Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2017

Open Access 01-12-2017 | Research article

Anti-inflammatory potential of Capparis spinosa L. in vivo in mice through inhibition of cell infiltration and cytokine gene expression

Authors: Khadija El Azhary, Nadia Tahiri Jouti, Meryam El Khachibi, Mouna Moutia, Imane Tabyaoui, Abdelhalim El Hou, Hafid Achtak, Sellama Nadifi, Norddine Habti, Abdallah Badou

Published in: BMC Complementary Medicine and Therapies | Issue 1/2017

Login to get access

Abstract

Background

Several chronic inflammatory diseases are characterized by inappropriate CD4+ T cell response. In the present study, we assessed the ability of Capparis spinosa L. (CS) preparation to orientate, in vivo, the immune response mediated by CD4+ T cells towards an anti-inflammatory response.

Methods

The in vivo study was carried out by using the contact hypersensitivity (CHS) model in Swiss mice. Then we performed a histological analysis followed by molecular study by using real time RT-PCR. We also realized a phytochemical screening and a liquid-liquid separation of CS preparation.

Results

Our study allowed us to detect a significantly reduced edema in mice treated with CS preparations relative to control. CS effect was dose dependent, statistically similar to that observed with indomethacin, independent of the plant genotype and of the period of treatment. Furthermore, our histology studies revealed that CS induced a significant decrease in immune cell infiltration, in vasodilatation and in dermis thickness in the inflammatory site. Interestingly, we showed that CS operated by inhibiting cytokine gene expression including IFNγ, IL-17 and IL-4. Besides, phytochemical screening of CS extract showed the presence of several chemical families such as saponins, flavonoids and alkaloids. One (hexane fraction) out of the three distinct prepared fractions, exhibited an anti-inflammatory effect similar to that of the raw preparation, and would likely contain the bioactive(s) molecule(s).

Conclusions

Altogether, our data indicate that CS regulates inflammation induced in vivo in mice and thus could be a source of anti-inflammatory molecules, which could be used in some T lymphocyte-dependent inflammatory diseases.
Appendix
Available only for authorised users
Literature
1.
go back to reference Weaver CT, Elson CO, Fouser LA, Kolls JK. The Th17 pathway and inflammatory diseases of the intestines, lungs, and skin. Annu Rev Pathol Mech Dis. 2013;8:477–512.CrossRef Weaver CT, Elson CO, Fouser LA, Kolls JK. The Th17 pathway and inflammatory diseases of the intestines, lungs, and skin. Annu Rev Pathol Mech Dis. 2013;8:477–512.CrossRef
3.
go back to reference Wang B, Fujisawa H, Zhuang L, Freed I, Howell BG, Shahid S, et al. CD4+ Th1 and CD8+ Type 1 cytotoxic T cells both play a crucial role in the full development of contact hypersensitivity. J Immunol. 2000;165:6783–90.CrossRefPubMed Wang B, Fujisawa H, Zhuang L, Freed I, Howell BG, Shahid S, et al. CD4+ Th1 and CD8+ Type 1 cytotoxic T cells both play a crucial role in the full development of contact hypersensitivity. J Immunol. 2000;165:6783–90.CrossRefPubMed
4.
go back to reference Wakabayashi T, Hu D-L, Tagawa Y-I, Sekikawa K, Iwakura Y, Hanada K, et al. IFN-gamma and TNF-alpha are involved in urushiol-induced contact hypersensitivity in mice. Immunol Cell Biol. 2005;83:18–24.CrossRefPubMed Wakabayashi T, Hu D-L, Tagawa Y-I, Sekikawa K, Iwakura Y, Hanada K, et al. IFN-gamma and TNF-alpha are involved in urushiol-induced contact hypersensitivity in mice. Immunol Cell Biol. 2005;83:18–24.CrossRefPubMed
5.
go back to reference Allen IC. Contact Hypersensitivity Models in Mice. In: Allen IC, editor. Mouse Models Allerg. Dis. [Internet]. Totowa: Humana Press; 2013. p. 139–44. [cited 2015 Nov 13]. Available from: http://link.springer.com/10.1007/978-1-62703-496-8_11.CrossRef Allen IC. Contact Hypersensitivity Models in Mice. In: Allen IC, editor. Mouse Models Allerg. Dis. [Internet]. Totowa: Humana Press; 2013. p. 139–44. [cited 2015 Nov 13]. Available from: http://​link.​springer.​com/​10.​1007/​978-1-62703-496-8_​11.CrossRef
6.
go back to reference Christensen AD, Haase C. Immunological mechanisms of contact hypersensitivity in mice: Immunological Mechanisms in Murine CHS. APMIS. 2012;120:1–27.CrossRefPubMed Christensen AD, Haase C. Immunological mechanisms of contact hypersensitivity in mice: Immunological Mechanisms in Murine CHS. APMIS. 2012;120:1–27.CrossRefPubMed
7.
go back to reference Saint-Mezard P, Krasteva M, Chavagnac C, Bosset S, Akiba H, Kehren J, et al. Afferent and efferent phases of allergic contact dermatitis (ACD) can be induced after a single skin contact with haptens: evidence using a mouse model of primary ACD. J Invest Dermatol. 2003;120:641–7.CrossRefPubMed Saint-Mezard P, Krasteva M, Chavagnac C, Bosset S, Akiba H, Kehren J, et al. Afferent and efferent phases of allergic contact dermatitis (ACD) can be induced after a single skin contact with haptens: evidence using a mouse model of primary ACD. J Invest Dermatol. 2003;120:641–7.CrossRefPubMed
8.
go back to reference Honda T, Egawa G, Grabbe S, Kabashima K. Update of immune events in the murine contact hypersensitivity model: toward the understanding of allergic contact dermatitis. J Invest Dermatol. 2013;133:303–15.CrossRefPubMed Honda T, Egawa G, Grabbe S, Kabashima K. Update of immune events in the murine contact hypersensitivity model: toward the understanding of allergic contact dermatitis. J Invest Dermatol. 2013;133:303–15.CrossRefPubMed
9.
go back to reference Krasteva M, Kehren J, Horand F, Akiba H, Choquet G, Ducluzeau M-T, et al. Dual role of dendritic cells in the induction and down-regulation of antigen-specific cutaneous inflammation. J Immunol. 1998;160:1181–90.PubMed Krasteva M, Kehren J, Horand F, Akiba H, Choquet G, Ducluzeau M-T, et al. Dual role of dendritic cells in the induction and down-regulation of antigen-specific cutaneous inflammation. J Immunol. 1998;160:1181–90.PubMed
10.
go back to reference Otsuka A, Kubo M, Honda T, Egawa G, Nakajima S, Tanizaki H, et al. Requirement of interaction between mast cells and skin dendritic cells to establish contact hypersensitivity. Kumar N, editor. PLoS One. 2011;6:e25538.CrossRefPubMedPubMedCentral Otsuka A, Kubo M, Honda T, Egawa G, Nakajima S, Tanizaki H, et al. Requirement of interaction between mast cells and skin dendritic cells to establish contact hypersensitivity. Kumar N, editor. PLoS One. 2011;6:e25538.CrossRefPubMedPubMedCentral
11.
go back to reference He D, Wu L, Kim HK, Li H, Elmets CA, Xu H. IL-17 and IFN- mediate the elicitation of contact hypersensitivity responses by different mechanisms and both are required for optimal responses. J Immunol. 2009;183:1463–70.CrossRefPubMedPubMedCentral He D, Wu L, Kim HK, Li H, Elmets CA, Xu H. IL-17 and IFN- mediate the elicitation of contact hypersensitivity responses by different mechanisms and both are required for optimal responses. J Immunol. 2009;183:1463–70.CrossRefPubMedPubMedCentral
12.
go back to reference Peiser M. Role of Th17 cells in skin inflammation of allergic contact dermatits. Clin Dev Immunol. 2013;2013:1–10.CrossRef Peiser M. Role of Th17 cells in skin inflammation of allergic contact dermatits. Clin Dev Immunol. 2013;2013:1–10.CrossRef
14.
go back to reference Tlili N, Elfalleh W, Saadaoui E, Khaldi A, Triki S, Nasri N. The caper (Capparis L.): Ethnopharmacology, phytochemical and pharmacological properties. Fitoterapia. 2011;82:93–101.CrossRefPubMed Tlili N, Elfalleh W, Saadaoui E, Khaldi A, Triki S, Nasri N. The caper (Capparis L.): Ethnopharmacology, phytochemical and pharmacological properties. Fitoterapia. 2011;82:93–101.CrossRefPubMed
15.
go back to reference Inocencio C, Cowan RS, Alcaraz F, Rivera D, Fay MF. AFLP fingerprinting in Capparis subgenus Capparis related to the commercial sources of capers. Genet Resour Crop Evol. 2005;52:137–44.CrossRef Inocencio C, Cowan RS, Alcaraz F, Rivera D, Fay MF. AFLP fingerprinting in Capparis subgenus Capparis related to the commercial sources of capers. Genet Resour Crop Evol. 2005;52:137–44.CrossRef
16.
go back to reference Saifi N, Echchgadda G, Ibijbijen J. The morphological characterization of caper plant (Capparis ssp.) in North Morocco. J Food Agric Environ. 2010;8:876–81. Saifi N, Echchgadda G, Ibijbijen J. The morphological characterization of caper plant (Capparis ssp.) in North Morocco. J Food Agric Environ. 2010;8:876–81.
17.
go back to reference Nabavi SF, Maggi F, Daglia M, Habtemariam S, Rastrelli L, Nabavi SM. Pharmacological effects of Capparis spinosa L. Phytother Res. 2016;30(11):1733–44.CrossRefPubMed Nabavi SF, Maggi F, Daglia M, Habtemariam S, Rastrelli L, Nabavi SM. Pharmacological effects of Capparis spinosa L. Phytother Res. 2016;30(11):1733–44.CrossRefPubMed
18.
go back to reference Gadgoli C, Mishra SH. Antihepatotoxic activity of p-methoxy benzoic acid from Capparis spinosa. J Ethnopharmacol. 1999;66:187–92.CrossRefPubMed Gadgoli C, Mishra SH. Antihepatotoxic activity of p-methoxy benzoic acid from Capparis spinosa. J Ethnopharmacol. 1999;66:187–92.CrossRefPubMed
19.
go back to reference Trombetta D, Occhiuto F, Perri D, Puglia C, Santagati NA, Pasquale AD, et al. Antiallergic and antihistaminic effect of two extracts of Capparis spinosa L. flowering buds. Phytother Res. 2005;19:29–33.CrossRefPubMed Trombetta D, Occhiuto F, Perri D, Puglia C, Santagati NA, Pasquale AD, et al. Antiallergic and antihistaminic effect of two extracts of Capparis spinosa L. flowering buds. Phytother Res. 2005;19:29–33.CrossRefPubMed
20.
go back to reference Tesoriere L, Butera D, Gentile C, Livrea MA. Bioactive components of caper (Capparis spinosa L.) from sicily and antioxidant effects in a red meat simulated gastric digestion. J Agric Food Chem. 2007;55:8465–71.CrossRefPubMed Tesoriere L, Butera D, Gentile C, Livrea MA. Bioactive components of caper (Capparis spinosa L.) from sicily and antioxidant effects in a red meat simulated gastric digestion. J Agric Food Chem. 2007;55:8465–71.CrossRefPubMed
21.
go back to reference Siracusa L, Kulisic-Bilusic T, Politeo O, Krause I, Dejanovic B, Ruberto G. Phenolic composition and antioxidant activity of aqueous infusions from Capparis spinosa L. and Crithmum maritimum L. before and after submission to a two-step in vitro digestion model. J Agric Food Chem. 2011;59:12453–9.CrossRefPubMed Siracusa L, Kulisic-Bilusic T, Politeo O, Krause I, Dejanovic B, Ruberto G. Phenolic composition and antioxidant activity of aqueous infusions from Capparis spinosa L. and Crithmum maritimum L. before and after submission to a two-step in vitro digestion model. J Agric Food Chem. 2011;59:12453–9.CrossRefPubMed
22.
go back to reference Feng X, Lu J, Xin H, Zhang L, Wang Y, Tang K. Anti-arthritic active fraction of Capparis spinosa L. fruits and its chemical constituents. Yakugaku Zasshi. 2011;131:423–9.CrossRefPubMed Feng X, Lu J, Xin H, Zhang L, Wang Y, Tang K. Anti-arthritic active fraction of Capparis spinosa L. fruits and its chemical constituents. Yakugaku Zasshi. 2011;131:423–9.CrossRefPubMed
23.
go back to reference Eddouks M, Lemhadri A, Michel J-B. Hypolipidemic activity of aqueous extract of Capparis spinosa L. in normal and diabetic rats. J Ethnopharmacol. 2005;98:345–50.CrossRefPubMed Eddouks M, Lemhadri A, Michel J-B. Hypolipidemic activity of aqueous extract of Capparis spinosa L. in normal and diabetic rats. J Ethnopharmacol. 2005;98:345–50.CrossRefPubMed
24.
go back to reference Panico A, Cardile V, Garufi F, Puglia C, Bonina F, Ronsisvalle G. Protective effect of Capparis spinosa on chondrocytes. Life Sci. 2005;77:2479–88.CrossRefPubMed Panico A, Cardile V, Garufi F, Puglia C, Bonina F, Ronsisvalle G. Protective effect of Capparis spinosa on chondrocytes. Life Sci. 2005;77:2479–88.CrossRefPubMed
25.
go back to reference Moutia M, El Azhary K, Elouaddari A, Al Jahid A, Jamal Eddine J, Seghrouchni F, Habti N, Badou A. Capparis spinosa L. promotes anti-inflammatory response in vitro through the control of cytokine gene expression in human peripheral blood mononuclear cells. BMC Immunol. 2016;17(1):26. doi:10.1186/s12865-016-0164-x. PMID:27483999.CrossRefPubMedPubMedCentral Moutia M, El Azhary K, Elouaddari A, Al Jahid A, Jamal Eddine J, Seghrouchni F, Habti N, Badou A. Capparis spinosa L. promotes anti-inflammatory response in vitro through the control of cytokine gene expression in human peripheral blood mononuclear cells. BMC Immunol. 2016;17(1):26. doi:10.​1186/​s12865-016-0164-x. PMID:27483999.CrossRefPubMedPubMedCentral
26.
go back to reference Borges A, Rosa MS, Recchia GH, Queiroz-Silva JRD, Bressan E de A, Veasey EA. CTAB methods for DNA extraction of sweetpotato for microsatellite analysis. Sci Agric. 2009;66:529–34.CrossRef Borges A, Rosa MS, Recchia GH, Queiroz-Silva JRD, Bressan E de A, Veasey EA. CTAB methods for DNA extraction of sweetpotato for microsatellite analysis. Sci Agric. 2009;66:529–34.CrossRef
28.
go back to reference Dohou N, Yamni K, Tahrouch S, Idrissi Hassani LM, Badoc A, Gmira N. Screening phytochimique d’une endémique ibéro-marocaine, Thymelaea lythroides. Bull Société Pharm Bordx. 2003;142:61–78. Dohou N, Yamni K, Tahrouch S, Idrissi Hassani LM, Badoc A, Gmira N. Screening phytochimique d’une endémique ibéro-marocaine, Thymelaea lythroides. Bull Société Pharm Bordx. 2003;142:61–78.
29.
go back to reference Saint - Mezard P, Rosieres A, Krasteva M, Berard F, Dubois B, Kaiserlian D, et al. Allergic contact dermatitis. Eur J Dermatol. 2004;14:284–95.PubMed Saint - Mezard P, Rosieres A, Krasteva M, Berard F, Dubois B, Kaiserlian D, et al. Allergic contact dermatitis. Eur J Dermatol. 2004;14:284–95.PubMed
30.
go back to reference Ageel AM, Parmar NS, Mossa JS, Al-Yahya MA, Al-Said MS, Tariq M. Anti-inflammatory activity of some Saudi Arabian medicinal plants. Agents Actions. 1986;17:383–4.CrossRefPubMed Ageel AM, Parmar NS, Mossa JS, Al-Yahya MA, Al-Said MS, Tariq M. Anti-inflammatory activity of some Saudi Arabian medicinal plants. Agents Actions. 1986;17:383–4.CrossRefPubMed
31.
go back to reference Zhou H, Jian R, Kang J, Huang X, Li Y, Zhuang C, et al. Anti-inflammatory effects of caper (Capparis spinosa L.) fruit aqueous extract and the isolation of main phytochemicals. J Agric Food Chem. 2010;58:12717–21.CrossRefPubMed Zhou H, Jian R, Kang J, Huang X, Li Y, Zhuang C, et al. Anti-inflammatory effects of caper (Capparis spinosa L.) fruit aqueous extract and the isolation of main phytochemicals. J Agric Food Chem. 2010;58:12717–21.CrossRefPubMed
32.
go back to reference Arena A, Bisignano G, Pavone B, Tomaino A, Bonina FP, Saija A, et al. Antiviral and immunomodulatory effect of a lyophilized extract of Capparis spinosa L. buds. Phytother Res. 2008;22:313–7.CrossRefPubMed Arena A, Bisignano G, Pavone B, Tomaino A, Bonina FP, Saija A, et al. Antiviral and immunomodulatory effect of a lyophilized extract of Capparis spinosa L. buds. Phytother Res. 2008;22:313–7.CrossRefPubMed
33.
go back to reference Zhou H-F, Xie C, Jian R, Kang J, Li Y, Zhuang C-L, et al. Biflavonoids from Caper (Capparis spinosa L.) Fruits and Their Effects in Inhibiting NF-kappa B Activation. J Agric Food Chem. 2011;59:3060–5.CrossRefPubMed Zhou H-F, Xie C, Jian R, Kang J, Li Y, Zhuang C-L, et al. Biflavonoids from Caper (Capparis spinosa L.) Fruits and Their Effects in Inhibiting NF-kappa B Activation. J Agric Food Chem. 2011;59:3060–5.CrossRefPubMed
34.
go back to reference Daoudi A, Aarab L, Abdel-Sattar E. Screening of immunomodulatory activity of total and protein extracts of some Moroccan medicinal plants. Toxicol Ind Health. 2013;29:245–53.CrossRefPubMed Daoudi A, Aarab L, Abdel-Sattar E. Screening of immunomodulatory activity of total and protein extracts of some Moroccan medicinal plants. Toxicol Ind Health. 2013;29:245–53.CrossRefPubMed
35.
go back to reference Fici S, Gianguzzi L. Diversity and conservation in wild and cultivated Capparis in Sicily. Bocconea. 1997;7:437–43. Fici S, Gianguzzi L. Diversity and conservation in wild and cultivated Capparis in Sicily. Bocconea. 1997;7:437–43.
36.
go back to reference Saadaoui E, Khaldi A, Khouja ML, Mohamed EG. Intraspecific variation of Capparis spinosa L. in Tunisia. J Herbs Spices Med Plants. 2009;15:9–15.CrossRef Saadaoui E, Khaldi A, Khouja ML, Mohamed EG. Intraspecific variation of Capparis spinosa L. in Tunisia. J Herbs Spices Med Plants. 2009;15:9–15.CrossRef
37.
go back to reference Stoitzner P, Holzmann S, McLellan AD, Ivarsson L, Stössel H, Kapp M, et al. Visualization and characterization of migratory langerhans cells in murine skin and lymph nodes by antibodies against langerin/CD207. J Invest Dermatol. 2003;120:266–74.CrossRefPubMed Stoitzner P, Holzmann S, McLellan AD, Ivarsson L, Stössel H, Kapp M, et al. Visualization and characterization of migratory langerhans cells in murine skin and lymph nodes by antibodies against langerin/CD207. J Invest Dermatol. 2003;120:266–74.CrossRefPubMed
38.
go back to reference Nielsen MM, Dyring-Andersen B, Schmidt JD, Witherden D, Lovato P, Woetmann A, et al. NKG2D-dependent activation of dendritic epidermal T cells in contact hypersensitivity. J Invest Dermatol. 2015;135:1311–9.CrossRefPubMedPubMedCentral Nielsen MM, Dyring-Andersen B, Schmidt JD, Witherden D, Lovato P, Woetmann A, et al. NKG2D-dependent activation of dendritic epidermal T cells in contact hypersensitivity. J Invest Dermatol. 2015;135:1311–9.CrossRefPubMedPubMedCentral
39.
go back to reference Yabe R, Shimizu K, Shimizu S, Azechi S, Choi B-I, Sudo K, et al. CCR8 regulates contact hypersensitivity by restricting cutaneous dendritic cell migration to the draining lymph nodes. Int Immunol. 2015;27:169–81.CrossRefPubMed Yabe R, Shimizu K, Shimizu S, Azechi S, Choi B-I, Sudo K, et al. CCR8 regulates contact hypersensitivity by restricting cutaneous dendritic cell migration to the draining lymph nodes. Int Immunol. 2015;27:169–81.CrossRefPubMed
41.
go back to reference Lam S-K, Ng T-B. A protein with antiproliferative, antifungal and HIV-1 reverse transcriptase inhibitory activities from caper (Capparis spinosa) seeds. Phytomedicine. 2009;16:444–50.CrossRefPubMed Lam S-K, Ng T-B. A protein with antiproliferative, antifungal and HIV-1 reverse transcriptase inhibitory activities from caper (Capparis spinosa) seeds. Phytomedicine. 2009;16:444–50.CrossRefPubMed
43.
go back to reference Das J, Chen CH, Yang L, Cohn L, Ray P, Ray A. A critical role for NF-kappa B in GATA3 expression and TH2 differentiation in allergic airway inflammation. Nat Immunol. 2001;2:45–50.CrossRefPubMed Das J, Chen CH, Yang L, Cohn L, Ray P, Ray A. A critical role for NF-kappa B in GATA3 expression and TH2 differentiation in allergic airway inflammation. Nat Immunol. 2001;2:45–50.CrossRefPubMed
Metadata
Title
Anti-inflammatory potential of Capparis spinosa L. in vivo in mice through inhibition of cell infiltration and cytokine gene expression
Authors
Khadija El Azhary
Nadia Tahiri Jouti
Meryam El Khachibi
Mouna Moutia
Imane Tabyaoui
Abdelhalim El Hou
Hafid Achtak
Sellama Nadifi
Norddine Habti
Abdallah Badou
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2017
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-017-1569-7

Other articles of this Issue 1/2017

BMC Complementary Medicine and Therapies 1/2017 Go to the issue