Skip to main content
Top
Published in: BioPsychoSocial Medicine 1/2020

Open Access 01-12-2020 | Anorexia Nervosa | Research

Very long chain fatty acids are an important marker of nutritional status in patients with anorexia nervosa: a case control study

Authors: Miki Shimizu, Keisuke Kawai, Makoto Yamashita, Masayasu Shoji, Shu Takakura, Tomokazu Hata, Megumi Nakashima, Keita Tatsushima, Kazunari Tanaka, Nobuyuki Sudo

Published in: BioPsychoSocial Medicine | Issue 1/2020

Login to get access

Abstract

Background

Anorexia nervosa (AN) is a disease resulting in extreme weight loss. It is caused by multiple factors, including psychosocial, environmental, and genetic factors. A genetic abnormality affecting lipid metabolism has been recently reported in patients with AN. However, it is unknown whether lipid metabolism abnormalities in AN are caused by eating behavior, undernutrition, and/or genetic factors. The meaning of lipid metabolism in AN remains unclear. In particular, differences in the profiles of very long-chain fatty acids (VLCFAs) in patients with various types of AN have not been studied. This study aimed to determine changes to the fatty acid profile over a 3-month period, specifically that of long-chain fatty acids (LCFAs) and VLCFAs in patients with various types of AN.

Methods

We evaluated 69 female patients with AN, subclassified as AN-restricting type (AN-R) and AN-Binge-Eating/Purging type (AN-BP). On admission and after 3 months of treatment, height, weight, body mass index, plasma and serum parameters, and plasma fatty acid concentrations were measured in all patients. The control group included 25 healthy, age-matched women. Comparisons between the groups were made using one-way ANOVA, while those between the various parameters at admission and after 3 months within each group were made using the Wilcoxon signed rank test.

Results

On admission, the AN-R and the AN-BP groups had significantly higher levels of 18-24C and > 14C fatty acids (LCFAs and VLCFAs, respectively) than the control group. After 3 months of treatment, both groups showed high levels of 14-24C fatty acids. The levels of VLCFAs (C22:0 and C24:0) and LCFA (C18:3) after 3 months of treatment remained high in both AN groups relative to the control group.

Conclusions

Eating behaviors appear to be associated with levels of LCFAs. Lipid metabolism abnormalities under conditions of starvation in AN might have a genetic basis and appear to be associated with VLCFA (C22:0 and C24:0) and LCFA (C18:3) levels.
Literature
2.
go back to reference First M, Spitzer R, Gibbon M, Williams J. Structured clinical interview for Axis I disorder DSM-IV -patient edition- (SCID-I/P). New York: NYSPI, Biometrics Research Department; 1995. First M, Spitzer R, Gibbon M, Williams J. Structured clinical interview for Axis I disorder DSM-IV -patient edition- (SCID-I/P). New York: NYSPI, Biometrics Research Department; 1995.
3.
go back to reference Campbell K, Peebles R. Eating disorders in children and adolescents: state of the art review. Pediatrics. 2014;134:582–92.CrossRefPubMed Campbell K, Peebles R. Eating disorders in children and adolescents: state of the art review. Pediatrics. 2014;134:582–92.CrossRefPubMed
4.
go back to reference Miller KK, Grinspoon SK, Ciampa J, Hier J, Herzog D, Klibanski A. Medical findings in outpatients with anorexia nervosa. Arch Intern Med. 2005;165:561–6.CrossRefPubMed Miller KK, Grinspoon SK, Ciampa J, Hier J, Herzog D, Klibanski A. Medical findings in outpatients with anorexia nervosa. Arch Intern Med. 2005;165:561–6.CrossRefPubMed
5.
go back to reference Ohwada R, Hotta M, Oikawa S, Takano K. Etiology of hypercholesterolemia in patients with anorexia nervosa. Int J Eat Disord. 2006;39:598–601.CrossRefPubMed Ohwada R, Hotta M, Oikawa S, Takano K. Etiology of hypercholesterolemia in patients with anorexia nervosa. Int J Eat Disord. 2006;39:598–601.CrossRefPubMed
6.
go back to reference Weinbrenner T, Züger M, Jacoby GE, Herpertz S, Liedtke R, Sudhop T, et al. Lipoprotein metabolism in patients with anorexia nervosa: a case–control study investigating the mechanisms leading to hypercholesterolaemia. Br J Nutr. 2004;91:959–69.CrossRefPubMed Weinbrenner T, Züger M, Jacoby GE, Herpertz S, Liedtke R, Sudhop T, et al. Lipoprotein metabolism in patients with anorexia nervosa: a case–control study investigating the mechanisms leading to hypercholesterolaemia. Br J Nutr. 2004;91:959–69.CrossRefPubMed
7.
go back to reference Mordasini R, Klose G, Greten H. Secondary type II hyperlipoproteinemia in patients with anorexia nervosa. Metabolism. 1978;27:71–9.CrossRefPubMed Mordasini R, Klose G, Greten H. Secondary type II hyperlipoproteinemia in patients with anorexia nervosa. Metabolism. 1978;27:71–9.CrossRefPubMed
8.
go back to reference Rome ES, Ammerman S. Medical complications of eating disorders: an update. J Adolesc Health. 2003;33:418–26.CrossRefPubMed Rome ES, Ammerman S. Medical complications of eating disorders: an update. J Adolesc Health. 2003;33:418–26.CrossRefPubMed
9.
go back to reference Rautou PE, Cazals-Hatem D, Moreau R, Francoz C, Feldmann G, Lebrec D, et al. Acute liver cell damage in patients with anorexia nervosa: a possible role of starvation-induced hepatocyte autophagy. Gastroenterology. 2008;135:840–8.CrossRefPubMed Rautou PE, Cazals-Hatem D, Moreau R, Francoz C, Feldmann G, Lebrec D, et al. Acute liver cell damage in patients with anorexia nervosa: a possible role of starvation-induced hepatocyte autophagy. Gastroenterology. 2008;135:840–8.CrossRefPubMed
10.
go back to reference Watson HJ, Yilmaz Z, Thornton LM, Hubel C, Coleman RIJ, Gaspar HA, et al. Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa. Nat Genet. 2019;51:1207–14.CrossRefPubMedPubMedCentral Watson HJ, Yilmaz Z, Thornton LM, Hubel C, Coleman RIJ, Gaspar HA, et al. Genome-wide association study identifies eight risk loci and implicates metabo-psychiatric origins for anorexia nervosa. Nat Genet. 2019;51:1207–14.CrossRefPubMedPubMedCentral
11.
go back to reference Shih PB, Yang J, Morisseau C, German JB, Scott-Van Zeeland AA, Armando AM, et al. Dysregulation of soluble epoxide hydrolase and lipidomic profiles in anorexia nervosa. Mol Psychiatry. 2016;21:537–54.CrossRefPubMed Shih PB, Yang J, Morisseau C, German JB, Scott-Van Zeeland AA, Armando AM, et al. Dysregulation of soluble epoxide hydrolase and lipidomic profiles in anorexia nervosa. Mol Psychiatry. 2016;21:537–54.CrossRefPubMed
12.
go back to reference Scott-Van Zeeland AA, Bloss CS, Tewhey R, Bansal V, Torkamani A, Libiger O, et al. Evidence for the role of EPHX2 gene variants in anorexia nervosa. Mol Psychiatry. 2014;19:724–32.CrossRefPubMed Scott-Van Zeeland AA, Bloss CS, Tewhey R, Bansal V, Torkamani A, Libiger O, et al. Evidence for the role of EPHX2 gene variants in anorexia nervosa. Mol Psychiatry. 2014;19:724–32.CrossRefPubMed
13.
go back to reference Caspar-Bauguil S, Montastier E, Galinon F, Frisch-Benarous D, Salvayre R, Ritz P. Anorexia nervosa patients display a deficit in membrane long chain poly-unsaturated fatty acids. Clin Nutr. 2012;31:386–90.CrossRefPubMed Caspar-Bauguil S, Montastier E, Galinon F, Frisch-Benarous D, Salvayre R, Ritz P. Anorexia nervosa patients display a deficit in membrane long chain poly-unsaturated fatty acids. Clin Nutr. 2012;31:386–90.CrossRefPubMed
14.
go back to reference Swenne I, Rosling A. Omega-3 essential fatty acid status is improved during nutritional rehabilitation of adolescent girls with eating disorders and weight loss. Acta Paediatr. 2012;101:858–61.CrossRefPubMed Swenne I, Rosling A. Omega-3 essential fatty acid status is improved during nutritional rehabilitation of adolescent girls with eating disorders and weight loss. Acta Paediatr. 2012;101:858–61.CrossRefPubMed
15.
go back to reference Holman RT, Adoms CE, Nelson RA, Grater SJ, Jaskiewicz JA, Johnson SB, et al. Patients with anorexia nervosa demonstrate deficiencies of selected essential fatty acids, compensatory changes in nonessential fatty acids and decreased fluidity of plasma lipids. J Nutr. 1995;25:901–7. Holman RT, Adoms CE, Nelson RA, Grater SJ, Jaskiewicz JA, Johnson SB, et al. Patients with anorexia nervosa demonstrate deficiencies of selected essential fatty acids, compensatory changes in nonessential fatty acids and decreased fluidity of plasma lipids. J Nutr. 1995;25:901–7.
16.
go back to reference Swenne I, Rosling A, Tengblad S, Vessby B. Essential fatty acid status in teenage girls with eating disorders and weight loss. Acta Paediatr. 2011;100:762–7.CrossRefPubMed Swenne I, Rosling A, Tengblad S, Vessby B. Essential fatty acid status in teenage girls with eating disorders and weight loss. Acta Paediatr. 2011;100:762–7.CrossRefPubMed
17.
go back to reference Forbes D, Parsons H. Essential fatty acids: food for mind and body. Acta Paediatr. 2012;101:808–10.CrossRefPubMed Forbes D, Parsons H. Essential fatty acids: food for mind and body. Acta Paediatr. 2012;101:808–10.CrossRefPubMed
18.
go back to reference Doherty JF, Golden MH, Brooks SE. Peroxisomes and the fatty liver of malnutrition: an hypothesis. Am J Clin Nutr. 1991;54:674–7.CrossRefPubMed Doherty JF, Golden MH, Brooks SE. Peroxisomes and the fatty liver of malnutrition: an hypothesis. Am J Clin Nutr. 1991;54:674–7.CrossRefPubMed
19.
go back to reference Zak A, Vecka M, Tyrzicka E, Hruby M, Novak F, Papezova H, et al. Composition of plasma fatty acids, and non-cholesterol sterols in anorexia nervosa. Physol Res. 2005;54:443–51. Zak A, Vecka M, Tyrzicka E, Hruby M, Novak F, Papezova H, et al. Composition of plasma fatty acids, and non-cholesterol sterols in anorexia nervosa. Physol Res. 2005;54:443–51.
20.
go back to reference Yamashita S, Kawai K, Yamanaka T, Inoo T, Yokoyama H, Morita C, et al. BMI, body composition, and the energy requirement for body weight gain in patients with anorexia nervosa. Int J Eat Disord. 2010;43:365–71.PubMed Yamashita S, Kawai K, Yamanaka T, Inoo T, Yokoyama H, Morita C, et al. BMI, body composition, and the energy requirement for body weight gain in patients with anorexia nervosa. Int J Eat Disord. 2010;43:365–71.PubMed
21.
go back to reference Amemiya N, Takii M, Hata T, Morita C, Takakura S, Oshikiri K, et al. The outcome of Japanese anorexia nervosa patients treated with an inpatient therapy in an internal medicine unit. Eat Weight Disord. 2012;17:e1–8.PubMed Amemiya N, Takii M, Hata T, Morita C, Takakura S, Oshikiri K, et al. The outcome of Japanese anorexia nervosa patients treated with an inpatient therapy in an internal medicine unit. Eat Weight Disord. 2012;17:e1–8.PubMed
23.
go back to reference Jones PJH, Papamandjaris AA. Lipids: Cellular Metabolism. In: Erdman JW, Macdonald IA, Zeisel SH, editors. Present Knowledge in Nutrition. 10th ed. Wiley-Blackwell; 2012. p. 132–48. Jones PJH, Papamandjaris AA. Lipids: Cellular Metabolism. In: Erdman JW, Macdonald IA, Zeisel SH, editors. Present Knowledge in Nutrition. 10th ed. Wiley-Blackwell; 2012. p. 132–48.
24.
go back to reference Burd C, Mitchell JE, Crosby RD, Engel SG, Wonderlich SA, Lystad C, et al. An assessment of daily food intake in participants with anorexia nervosa in the natural environment. Int J Eat Disord. 2009;42:371–4.CrossRefPubMedPubMedCentral Burd C, Mitchell JE, Crosby RD, Engel SG, Wonderlich SA, Lystad C, et al. An assessment of daily food intake in participants with anorexia nervosa in the natural environment. Int J Eat Disord. 2009;42:371–4.CrossRefPubMedPubMedCentral
25.
go back to reference Steinhauser MH, Olenchock BA, O'Keefe J, Lun M, Pierce KA, Lee H, et al. The circulating metabolome of human starvation. JCI Insight. 2018;3:e121434.CrossRefPubMedCentral Steinhauser MH, Olenchock BA, O'Keefe J, Lun M, Pierce KA, Lee H, et al. The circulating metabolome of human starvation. JCI Insight. 2018;3:e121434.CrossRefPubMedCentral
26.
go back to reference Sassa T, Kihara A. Metabolism of very long-chain fatty acids: genes and pathophysiology. Biomol Ther. 2014;2:83–92.CrossRef Sassa T, Kihara A. Metabolism of very long-chain fatty acids: genes and pathophysiology. Biomol Ther. 2014;2:83–92.CrossRef
27.
go back to reference Holman TR, Johnson SB, Mercuri O, Itarte HJ, Rodrigo MA, de Tomas ME. Essential fatty acid deficiency in malnourished children. Am J Clini Nutr. 1981;34:1534–9.CrossRef Holman TR, Johnson SB, Mercuri O, Itarte HJ, Rodrigo MA, de Tomas ME. Essential fatty acid deficiency in malnourished children. Am J Clini Nutr. 1981;34:1534–9.CrossRef
28.
go back to reference Wanders RJ. Peroxisomes, lipid metabolism, and peroxisomal disorders. Mol Genet Metab. 2004;83:16–27.CrossRefPubMed Wanders RJ. Peroxisomes, lipid metabolism, and peroxisomal disorders. Mol Genet Metab. 2004;83:16–27.CrossRefPubMed
29.
go back to reference Brady PS, Knoeber CM, Brady LJ. Hepatic mitochondrial and peroxisomal oxidative capacity in riboflavin deficiency: effect of age, dietary fat and starvation in rats. J Nutr. 1986;116:1992–9.CrossRefPubMed Brady PS, Knoeber CM, Brady LJ. Hepatic mitochondrial and peroxisomal oxidative capacity in riboflavin deficiency: effect of age, dietary fat and starvation in rats. J Nutr. 1986;116:1992–9.CrossRefPubMed
30.
go back to reference Capo-chichi CD, Guéant JL, Lefebvre E, Bennani N, Lorentz E, Vidailhet C, et al. Riboflavin and riboflavin-derived cofactors in adolescent girls with anorexia nervosa. Am J Clin Nutr. 1990;69:672–8.CrossRef Capo-chichi CD, Guéant JL, Lefebvre E, Bennani N, Lorentz E, Vidailhet C, et al. Riboflavin and riboflavin-derived cofactors in adolescent girls with anorexia nervosa. Am J Clin Nutr. 1990;69:672–8.CrossRef
Metadata
Title
Very long chain fatty acids are an important marker of nutritional status in patients with anorexia nervosa: a case control study
Authors
Miki Shimizu
Keisuke Kawai
Makoto Yamashita
Masayasu Shoji
Shu Takakura
Tomokazu Hata
Megumi Nakashima
Keita Tatsushima
Kazunari Tanaka
Nobuyuki Sudo
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BioPsychoSocial Medicine / Issue 1/2020
Electronic ISSN: 1751-0759
DOI
https://doi.org/10.1186/s13030-020-00186-8

Other articles of this Issue 1/2020

BioPsychoSocial Medicine 1/2020 Go to the issue