Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2018

Open Access 01-12-2018 | Research article

Antibacterial efficacy of leaf extracts of Combretum album Pers. against some pathogenic bacteria

Authors: Sunanda Burman, Kuntal Bhattacharya, Devaleena Mukherjee, Goutam Chandra

Published in: BMC Complementary Medicine and Therapies | Issue 1/2018

Login to get access

Abstract

Background

Plant derived medicines show significant contributions to mankind in treating infections of pathogenic bacteria. Recently plants are used in pharmaceutical industries for novel drug preparations because to ensure efficacy and safety as synthetic antibiotics are threatened for their multidrug resistance. The present study aimed at finding antibacterial potential of aqueous and ethanolic leaf extracts of Combretum album.

Methods

Antibacterial activity was evaluated against seven bacterial strains by determining minimum inhibitory concentration (MIC) and zone of inhibition. Diameters of the zone of inhibition were compared with standard antibiotics. Preliminary phytochemical screening was done according to standard protocol. FTIR analysis was performed to identify the general phytochemical groups of compounds in the extract. All experiments were conducted in triplicate and values were expressed as the mean ± standard deviation. One-way analysis of variance (ANOVA) and Tukey tests were performed for statistical justification.

Results

Maximum zones of inhibition were found in case of ethanolic extracts in the following order Bacillus licheniformis (MTCC 530) > Pseudomonas aeruginosa (MTCC 2453) > Bacillus subtilis (MTCC 441) >, Pseudomonas fluorescens (MTCC 103) > Bacillus mycoides (MTCC 7343) > Escherichia coli (MTCC 739) > Pseudomonas putida (MTCC 1654) with zone of inhibition of 27.67 ± 0.33 mm diameter in B. licheniformis (MTCC 530). Qualitatively, the ethanol extract contains flavonoids, tannins and alkaloids. The results of FTIR analysis confirmed the presence of R-CH2-OH groups, aromatics, C-N stretching amine and NH stretching secondary amine. One way ANOVA and Tukey tests statistically justify the data (p ≤ 0.05).

Conclusions

All the tested leaf extracts showed promising antibacterial activity against both gram positive and gram negative bacteria. Phytochemical screening and FTIR analysis revealed the presence of tannins, alkaloids, R-CH2-OH groups, aromatics and flavonoids in ethanolic leaf extract qualitatively and these compounds could be responsible for antibacterial property of leaf extracts of C. album.
Literature
1.
go back to reference Coates A, Hu YM, Bax R, Page C. The future challenges facing the development of new antimicrobial drugs. Nat Rev Drug Discov. 2009;1:895–910.CrossRef Coates A, Hu YM, Bax R, Page C. The future challenges facing the development of new antimicrobial drugs. Nat Rev Drug Discov. 2009;1:895–910.CrossRef
2.
go back to reference Levy SB. The antibiotic paradox: how the misuse of antibiotics destroys their curative powers. Cambridge. In: MA: Perseus publishing; 2002. Levy SB. The antibiotic paradox: how the misuse of antibiotics destroys their curative powers. Cambridge. In: MA: Perseus publishing; 2002.
3.
go back to reference Dahanukur SA, Kulkarni RA, Rege NN. Pharmacology of medicinal plants and natural products. Ind J Pharmacol. 2002;32:s81–s118. Dahanukur SA, Kulkarni RA, Rege NN. Pharmacology of medicinal plants and natural products. Ind J Pharmacol. 2002;32:s81–s118.
5.
go back to reference Rawani A, Pal S, Chandra G. Evaluation of antibacterial properties of four plant extracts against human pathogens. Asian Pac J Trop Biomed. 2000;1:s71–5.CrossRef Rawani A, Pal S, Chandra G. Evaluation of antibacterial properties of four plant extracts against human pathogens. Asian Pac J Trop Biomed. 2000;1:s71–5.CrossRef
6.
go back to reference Chatterjee SK, Bhattacharjee I, Chandra G. Bactericidal activities of some common herbs in India. Pharm Biol. 2007;45:350–4.CrossRef Chatterjee SK, Bhattacharjee I, Chandra G. Bactericidal activities of some common herbs in India. Pharm Biol. 2007;45:350–4.CrossRef
7.
go back to reference Abraham J, Chakraborty P, Chacko AM, Khare K. Cytotoxicity and antimicrobial effects of Pistia stratiotes leaves. Int J Drug Dev & Res. 2014;6(4):208–21. Abraham J, Chakraborty P, Chacko AM, Khare K. Cytotoxicity and antimicrobial effects of Pistia stratiotes leaves. Int J Drug Dev & Res. 2014;6(4):208–21.
8.
go back to reference Bhattacharya K, Burman S, Nandi S, Roy P, Chatterjee D, Chandra G. Phytochemical extractions from the leaves of Ravenala madagasariensis from Sundarban area and its effect on southern house mosquito ( Culex quinquefasciatus Say 1823) larvae. J Mosq Res. 2014;4(12):1–6. Bhattacharya K, Burman S, Nandi S, Roy P, Chatterjee D, Chandra G. Phytochemical extractions from the leaves of Ravenala madagasariensis from Sundarban area and its effect on southern house mosquito ( Culex quinquefasciatus Say 1823) larvae. J Mosq Res. 2014;4(12):1–6.
9.
go back to reference Singh A, Bhattacharya K, Chandra G. Efficacy of Nicotiana plumbaginifolia (Solanaceae) leaf extracts as larvicide against malarial vector Anopheles stephensi Liston 1901. Int J pharma bio Sci. 2015; 6(1): (b) 860–868. Singh A, Bhattacharya K, Chandra G. Efficacy of Nicotiana plumbaginifolia (Solanaceae) leaf extracts as larvicide against malarial vector Anopheles stephensi Liston 1901. Int J pharma bio Sci. 2015; 6(1): (b) 860–868.
10.
go back to reference Mukherjee D, Bhattacharya K, Chandra G. Extracts of edible pods of Moringa oleifera lam. (Moringaceae) as novel antibacterial agent against some pathogenic bacteria. Int J Pharma Bio Sci 2015; 6(3): (B) 513–520. Mukherjee D, Bhattacharya K, Chandra G. Extracts of edible pods of Moringa oleifera lam. (Moringaceae) as novel antibacterial agent against some pathogenic bacteria. Int J Pharma Bio Sci 2015; 6(3): (B) 513–520.
11.
go back to reference Dellavalle PD, Cabrera A, Alem D, Larrañaga P, Ferreira F, Rizza MD. Antifungal activity of medicinal plant extracts against phytopathogenic fungus Alternaria spp. Chil J Agri Res. 2011;71(2):231–9.CrossRef Dellavalle PD, Cabrera A, Alem D, Larrañaga P, Ferreira F, Rizza MD. Antifungal activity of medicinal plant extracts against phytopathogenic fungus Alternaria spp. Chil J Agri Res. 2011;71(2):231–9.CrossRef
12.
go back to reference Baroni S, Suzuki-Kemmelmeier F, Caparroz-Assef SM, Cuman RKN, Bersani-Amado CA. Effect of crude extracts of leaves of Smallanthus sonchifolius (Yacon) on glycemia in diabetic rats. Braz J Pharm Sci. 2008;44(3):511–30. Baroni S, Suzuki-Kemmelmeier F, Caparroz-Assef SM, Cuman RKN, Bersani-Amado CA. Effect of crude extracts of leaves of Smallanthus sonchifolius (Yacon) on glycemia in diabetic rats. Braz J Pharm Sci. 2008;44(3):511–30.
13.
go back to reference World Health Organization. International classification of diseases: (9th) ninth revision. In: Basic tabulation list with alphabetic index; 1978. World Health Organization. International classification of diseases: (9th) ninth revision. In: Basic tabulation list with alphabetic index; 1978.
14.
go back to reference Cragg GM, Newman DJ, Snader KM. Natural products in drug discovery and development. J Nat Prod. 1997;60:52–60.CrossRefPubMed Cragg GM, Newman DJ, Snader KM. Natural products in drug discovery and development. J Nat Prod. 1997;60:52–60.CrossRefPubMed
15.
go back to reference Zwetlana A, Nandini M, Dorcas K. Antimicrobial activity of medicinal plant extracts on gram negative bacteria. J Med Plant Stud. 2014;2(5):51–4. Zwetlana A, Nandini M, Dorcas K. Antimicrobial activity of medicinal plant extracts on gram negative bacteria. J Med Plant Stud. 2014;2(5):51–4.
16.
go back to reference Abere TA, Agoreyo FO. Antimicrobial and toxicological evaluation of the leaves of Brassia axillaries Hua used in the management of HIV/AIDS patients. BMC Complement and Altern Med. 2006;6:22.CrossRef Abere TA, Agoreyo FO. Antimicrobial and toxicological evaluation of the leaves of Brassia axillaries Hua used in the management of HIV/AIDS patients. BMC Complement and Altern Med. 2006;6:22.CrossRef
18.
go back to reference Sanyal MN. Flora of Bankura District West Bengal, 1994. p.166. Sanyal MN. Flora of Bankura District West Bengal, 1994. p.166.
19.
go back to reference Begum T, Amit Sarker A, Akhter S. Comparative study on Combretum and Terminalia species of the Combretaceae family. Pharmacophore. 2016;7(1):41–3. Begum T, Amit Sarker A, Akhter S. Comparative study on Combretum and Terminalia species of the Combretaceae family. Pharmacophore. 2016;7(1):41–3.
20.
go back to reference Chopra NR, Nayar S L, Chopra IC. Glossary of Indian medicinal plants (including the supplement). CSIR, New Delhi.1986. Chopra NR, Nayar S L, Chopra IC. Glossary of Indian medicinal plants (including the supplement). CSIR, New Delhi.1986.
21.
go back to reference Bhatnagar S, Sunita Sahoo S, Mohapatra AK, and Behera DR. Phytochemical analysis, antioxidant and cytotoxic activity of medicinal plant Combretum roxburghii (family: Combretaceae). January-march. 2012 2014; 4(1):193–202. Bhatnagar S, Sunita Sahoo S, Mohapatra AK, and Behera DR. Phytochemical analysis, antioxidant and cytotoxic activity of medicinal plant Combretum roxburghii (family: Combretaceae). January-march. 2012 2014; 4(1):193–202.
22.
go back to reference Singha Ray A, Bhattacharya K, Chandra G. Target specific larvicidal effect of Capparis zeylanica (Capparaceae) foliages against filarial vector Culex quinquefasciatus Say (1823). Int J pharm bio Sci. 2015; 6(3): (B) 139–148. Singha Ray A, Bhattacharya K, Chandra G. Target specific larvicidal effect of Capparis zeylanica (Capparaceae) foliages against filarial vector Culex quinquefasciatus Say (1823). Int J pharm bio Sci. 2015; 6(3): (B) 139–148.
23.
go back to reference Bhattacharya K, Chandra G. Phagodeterrence, larvicidal and oviposition deterrence activity of Tragia involucrata L. (Euphorbiaceae) root extractives against vector of lymphatic filariasis Culex quinquefasciatus (Diptera: Culicidae). Asian Pac J Trop Dis. 2014;4(1):226–32.CrossRef Bhattacharya K, Chandra G. Phagodeterrence, larvicidal and oviposition deterrence activity of Tragia involucrata L. (Euphorbiaceae) root extractives against vector of lymphatic filariasis Culex quinquefasciatus (Diptera: Culicidae). Asian Pac J Trop Dis. 2014;4(1):226–32.CrossRef
24.
go back to reference Bhattacharjee I, Chatterjee SK, Ghosh A, Chandra G. Antibacterial activities of some plant extracts used in Indian traditional folk medicine. Asian Pac J Trop Biomed. 2011:s165–9. Bhattacharjee I, Chatterjee SK, Ghosh A, Chandra G. Antibacterial activities of some plant extracts used in Indian traditional folk medicine. Asian Pac J Trop Biomed. 2011:s165–9.
25.
go back to reference National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial disc susceptibility tests. Approved standard NCCLS Publications M2-A5. Villanova, PA, USA .1993. National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial disc susceptibility tests. Approved standard NCCLS Publications M2-A5. Villanova, PA, USA .1993.
26.
go back to reference Ncube NS, Afolayan AJ, Okoh AI. Assessment techniques of antimicrobial properties of natural compounds of plant origin: current methods and future trends. Afr J Biotechnol. 2008;7(12):1797–806.CrossRef Ncube NS, Afolayan AJ, Okoh AI. Assessment techniques of antimicrobial properties of natural compounds of plant origin: current methods and future trends. Afr J Biotechnol. 2008;7(12):1797–806.CrossRef
27.
go back to reference Harborne JB. Phytochemical methods. 2nd ed. Chapman & Hall: London 1984; 85: 196. Harborne JB. Phytochemical methods. 2nd ed. Chapman & Hall: London 1984; 85: 196.
28.
go back to reference Sofowora A. Medicinal plants and medicine in Africa. Spectrum Books Ltd Ibadan. 1993:150–3. Sofowora A. Medicinal plants and medicine in Africa. Spectrum Books Ltd Ibadan. 1993:150–3.
29.
go back to reference Mukhtar S, Ghori I. Antibacterial activity of aqueous and ethanolic extracts of garlic, cinnamon and turmeric against Escherichia coli ATCC 25922 and Bacillus subtilis DSM 3256. Int J Appl Biol Pharm. 2012;3(2):131–6. Mukhtar S, Ghori I. Antibacterial activity of aqueous and ethanolic extracts of garlic, cinnamon and turmeric against Escherichia coli ATCC 25922 and Bacillus subtilis DSM 3256. Int J Appl Biol Pharm. 2012;3(2):131–6.
30.
go back to reference Abkhoo J, Jahani S. Antibacterial effects of aqueous and ethanolic extracts of medicinal plants against pathogenic strains. Int J Inf Secur. 2017;4(2):e42624. Abkhoo J, Jahani S. Antibacterial effects of aqueous and ethanolic extracts of medicinal plants against pathogenic strains. Int J Inf Secur. 2017;4(2):e42624.
31.
go back to reference Bitchagno GTM, Fonkeng LS, Kopa TK, Tala MF, Wabo HK, Tume CB, Kuiate JR. Antibacterial activity of ethanolic extract and compounds from fruits of Tectona grandis (Verbenaceae). BMC Complement and Altern Med. 2015;15:265.CrossRef Bitchagno GTM, Fonkeng LS, Kopa TK, Tala MF, Wabo HK, Tume CB, Kuiate JR. Antibacterial activity of ethanolic extract and compounds from fruits of Tectona grandis (Verbenaceae). BMC Complement and Altern Med. 2015;15:265.CrossRef
32.
go back to reference Sharma S, Dangi MS, Wadhwa S, Daniel V, Tiwari A. Antibacterial activity of Cassia tora leaves. Int J Pharm & Biol Arch. 2010;1(1):84–6. Sharma S, Dangi MS, Wadhwa S, Daniel V, Tiwari A. Antibacterial activity of Cassia tora leaves. Int J Pharm & Biol Arch. 2010;1(1):84–6.
33.
go back to reference Dubey S, Sinha DK, Murugan MS, Singh PL, Siddiqui MZ, Prasad N, Vadhana AP, Bhardwaj M, Singh BR. Antimicrobial activity of Ethanolic and aqueous extracts of common edible gums against pathogenic Bacteria of animal and human health significance. JPN. 2015;3(3):30–6. Dubey S, Sinha DK, Murugan MS, Singh PL, Siddiqui MZ, Prasad N, Vadhana AP, Bhardwaj M, Singh BR. Antimicrobial activity of Ethanolic and aqueous extracts of common edible gums against pathogenic Bacteria of animal and human health significance. JPN. 2015;3(3):30–6.
34.
go back to reference Rabe T, Staden JV. Antibacterial activity of south African plants used for medicinal purposes. J Ethnopharmacol. 1997;56:81–7.CrossRefPubMed Rabe T, Staden JV. Antibacterial activity of south African plants used for medicinal purposes. J Ethnopharmacol. 1997;56:81–7.CrossRefPubMed
35.
go back to reference Kumar M. Antibacterial activity of Combretum indicum (L.) DeFeilipps flower extracts against gram positive and gram-negative human pathogenic bacteria. World. J Pharm Pharm Sci. 2015;4(10):1288–97. Kumar M. Antibacterial activity of Combretum indicum (L.) DeFeilipps flower extracts against gram positive and gram-negative human pathogenic bacteria. World. J Pharm Pharm Sci. 2015;4(10):1288–97.
36.
go back to reference Oghenejobo M, Oghenejobo BUS, Uvieghara KE, Omughele E. Phytochemical screening and antimicrobial activities of the fractionated leaf extracts of Combretum racemosum. Sch Acad J Pharm. 2014;3(6):455–62. Oghenejobo M, Oghenejobo BUS, Uvieghara KE, Omughele E. Phytochemical screening and antimicrobial activities of the fractionated leaf extracts of Combretum racemosum. Sch Acad J Pharm. 2014;3(6):455–62.
37.
go back to reference Panda SK, Mohanta YK, Padhi L, Park YH, Mohanta TK, Bae H. Large scale screening of ethnomedicinal plants for identification of potential antibacterial compounds. Molecules. 2016;21(293):1–20. Panda SK, Mohanta YK, Padhi L, Park YH, Mohanta TK, Bae H. Large scale screening of ethnomedicinal plants for identification of potential antibacterial compounds. Molecules. 2016;21(293):1–20.
38.
go back to reference Hideyuki I, Koji Y, Tae-Hoon K, Khennouf S, Gharzouli K, Yoshida T. Dimeric and trimeric hydrolysable tannins from Quercus coccifera and Quercus suber. J Nat Prod. 2002;65:339–45.CrossRef Hideyuki I, Koji Y, Tae-Hoon K, Khennouf S, Gharzouli K, Yoshida T. Dimeric and trimeric hydrolysable tannins from Quercus coccifera and Quercus suber. J Nat Prod. 2002;65:339–45.CrossRef
39.
go back to reference Meng Z, Zhou Y, Lu J, Sugahara K, Xu S, Kodama H. Effects of five flavonoid compounds isolated from Quercus dentata on superoxide generation in human neutrophils and phosphorelatioion of neutrophil proteins. Clin Chim Acta. 2001;306:97–102.CrossRefPubMed Meng Z, Zhou Y, Lu J, Sugahara K, Xu S, Kodama H. Effects of five flavonoid compounds isolated from Quercus dentata on superoxide generation in human neutrophils and phosphorelatioion of neutrophil proteins. Clin Chim Acta. 2001;306:97–102.CrossRefPubMed
40.
go back to reference Agarwal VS. Drugs plants of India. Ludhiana: Kalyani Publishers. 1997;1:182–3. Agarwal VS. Drugs plants of India. Ludhiana: Kalyani Publishers. 1997;1:182–3.
41.
go back to reference Zahner H., Fiedler HP. The need for new antibiotics: possible ways forward. In P. A. Hunter PA., Darby J., Russell NJ. Fifty years of antimicrobials: past perspectives and future trends. Proceedings of Fifty-Third Symposium of the Society for General Microbiology Cambridge University Press, Cambridge, United Kingdom. 1995. Zahner H., Fiedler HP. The need for new antibiotics: possible ways forward. In P. A. Hunter PA., Darby J., Russell NJ. Fifty years of antimicrobials: past perspectives and future trends. Proceedings of Fifty-Third Symposium of the Society for General Microbiology Cambridge University Press, Cambridge, United Kingdom. 1995.
Metadata
Title
Antibacterial efficacy of leaf extracts of Combretum album Pers. against some pathogenic bacteria
Authors
Sunanda Burman
Kuntal Bhattacharya
Devaleena Mukherjee
Goutam Chandra
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2018
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-018-2271-0

Other articles of this Issue 1/2018

BMC Complementary Medicine and Therapies 1/2018 Go to the issue