Skip to main content
Top

08-05-2024 | Positron Emission Tomography | Original Article

Animal PET scanner with a large field of view is suitable for high-throughput scanning of rodents

Authors: Yuki Tomonari, Yuya Onishi, Fumio Hashimoto, Kibo Ote, Takashi Okamoto, Hiroyuki Ohba

Published in: Annals of Nuclear Medicine

Login to get access

Abstract

Objective

In preclinical studies, high-throughput positron emission tomography (PET) imaging, known as simultaneous multiple animal scanning, can reduce the time spent on animal experiments, the cost of PET tracers, and the risk of synthesis of PET tracers. It is well known that the image quality acquired by high-throughput imaging depends on the PET system. Herein, we investigated the influence of large field of view (FOV) PET scanner on high-throughput imaging.

Methods

We investigated the influence of scanning four objects using a small animal PET scanner with a large FOV. We compared the image quality acquired by four objects scanned with the one acquired by one object scanned using phantoms and animals. We assessed the image quality with uniformity, recovery coefficient (RC), and spillover ratio (SOR), which are indicators of image noise, spatial resolution, and quantitative precision, respectively. For the phantom study, we used the NEMA NU 4-2008 image quality phantom and evaluated uniformity, RC, and SOR, and for the animal study, we used Wistar rats and evaluated the spillover in the heart and kidney.

Results

In the phantom study, four phantoms had little effect on imaging quality, especially SOR compared with that for one phantom. In the animal study as well, four rats had little effect on spillover from the heart muscle and kidney cortex compared with that for one rat.

Conclusions

This study demonstrated that an animal PET scanner with a large FOV was suitable for high-throughput imaging. Thus, the large FOV PET scanner can support drug discovery and bridging research through rapid pharmacological and pathological evaluation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Visser EP, Disselhorst JA, Brom M, Laverman P, Gotthardt M, Oyen WJG, et al. Spatial resolution and sensitivity of the Inveon small-animal PET scanner. J Nucl Med. 2009;50(1):139–47.CrossRefPubMed Visser EP, Disselhorst JA, Brom M, Laverman P, Gotthardt M, Oyen WJG, et al. Spatial resolution and sensitivity of the Inveon small-animal PET scanner. J Nucl Med. 2009;50(1):139–47.CrossRefPubMed
2.
go back to reference Kitamura K. Development of “Clairvivo PET” small animal PET scanner. Shimadzu Hyoron. 2008;64(3–4):107–15. Kitamura K. Development of “Clairvivo PET” small animal PET scanner. Shimadzu Hyoron. 2008;64(3–4):107–15.
3.
go back to reference Nagy K, Tóth M, Major P, Patay G, Egri G, Häggkvist J, et al. Performance evaluation of the small-animal nanoscan PET/MRI system. J Nucl Med. 2013;54(10):1825–32.CrossRefPubMed Nagy K, Tóth M, Major P, Patay G, Egri G, Häggkvist J, et al. Performance evaluation of the small-animal nanoscan PET/MRI system. J Nucl Med. 2013;54(10):1825–32.CrossRefPubMed
4.
go back to reference Cheng TE, Yoder KK, Normandin MD, Risacher SL, Converse AK, Hampel JA, et al. A rat head holder for simultaneous scanning of two rats in small animal PET scanners: design, construction, feasibility testing and kinetic validation. J Neurosci Methods. 2009;176(1):24–33.CrossRefPubMed Cheng TE, Yoder KK, Normandin MD, Risacher SL, Converse AK, Hampel JA, et al. A rat head holder for simultaneous scanning of two rats in small animal PET scanners: design, construction, feasibility testing and kinetic validation. J Neurosci Methods. 2009;176(1):24–33.CrossRefPubMed
5.
go back to reference Aide N, Desmonts C, Briand M, Meryet-Figuiere M, Poulain L. High-throughput small animal PET imaging in cancer research: evaluation of the capability of the Inveon scanner to image four mice simultaneously. Nucl Med Commun. 2010;31(10):851–8.CrossRefPubMed Aide N, Desmonts C, Briand M, Meryet-Figuiere M, Poulain L. High-throughput small animal PET imaging in cancer research: evaluation of the capability of the Inveon scanner to image four mice simultaneously. Nucl Med Commun. 2010;31(10):851–8.CrossRefPubMed
6.
go back to reference Siepel FJ, Van Lier MGJTB, Chen M, Disselhorst JA, Meeuwis APW, Oyen WJG, et al. Scanning multiple mice in a small-animal PET scanner: influence on image quality. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip. 2010;621(1–3):605–10.CrossRef Siepel FJ, Van Lier MGJTB, Chen M, Disselhorst JA, Meeuwis APW, Oyen WJG, et al. Scanning multiple mice in a small-animal PET scanner: influence on image quality. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip. 2010;621(1–3):605–10.CrossRef
7.
go back to reference Aide N, Desmonts C, Beauregard JM, Beyer T, Kinross K, Roselt P, et al. High throughput static and dynamic small animal imaging using clinical PET/CT: potential preclinical applications. Eur J Nucl Med Mol Imaging. 2010;37(5):991–1001.CrossRefPubMed Aide N, Desmonts C, Beauregard JM, Beyer T, Kinross K, Roselt P, et al. High throughput static and dynamic small animal imaging using clinical PET/CT: potential preclinical applications. Eur J Nucl Med Mol Imaging. 2010;37(5):991–1001.CrossRefPubMed
9.
go back to reference Greenwood HE, Nyitrai Z, Mocsai G, Hobor S, Witney TH. High-throughput PET/CT imaging using a multiple-mouse imaging system. J Nucl Med. 2020;61(2):292–7.CrossRefPubMedPubMedCentral Greenwood HE, Nyitrai Z, Mocsai G, Hobor S, Witney TH. High-throughput PET/CT imaging using a multiple-mouse imaging system. J Nucl Med. 2020;61(2):292–7.CrossRefPubMedPubMedCentral
10.
go back to reference Kyushima H, Shimoi H, Atsumi A, Ito M, Oba K, Yoshizawa Y. The development of flat panel PMT. In: Proc. IEEE nuclear imaging conf. rec.; 2000. pp 15–20 Kyushima H, Shimoi H, Atsumi A, Ito M, Oba K, Yoshizawa Y. The development of flat panel PMT. In: Proc. IEEE nuclear imaging conf. rec.; 2000. pp 15–20
11.
go back to reference Ota R. Photon counting detectors and their applications ranging from particle physics experiments to environmental radiation monitoring and medical imaging. Radiol Phys Technol. 2021;14(2):134–48.CrossRefPubMed Ota R. Photon counting detectors and their applications ranging from particle physics experiments to environmental radiation monitoring and medical imaging. Radiol Phys Technol. 2021;14(2):134–48.CrossRefPubMed
12.
go back to reference Badawi R, Marsden P. Developments in component-based normalization for 3D PET. Phys Med Biol. 1999;44(2):571–94.CrossRefPubMed Badawi R, Marsden P. Developments in component-based normalization for 3D PET. Phys Med Biol. 1999;44(2):571–94.CrossRefPubMed
13.
go back to reference Tanaka E, Kudo H. Subset-dependent relaxation in block-iterative algorithms for image reconstruction in emission tomography. Phys Med Biol. 2003;48:1405.CrossRefPubMed Tanaka E, Kudo H. Subset-dependent relaxation in block-iterative algorithms for image reconstruction in emission tomography. Phys Med Biol. 2003;48:1405.CrossRefPubMed
14.
go back to reference Panin VY, Kehren F, Michel C, Casey M. Fully 3-D PET reconstruction with system matrix derived from point source measurements. IEEE Trans Med Imaging. 2006;25(7):907–21.CrossRefPubMed Panin VY, Kehren F, Michel C, Casey M. Fully 3-D PET reconstruction with system matrix derived from point source measurements. IEEE Trans Med Imaging. 2006;25(7):907–21.CrossRefPubMed
15.
go back to reference Sato K, Shidahara M, Watabe H, Watanuki S, Ishikawa Y, Arakawa Y, et al. Performance evaluation of the small-animal PET scanner ClairvivoPET using NEMA NU 4–2008 standards. Phys Med Biol. 2015;61(2):696–711.CrossRefPubMed Sato K, Shidahara M, Watabe H, Watanuki S, Ishikawa Y, Arakawa Y, et al. Performance evaluation of the small-animal PET scanner ClairvivoPET using NEMA NU 4–2008 standards. Phys Med Biol. 2015;61(2):696–711.CrossRefPubMed
17.
go back to reference National Electrical Manufacturers Association (NEMA). NEMA standards publication NU 4–2008. Rosslyn: National Electrical Manufacturers Association; 2008. National Electrical Manufacturers Association (NEMA). NEMA standards publication NU 4–2008. Rosslyn: National Electrical Manufacturers Association; 2008.
18.
go back to reference Henze E, Huang SC, Ratib O, Hoffman E, Phelps ME, Schelbert HR. Measurements of regional tissue and blood-pool radiotracer concentrations from serial tomographic images of the heart. J Nucl Med. 1983;24(11):987–96.PubMed Henze E, Huang SC, Ratib O, Hoffman E, Phelps ME, Schelbert HR. Measurements of regional tissue and blood-pool radiotracer concentrations from serial tomographic images of the heart. J Nucl Med. 1983;24(11):987–96.PubMed
19.
go back to reference Herrero P, Kim J, Sharp TL, Engelbach JA, Lewis JS, Gropler RJ, et al. Assessment of myocardial blood flow using 15 O-water and 1–11 C-acetate in rats with small-animal PET. J Nucl Med. 2006;47(3):477–85.PubMed Herrero P, Kim J, Sharp TL, Engelbach JA, Lewis JS, Gropler RJ, et al. Assessment of myocardial blood flow using 15 O-water and 1–11 C-acetate in rats with small-animal PET. J Nucl Med. 2006;47(3):477–85.PubMed
20.
go back to reference Zheng X, Tian G, Huang SC, Feng D. A hybrid clustering method for ROI delineation in small-animal dynamic PET images: application to the automatic estimation of FDG input functions. IEEE Trans Inf Technol Biomed. 2011;15(2):195–205.CrossRefPubMed Zheng X, Tian G, Huang SC, Feng D. A hybrid clustering method for ROI delineation in small-animal dynamic PET images: application to the automatic estimation of FDG input functions. IEEE Trans Inf Technol Biomed. 2011;15(2):195–205.CrossRefPubMed
21.
go back to reference Harada N, Nishiyama S, Kanazawa M, Tsukada H. Development of novel PET probes, [18F]BCPP-EF, [18F]BCPP-BF, and [11C]BCPP-EM for mitochondrial complex 1 imaging in the living brain. J Label Compd Radiopharm. 2013;56(11):553–61.CrossRef Harada N, Nishiyama S, Kanazawa M, Tsukada H. Development of novel PET probes, [18F]BCPP-EF, [18F]BCPP-BF, and [11C]BCPP-EM for mitochondrial complex 1 imaging in the living brain. J Label Compd Radiopharm. 2013;56(11):553–61.CrossRef
22.
go back to reference Tsukada H, Nishiyama S, Fukumoto D, Kanazawa M, Harada N. Novel PET probes 18F-BCPP-EF and 18F-BCPP-BF for mitochondrial complex I: a PET study in comparison with 18F-BMS-747158-02 in rat brain. J Nucl Med. 2014;55(3):473–80.CrossRefPubMed Tsukada H, Nishiyama S, Fukumoto D, Kanazawa M, Harada N. Novel PET probes 18F-BCPP-EF and 18F-BCPP-BF for mitochondrial complex I: a PET study in comparison with 18F-BMS-747158-02 in rat brain. J Nucl Med. 2014;55(3):473–80.CrossRefPubMed
23.
go back to reference Ohba H, Kanazawa M, Kakiuchi T, Tsukada H. Effects of acetaminophen on mitochondrial complex I activity in the rat liver and kidney: a PET study with 18F-BCPP-BF. EJNMMI Res. 2016;6(1):82.CrossRefPubMedPubMedCentral Ohba H, Kanazawa M, Kakiuchi T, Tsukada H. Effects of acetaminophen on mitochondrial complex I activity in the rat liver and kidney: a PET study with 18F-BCPP-BF. EJNMMI Res. 2016;6(1):82.CrossRefPubMedPubMedCentral
24.
go back to reference Wiant D, Gersh JA, Bennett M, Bourland JD. Evaluation of the spatial dependence of the point spread function in 2D PET image reconstruction using LOR-OSEM. Med Phys. 2010;37(3):1169–82.CrossRefPubMedPubMedCentral Wiant D, Gersh JA, Bennett M, Bourland JD. Evaluation of the spatial dependence of the point spread function in 2D PET image reconstruction using LOR-OSEM. Med Phys. 2010;37(3):1169–82.CrossRefPubMedPubMedCentral
26.
go back to reference Kidera D, Kihara K, Akamatsu G, Mikasa S, Taniguchi T, Tsutsui Y, et al. The edge artifact in the point-spread function-based PET reconstruction at different sphere-to-background ratios of radioactivity. Ann Nucl Med. 2016;30(2):97–103.CrossRefPubMed Kidera D, Kihara K, Akamatsu G, Mikasa S, Taniguchi T, Tsutsui Y, et al. The edge artifact in the point-spread function-based PET reconstruction at different sphere-to-background ratios of radioactivity. Ann Nucl Med. 2016;30(2):97–103.CrossRefPubMed
27.
go back to reference Tsutsui Y, Awamoto S, Himuro K, Umezu Y, Baba S, Sasaki M. Edge artifacts in point spread function-based PET reconstruction in relation to object size and reconstruction parameters. Asia Ocean J Nucl Med Biol. 2017;5(2):134–43.PubMedPubMedCentral Tsutsui Y, Awamoto S, Himuro K, Umezu Y, Baba S, Sasaki M. Edge artifacts in point spread function-based PET reconstruction in relation to object size and reconstruction parameters. Asia Ocean J Nucl Med Biol. 2017;5(2):134–43.PubMedPubMedCentral
28.
go back to reference Ríha H, Papoušek F, Neckár J, Pirk J, Oštádal B. Effects of isoflurane concentration on basic echocardiographic parameters of the left ventricle in rats. Physiol Res. 2012;61(4):419–23.CrossRefPubMed Ríha H, Papoušek F, Neckár J, Pirk J, Oštádal B. Effects of isoflurane concentration on basic echocardiographic parameters of the left ventricle in rats. Physiol Res. 2012;61(4):419–23.CrossRefPubMed
29.
go back to reference Buys-Gonçalves GF, Sampaio FJB, Pereira-Sampaio MA, Silva MEM, De Souza DB. Histomorphometric and biochemical data of rat kidney submitted to warm ischemia associated with resveratrol treatment. Data Brief. 2020;30:105545.CrossRefPubMedPubMedCentral Buys-Gonçalves GF, Sampaio FJB, Pereira-Sampaio MA, Silva MEM, De Souza DB. Histomorphometric and biochemical data of rat kidney submitted to warm ischemia associated with resveratrol treatment. Data Brief. 2020;30:105545.CrossRefPubMedPubMedCentral
Metadata
Title
Animal PET scanner with a large field of view is suitable for high-throughput scanning of rodents
Authors
Yuki Tomonari
Yuya Onishi
Fumio Hashimoto
Kibo Ote
Takashi Okamoto
Hiroyuki Ohba
Publication date
08-05-2024
Publisher
Springer Nature Singapore
Published in
Annals of Nuclear Medicine
Print ISSN: 0914-7187
Electronic ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-024-01937-1