosci Biotechno Biochem. 2002;66(5):1009–14.CrossRef Arima H, Ashida H, Danno G. Rutin-enhanced antibacterial activities of flavonoids against Bacillus cereus and Salmonella enteritidis. Biosci Biotechno Biochem. 2002;66(5):1009–14.CrossRef
16.
go back to reference European Committee on Antimicrobial Susceptibility Testing. Terminology relating to methods for the determination of susceptibility of bacteria to antimicrobial agents. EUCAST Definitive Document E. Def 1.2. Clini Microbiol Infect. 2000;6:503–8.CrossRef European Committee on Antimicrobial Susceptibility Testing. Terminology relating to methods for the determination of susceptibility of bacteria to antimicrobial agents. EUCAST Definitive Document E. Def 1.2. Clini Microbiol Infect. 2000;6:503–8.CrossRef
17.
go back to reference Khan A, Faisal S, Hasnain S. The continuing threat of methicillin-resistant staphylococcus aureus- past present future. J Scientific Res. 2010;40:37–45. Khan A, Faisal S, Hasnain S. The continuing threat of methicillin-resistant staphylococcus aureus- past present future. J Scientific Res. 2010;40:37–45.
18.
go back to reference Alvarez MDLA, Debattista NB, Pappano NB. Synergism of flavonoids with bacteriostatic action against Staphylococcus aureus ATCC 25 923 and Escherichia coli ATCC 25 922. Biocell. 2006;30(1):39–42. Alvarez MDLA, Debattista NB, Pappano NB. Synergism of flavonoids with bacteriostatic action against Staphylococcus aureus ATCC 25 923 and Escherichia coli ATCC 25 922. Biocell. 2006;30(1):39–42.
19.
go back to reference Lupaşcus D, Tuchiluş C, Profire L. Physico - chemical and antimicrobial properties of novel rutin derivatives with 6-aminopenicillanic acid. Farmacia. 2010;56(5):501–6. Lupaşcus D, Tuchiluş C, Profire L. Physico - chemical and antimicrobial properties of novel rutin derivatives with 6-aminopenicillanic acid. Farmacia. 2010;56(5):501–6.
20.
go back to reference Woènicka E, Kuèniar A, Nowak D, Nykiel E, Kopacz M, Gruszecka J, et al. Comparative study on the antibacterial activity of some flavonoids and their sulfonic derivatives. Pol Soc Pharm Drug Res. 2013;70(3):567–71. Woènicka E, Kuèniar A, Nowak D, Nykiel E, Kopacz M, Gruszecka J, et al. Comparative study on the antibacterial activity of some flavonoids and their sulfonic derivatives. Pol Soc Pharm Drug Res. 2013;70(3):567–71.
21.
go back to reference Hirai I, Okuno M, Katsuma R, Arita N, Tachibana M, Yamamoto Y. Characterisation of anti-Staphylococcus aureus activity of Quercetin. Int J Food Sci Technol. 2010;45:1250–4.CrossRef Hirai I, Okuno M, Katsuma R, Arita N, Tachibana M, Yamamoto Y. Characterisation of anti-Staphylococcus aureus activity of Quercetin. Int J Food Sci Technol. 2010;45:1250–4.CrossRef
22.
go back to reference Kyaw BM, Arora S, Win KN, Daniel LCS. Prevention of emergence of fusidic acid and rifampicin resistance in Staphylococcus aureus using phytochemicals. Afr J Microbiol Res. 2011;5(22):3684–92. Kyaw BM, Arora S, Win KN, Daniel LCS. Prevention of emergence of fusidic acid and rifampicin resistance in Staphylococcus aureus using phytochemicals. Afr J Microbiol Res. 2011;5(22):3684–92.
23.
go back to reference Xing ZC, Meng W, Yuan J, Moon S, JeongY KyuKang I. In vitro assessment of antibacterial activity and cytocompatibility of quercetin-containing PLGA nanofibrous scaffolds for tissue engineering. J Nanomaterials. 2012;2012:1–7.CrossRef Xing ZC, Meng W, Yuan J, Moon S, JeongY KyuKang I. In vitro assessment of antibacterial activity and cytocompatibility of quercetin-containing PLGA nanofibrous scaffolds for tissue engineering. J Nanomaterials. 2012;2012:1–7.CrossRef
24.
go back to reference Kyaw BM, Arora A, Lim CS. Bactericidal antibiotic-phytochemical combinations against methicillin resistant Staphylococcus Aureus. Braz J of Microbiol. 2012;43(3):938–45.CrossRef Kyaw BM, Arora A, Lim CS. Bactericidal antibiotic-phytochemical combinations against methicillin resistant Staphylococcus Aureus. Braz J of Microbiol. 2012;43(3):938–45.CrossRef
25.
go back to reference Goyal P, Aggarwal BK, Garg S. A study on combinatorial effects of various flavonoids for their antibacterial potential against clinically significant bacterial species. Hacettepe J Biol Chem. 2010;38(4):255–8. Goyal P, Aggarwal BK, Garg S. A study on combinatorial effects of various flavonoids for their antibacterial potential against clinically significant bacterial species. Hacettepe J Biol Chem. 2010;38(4):255–8.
26.
go back to reference Hendra R, Ahmad S, Sukari A, Shukor MY, Oskoueian E. Flavonoid analysis and antimicrobial activity of various parts of Phaleria macrocarpa (Scheff.) Boerl fruit. Int J Mol Sci. 2011;12:3422–31.CrossRefPubMedPubMedCentral Hendra R, Ahmad S, Sukari A, Shukor MY, Oskoueian E. Flavonoid analysis and antimicrobial activity of various parts of Phaleria macrocarpa (Scheff.) Boerl fruit. Int J Mol Sci. 2011;12:3422–31.CrossRefPubMedPubMedCentral
27.
go back to reference Pereira AC, Oliveira DF, Geraldo H, Silva GH, Figueiredo HCP, Cavalheiro AJ. Identification of the antimicrobial substances produced by Solanum palinacanthum (Solanaceae). Ann Braz Academy Sci. 2008;80:427–32.CrossRef Pereira AC, Oliveira DF, Geraldo H, Silva GH, Figueiredo HCP, Cavalheiro AJ. Identification of the antimicrobial substances produced by Solanum palinacanthum (Solanaceae). Ann Braz Academy Sci. 2008;80:427–32.CrossRef
28.
go back to reference Rauha JP, Remes S, Heinonen M, Hopia A, Kaahkonen M, Kujala T, et al. Antimicrobial effects of finnish plant extracts containing flavonoids and other phenolic compounds. Int J Food Microbiol. 2003;56:3–12.CrossRef Rauha JP, Remes S, Heinonen M, Hopia A, Kaahkonen M, Kujala T, et al. Antimicrobial effects of finnish plant extracts containing flavonoids and other phenolic compounds. Int J Food Microbiol. 2003;56:3–12.CrossRef
29.
go back to reference Kopacz M, Woènicka L, Gruszecka J. Antibacterial activity of morin and its complexes with La(III), Gd(III) AND Lu(III) IONS. Pol Pharm Society. 2005;62(1):65–7. Kopacz M, Woènicka L, Gruszecka J. Antibacterial activity of morin and its complexes with La(III), Gd(III) AND Lu(III) IONS. Pol Pharm Society. 2005;62(1):65–7.
30.
go back to reference Alvarez MA, Debattista NB, Pappano NB. Antimicrobial activity and synergism of some substituted flavonoids. Folia Microbioligica. 2008;53(1):23–8.CrossRef Alvarez MA, Debattista NB, Pappano NB. Antimicrobial activity and synergism of some substituted flavonoids. Folia Microbioligica. 2008;53(1):23–8.CrossRef
31.
go back to reference Jones RN, Farrell DJ, Mendes RE, Sader HS. Comparative ceftaroline activity tested against pathogens associated with community-acquired pneumonia: results from an international surveillance study. J Antimicrob Chemother. 2011;66:69–80.CrossRef Jones RN, Farrell DJ, Mendes RE, Sader HS. Comparative ceftaroline activity tested against pathogens associated with community-acquired pneumonia: results from an international surveillance study. J Antimicrob Chemother. 2011;66:69–80.CrossRef
32.
go back to reference Odenholt I, Lowdin E, Cars O. In vitro pharmacodynamic studies of L-749345 in comparison with imipenem and Ceftriaxone against gram positive and gram negative bacteria. Antimicrob Agents Chemother. 1998;42(9):2365–70.PubMedPubMedCentral Odenholt I, Lowdin E, Cars O. In vitro pharmacodynamic studies of L-749345 in comparison with imipenem and Ceftriaxone against gram positive and gram negative bacteria. Antimicrob Agents Chemother. 1998;42(9):2365–70.PubMedPubMedCentral
33.
go back to reference Aboulmagd E, Al-Mohammad HI, A-Badry S. Synergism and postantibiotic effect of green tree extract and imipenem against methicillin-resistant Staphylococcus sureus. Microbiol J. 2011;1(3):89–96.CrossRef Aboulmagd E, Al-Mohammad HI, A-Badry S. Synergism and postantibiotic effect of green tree extract and imipenem against methicillin-resistant Staphylococcus sureus. Microbiol J. 2011;1(3):89–96.CrossRef
34.
go back to reference Campos FM, Couto JA, Figueiredo AR, Tóth IV, Rangel AOSS, Hogg TA. Cell membrane damage induced by phenolic acids on wine lactic acid bacteria. Int J Microbiol. 2009;135(2):144–51.CrossRef Campos FM, Couto JA, Figueiredo AR, Tóth IV, Rangel AOSS, Hogg TA. Cell membrane damage induced by phenolic acids on wine lactic acid bacteria. Int J Microbiol. 2009;135(2):144–51.CrossRef
Metadata
Title
Antibiotic additive and synergistic action of rutin, morin and quercetin against methicillin resistant Staphylococcus aureus
Authors
Muhammad Usman Amin
Muhammad Khurram
Baharullah Khattak
Jafar Khan
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2015
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-015-0580-0

Other articles of this Issue 1/2015

BMC Complementary Medicine and Therapies 1/2015 Go to the issue