Skip to main content
Top
Published in: Behavioral and Brain Functions 1/2005

Open Access 01-12-2005 | Review

Animal models of attention-deficit hyperactivity disorder

Authors: Vivienne A Russell, Terje Sagvolden, Espen Borgå Johansen

Published in: Behavioral and Brain Functions | Issue 1/2005

Login to get access

Abstract

Although animals cannot be used to study complex human behaviour such as language, they do have similar basic functions. In fact, human disorders that have animal models are better understood than disorders that do not. ADHD is a heterogeneous disorder. The relatively simple nervous systems of rodent models have enabled identification of neurobiological changes that underlie certain aspects of ADHD behaviour. Several animal models of ADHD suggest that the dopaminergic system is functionally impaired. Some animal models have decreased extracellular dopamine concentrations and upregulated postsynaptic dopamine D1 receptors (DRD1) while others have increased extracellular dopamine concentrations. In the latter case, dopamine pathways are suggested to be hyperactive. However, stimulus-evoked release of dopamine is often decreased in these models, which is consistent with impaired dopamine transmission. It is possible that the behavioural characteristics of ADHD result from impaired dopamine modulation of neurotransmission in cortico-striato-thalamo-cortical circuits. There is considerable evidence to suggest that the noradrenergic system is poorly controlled by hypofunctional α2-autoreceptors in some models, giving rise to inappropriately increased release of norepinephrine. Aspects of ADHD behaviour may result from an imbalance between increased noradrenergic and decreased dopaminergic regulation of neural circuits that involve the prefrontal cortex. Animal models of ADHD also suggest that neural circuits may be altered in the brains of children with ADHD. It is therefore of particular importance to study animal models of the disorder and not normal animals. Evidence obtained from animal models suggests that psychostimulants may not be acting on the dopamine transporter to produce the expected increase in extracellular dopamine concentration in ADHD. There is evidence to suggest that psychostimulants may decrease motor activity by increasing serotonin levels. In addition to providing unique insights into the neurobiology of ADHD, animal models are also being used to test new drugs that can be used to alleviate the symptoms of ADHD.
Literature
1.
go back to reference Pediatrics AA: Clinical practice guideline: diagnosis and evaluation of the child with attention-deficit/hyperactivity disorder. American Academy of Pediatrics. Pediatrics. 2000, 105: 1158-1170. 10.1542/peds.105.5.1158.CrossRef Pediatrics AA: Clinical practice guideline: diagnosis and evaluation of the child with attention-deficit/hyperactivity disorder. American Academy of Pediatrics. Pediatrics. 2000, 105: 1158-1170. 10.1542/peds.105.5.1158.CrossRef
2.
go back to reference Smalley SL: Genetic influences in childhood-onset psychiatric disorders: autism and attention-deficit/hyperactivity disorder. Am J Hum Genet. 1997, 60: 1276-1282.PubMedCentralPubMedCrossRef Smalley SL: Genetic influences in childhood-onset psychiatric disorders: autism and attention-deficit/hyperactivity disorder. Am J Hum Genet. 1997, 60: 1276-1282.PubMedCentralPubMedCrossRef
3.
go back to reference Association AP: Diagnostic and statistical manual of mental disorders: DSM-IV. 1994, Washington, D.C., Author, 78-85. 4 Association AP: Diagnostic and statistical manual of mental disorders: DSM-IV. 1994, Washington, D.C., Author, 78-85. 4
4.
go back to reference Sagvolden T, Johansen EB, Aase H, Russell VA: A dynamic developmental theory of Attention-Deficit/Hyperactivity Disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes. Behav Brain Sci. 2005, In press: Sagvolden T, Johansen EB, Aase H, Russell VA: A dynamic developmental theory of Attention-Deficit/Hyperactivity Disorder (ADHD) predominantly hyperactive/impulsive and combined subtypes. Behav Brain Sci. 2005, In press:
5.
go back to reference Abikoff HB, Jensen PS, Arnold LL, Hoza B, Hechtman L, Pollack S, Martin D, Alvir J, March JS, Hinshaw S, Vitiello B, Newcorn J, Greiner A, Cantwell DP, Conners CK, Elliott G, Greenhill LL, Kraemer H, Pelham WEJ, Severe JB, Swanson JM, Wells K, Wigal T: Observed classroom behavior of children with ADHD: relationship to gender and comorbidity. J Abnorm Child Psychol. 2002, 30: 349-359. 10.1023/A:1015713807297.PubMedCrossRef Abikoff HB, Jensen PS, Arnold LL, Hoza B, Hechtman L, Pollack S, Martin D, Alvir J, March JS, Hinshaw S, Vitiello B, Newcorn J, Greiner A, Cantwell DP, Conners CK, Elliott G, Greenhill LL, Kraemer H, Pelham WEJ, Severe JB, Swanson JM, Wells K, Wigal T: Observed classroom behavior of children with ADHD: relationship to gender and comorbidity. J Abnorm Child Psychol. 2002, 30: 349-359. 10.1023/A:1015713807297.PubMedCrossRef
6.
go back to reference Faraone SV: Genetics of adult attention-deficit/hyperactivity disorder. Psychiatr Clin North Am. 2004, 27: 303-321. 10.1016/S0193-953X(03)00090-X.PubMedCrossRef Faraone SV: Genetics of adult attention-deficit/hyperactivity disorder. Psychiatr Clin North Am. 2004, 27: 303-321. 10.1016/S0193-953X(03)00090-X.PubMedCrossRef
7.
go back to reference Bobb AJ, Castellanos FX, Addington AM, Rapoport JL: Molecular genetic studies of ADHD: 1991 to 2004. Am J Med Genet B Neuropsychiatr Genet. 2005, 132: 109-125. Bobb AJ, Castellanos FX, Addington AM, Rapoport JL: Molecular genetic studies of ADHD: 1991 to 2004. Am J Med Genet B Neuropsychiatr Genet. 2005, 132: 109-125.
8.
go back to reference Bobb AJ, Addington AM, Sidransky E, Gornick MC, Lerch JP, Greenstein DK, Clasen LS, Sharp WS, Inoff-Germain G, Wavrant-De VF, rcos-Burgos M, Straub RE, Hardy JA, Castellanos FX, Rapoport JL: Support for association between ADHD and two candidate genes: NET1 and DRD1. Am J Med Genet B Neuropsychiatr Genet. 2005, 134: 67-72. 10.1002/ajmg.b.30142.CrossRef Bobb AJ, Addington AM, Sidransky E, Gornick MC, Lerch JP, Greenstein DK, Clasen LS, Sharp WS, Inoff-Germain G, Wavrant-De VF, rcos-Burgos M, Straub RE, Hardy JA, Castellanos FX, Rapoport JL: Support for association between ADHD and two candidate genes: NET1 and DRD1. Am J Med Genet B Neuropsychiatr Genet. 2005, 134: 67-72. 10.1002/ajmg.b.30142.CrossRef
9.
go back to reference Cook EHJ, Stein MA, Krasowski MD, Cox NJ, Olkon DM, Kieffer JE, Leventhal BL: Association of attention-deficit disorder and the dopamine transporter gene. Am J Hum Genet. 1995, 56: 993-998.PubMedCentralPubMed Cook EHJ, Stein MA, Krasowski MD, Cox NJ, Olkon DM, Kieffer JE, Leventhal BL: Association of attention-deficit disorder and the dopamine transporter gene. Am J Hum Genet. 1995, 56: 993-998.PubMedCentralPubMed
10.
go back to reference Dougherty DD, Bonab AA, Spencer TJ, Rauch SL, Madras BK, Fischman AJ: Dopamine transporter density in patients with attention deficit hyperactivity disorder. Lancet. 1999, 354: 2132-2133. 10.1016/S0140-6736(99)04030-1.PubMedCrossRef Dougherty DD, Bonab AA, Spencer TJ, Rauch SL, Madras BK, Fischman AJ: Dopamine transporter density in patients with attention deficit hyperactivity disorder. Lancet. 1999, 354: 2132-2133. 10.1016/S0140-6736(99)04030-1.PubMedCrossRef
11.
go back to reference El-Faddagh M, Laucht M, Maras A, Vohringer L, Schmidt MH: Association of dopamine D4 receptor (DRD4) gene with attention-deficit/hyperactivity disorder (ADHD) in a high-risk community sample: a longitudinal study from birth to 11 years of age. J Neural Transm. 2004, 111: 883-889. 10.1007/s00702-003-0054-2.PubMedCrossRef El-Faddagh M, Laucht M, Maras A, Vohringer L, Schmidt MH: Association of dopamine D4 receptor (DRD4) gene with attention-deficit/hyperactivity disorder (ADHD) in a high-risk community sample: a longitudinal study from birth to 11 years of age. J Neural Transm. 2004, 111: 883-889. 10.1007/s00702-003-0054-2.PubMedCrossRef
12.
go back to reference Faraone SV, Doyle AE, Mick E, Biederman J: Meta-analysis of the association between the 7-repeat allele of the dopamine D(4) receptor gene and attention deficit hyperactivity disorder. Am J Psychiatry. 2001, 158: 1052-1057. 10.1176/appi.ajp.158.7.1052.PubMedCrossRef Faraone SV, Doyle AE, Mick E, Biederman J: Meta-analysis of the association between the 7-repeat allele of the dopamine D(4) receptor gene and attention deficit hyperactivity disorder. Am J Psychiatry. 2001, 158: 1052-1057. 10.1176/appi.ajp.158.7.1052.PubMedCrossRef
13.
go back to reference Blum K, Braverman ER, Wu S, Cull JG, Chen TJH, Gill J, Wood R, Eisenberg A, Sherman M, Davis KR, Mattews D, Fischer L, Schnautz N, Walsh W, Pontius AA, Zedar M, Kaats G, Comings DE: Association of polymorphisms of dopamine D2 receptor (DRD2), and dopamine transporter (DAT1) genes with schizoid/avoidant behaviors. Mol Psychiatry. 1997, 2: 239-246. 10.1038/sj.mp.4000261.PubMedCrossRef Blum K, Braverman ER, Wu S, Cull JG, Chen TJH, Gill J, Wood R, Eisenberg A, Sherman M, Davis KR, Mattews D, Fischer L, Schnautz N, Walsh W, Pontius AA, Zedar M, Kaats G, Comings DE: Association of polymorphisms of dopamine D2 receptor (DRD2), and dopamine transporter (DAT1) genes with schizoid/avoidant behaviors. Mol Psychiatry. 1997, 2: 239-246. 10.1038/sj.mp.4000261.PubMedCrossRef
14.
go back to reference Kirley A, Lowe N, Hawi Z, Mullins C, Daly G, Waldman I, McCarron M, O'Donnell D, Fitzgerald M, Gill M: Association of the 480 bp DAT1 allele with methylphenidate response in a sample of Irish children with ADHD. Am J Med Genet B Neuropsychiatr Genet. 2003, 121: 50-54. 10.1002/ajmg.b.20071.CrossRef Kirley A, Lowe N, Hawi Z, Mullins C, Daly G, Waldman I, McCarron M, O'Donnell D, Fitzgerald M, Gill M: Association of the 480 bp DAT1 allele with methylphenidate response in a sample of Irish children with ADHD. Am J Med Genet B Neuropsychiatr Genet. 2003, 121: 50-54. 10.1002/ajmg.b.20071.CrossRef
15.
go back to reference Krause KH, Dresel SH, Krause J, Kung HF, Tatsch K: Increased striatal dopamine transporter in adult patients with attention deficit hyperactivity disorder: effects of methylphenidate as measured by single photon emission computed tomography. Neurosci Lett. 2000, 285: 107-110. 10.1016/S0304-3940(00)01040-5.PubMedCrossRef Krause KH, Dresel SH, Krause J, Kung HF, Tatsch K: Increased striatal dopamine transporter in adult patients with attention deficit hyperactivity disorder: effects of methylphenidate as measured by single photon emission computed tomography. Neurosci Lett. 2000, 285: 107-110. 10.1016/S0304-3940(00)01040-5.PubMedCrossRef
16.
go back to reference LaHoste GJ, Swanson JM, Wigal SB, Glabe C, Wigal T, King N, Kennedy JL: Dopamine D4 receptor gene polymorphism is associated with attention deficit hyperactivity disorder. Mol Psychiatry. 1996, 1: 121-124.PubMed LaHoste GJ, Swanson JM, Wigal SB, Glabe C, Wigal T, King N, Kennedy JL: Dopamine D4 receptor gene polymorphism is associated with attention deficit hyperactivity disorder. Mol Psychiatry. 1996, 1: 121-124.PubMed
17.
go back to reference Maher BS, Marazita ML, Ferrell RE, Vanyukov MM: Dopamine system genes and attention deficit hyperactivity disorder: a meta-analysis. Psychiatr Genet. 2002, 12: 207-215. 10.1097/00041444-200212000-00003.PubMedCrossRef Maher BS, Marazita ML, Ferrell RE, Vanyukov MM: Dopamine system genes and attention deficit hyperactivity disorder: a meta-analysis. Psychiatr Genet. 2002, 12: 207-215. 10.1097/00041444-200212000-00003.PubMedCrossRef
18.
go back to reference Manor I, Corbex M, Eisenberg J, Gritsenkso I, Bachner-Melman R, Tyano S, Ebstein RP: Association of the dopamine D5 receptor with attention deficit hyperactivity disorder (ADHD) and scores on a continuous performance test (TOVA). Am J Med Genet B Neuropsychiatr Genet. 2004, 127: 73-77. 10.1002/ajmg.b.30020.CrossRef Manor I, Corbex M, Eisenberg J, Gritsenkso I, Bachner-Melman R, Tyano S, Ebstein RP: Association of the dopamine D5 receptor with attention deficit hyperactivity disorder (ADHD) and scores on a continuous performance test (TOVA). Am J Med Genet B Neuropsychiatr Genet. 2004, 127: 73-77. 10.1002/ajmg.b.30020.CrossRef
19.
go back to reference Park L, Nigg JT, Waldman ID, Nummy KA, Huang-Pollock C, Rappley M, Friderici KH: Association and linkage of alpha-2A adrenergic receptor gene polymorphisms with childhood ADHD. Mol Psychiatry. 2005, 10: 572-580. 10.1038/sj.mp.4001605.PubMedCrossRef Park L, Nigg JT, Waldman ID, Nummy KA, Huang-Pollock C, Rappley M, Friderici KH: Association and linkage of alpha-2A adrenergic receptor gene polymorphisms with childhood ADHD. Mol Psychiatry. 2005, 10: 572-580. 10.1038/sj.mp.4001605.PubMedCrossRef
20.
go back to reference Bakker SC, van der Meulen EM, Oteman N, Schelleman H, Pearson PL, Buitelaar JK, Sinke RJ: DAT1, DRD4, and DRD5 polymorphisms are not associated with ADHD in Dutch families. Am J Med Genet B Neuropsychiatr Genet. 2004, 132B: 50-52. 10.1002/ajmg.b.30089.CrossRef Bakker SC, van der Meulen EM, Oteman N, Schelleman H, Pearson PL, Buitelaar JK, Sinke RJ: DAT1, DRD4, and DRD5 polymorphisms are not associated with ADHD in Dutch families. Am J Med Genet B Neuropsychiatr Genet. 2004, 132B: 50-52. 10.1002/ajmg.b.30089.CrossRef
21.
go back to reference Barr CL, Kroft J, Feng Y, Wigg K, Roberts W, Malone M, Ickowicz A, Schachar R, Tannock R, Kennedy JL: The norepinephrine transporter gene and attention-deficit hyperactivity disorder. Am J Med Genet. 2002, 114: 255-259. 10.1002/ajmg.10193.PubMedCrossRef Barr CL, Kroft J, Feng Y, Wigg K, Roberts W, Malone M, Ickowicz A, Schachar R, Tannock R, Kennedy JL: The norepinephrine transporter gene and attention-deficit hyperactivity disorder. Am J Med Genet. 2002, 114: 255-259. 10.1002/ajmg.10193.PubMedCrossRef
22.
go back to reference Xu X, Knight J, Brookes K, Mill J, Sham P, Craig I, Taylor E, Asherson P: DNA pooling analysis of 21 norepinephrine transporter gene SNPs with attention deficit hyperactivity disorder: No evidence for association. Am J Med Genet B Neuropsychiatr Genet. 2005, 134: 115-118. 10.1002/ajmg.b.30160.CrossRef Xu X, Knight J, Brookes K, Mill J, Sham P, Craig I, Taylor E, Asherson P: DNA pooling analysis of 21 norepinephrine transporter gene SNPs with attention deficit hyperactivity disorder: No evidence for association. Am J Med Genet B Neuropsychiatr Genet. 2005, 134: 115-118. 10.1002/ajmg.b.30160.CrossRef
23.
go back to reference Purper-Ouakil D, Wohl M, Mouren MC, Verpillat P, Ades J, Gorwood P: Meta-analysis of family-based association studies between the dopamine transporter gene and attention deficit hyperactivity disorder. Psychiatr Genet. 2005, 15: 53-59. 10.1097/00041444-200503000-00009.PubMedCrossRef Purper-Ouakil D, Wohl M, Mouren MC, Verpillat P, Ades J, Gorwood P: Meta-analysis of family-based association studies between the dopamine transporter gene and attention deficit hyperactivity disorder. Psychiatr Genet. 2005, 15: 53-59. 10.1097/00041444-200503000-00009.PubMedCrossRef
24.
go back to reference Durston S, Fossella JA, Casey BJ, Hulshoff Pol HE, Galvan A, Schnack HG, Steenhuis MP, Minderaa RB, Buitelaar JK, Kahn RS, van EH: Differential effects of DRD4 and DAT1 genotype on fronto-striatal gray matter volumes in a sample of subjects with attention deficit hyperactivity disorder, their unaffected siblings, and controls. Mol Psychiatry. 2005 Durston S, Fossella JA, Casey BJ, Hulshoff Pol HE, Galvan A, Schnack HG, Steenhuis MP, Minderaa RB, Buitelaar JK, Kahn RS, van EH: Differential effects of DRD4 and DAT1 genotype on fronto-striatal gray matter volumes in a sample of subjects with attention deficit hyperactivity disorder, their unaffected siblings, and controls. Mol Psychiatry. 2005
25.
go back to reference Castellanos FX, Lee PP, Sharp W, Jeffries NO, Greenstein DK, Clasen LS, Blumenthal JD, James RS, Ebens CL, Walter JM, Zijdenbos A, Evans AC, Giedd JN, Rapoport JL: Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder. JAMA. 2002, 288: 1740-1748. 10.1001/jama.288.14.1740.PubMedCrossRef Castellanos FX, Lee PP, Sharp W, Jeffries NO, Greenstein DK, Clasen LS, Blumenthal JD, James RS, Ebens CL, Walter JM, Zijdenbos A, Evans AC, Giedd JN, Rapoport JL: Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder. JAMA. 2002, 288: 1740-1748. 10.1001/jama.288.14.1740.PubMedCrossRef
26.
go back to reference Castellanos FX, Giedd JN, Marsh WL, Hamburger SD, Vaituzis AC, Dickstein DP, Sarfatti SE, Vauss YC, Snell JW, Lange N, Kaysen D, Krain AL, Ritchie GF, Rajapakse JC, Rapoport JL: Quantitative brain magnetic resonance imaging in attention-deficit hyperactivity disorder. Arch Gen Psychiatry. 1996, 53: 607-616.PubMedCrossRef Castellanos FX, Giedd JN, Marsh WL, Hamburger SD, Vaituzis AC, Dickstein DP, Sarfatti SE, Vauss YC, Snell JW, Lange N, Kaysen D, Krain AL, Ritchie GF, Rajapakse JC, Rapoport JL: Quantitative brain magnetic resonance imaging in attention-deficit hyperactivity disorder. Arch Gen Psychiatry. 1996, 53: 607-616.PubMedCrossRef
27.
go back to reference Durston S, Hulshoff Pol HE, Schnack HG, Buitelaar JK, Steenhuis MP, Minderaa RB, Kahn RS, van EH: Magnetic resonance imaging of boys with attention-deficit/hyperactivity disorder and their unaffected siblings. J Am Acad Child Adolesc Psychiatry. 2004, 43: 332-340. 10.1097/00004583-200403000-00016.PubMedCrossRef Durston S, Hulshoff Pol HE, Schnack HG, Buitelaar JK, Steenhuis MP, Minderaa RB, Kahn RS, van EH: Magnetic resonance imaging of boys with attention-deficit/hyperactivity disorder and their unaffected siblings. J Am Acad Child Adolesc Psychiatry. 2004, 43: 332-340. 10.1097/00004583-200403000-00016.PubMedCrossRef
28.
go back to reference Filipek PA, Semrud-Clikeman M, Steingard RJ, Renshaw PF, Kennedy DN, Biederman J: Volumetric MRI analysis comparing subjects having attention-deficit hyperactivity disorder with normal controls. Neurology. 1997, 48: 589-601.PubMedCrossRef Filipek PA, Semrud-Clikeman M, Steingard RJ, Renshaw PF, Kennedy DN, Biederman J: Volumetric MRI analysis comparing subjects having attention-deficit hyperactivity disorder with normal controls. Neurology. 1997, 48: 589-601.PubMedCrossRef
29.
go back to reference Hill DE, Yeo RA, Campbell RA, Hart B, Vigil J, Brooks W: Magnetic resonance imaging correlates of attention-deficit/hyperactivity disorder in children. Neuropsychology. 2003, 17: 496-506. 10.1037/0894-4105.17.3.496.PubMedCrossRef Hill DE, Yeo RA, Campbell RA, Hart B, Vigil J, Brooks W: Magnetic resonance imaging correlates of attention-deficit/hyperactivity disorder in children. Neuropsychology. 2003, 17: 496-506. 10.1037/0894-4105.17.3.496.PubMedCrossRef
30.
go back to reference Kim BN, Lee JS, Shin MS, Cho SC, Lee DS: Regional cerebral perfusion abnormalities in attention deficit/hyperactivity disorder. Statistical parametric mapping analysis. Eur Arch Psychiatry Clin Neurosci. 2002, 252: 219-225. 10.1007/s00406-002-0384-3.PubMedCrossRef Kim BN, Lee JS, Shin MS, Cho SC, Lee DS: Regional cerebral perfusion abnormalities in attention deficit/hyperactivity disorder. Statistical parametric mapping analysis. Eur Arch Psychiatry Clin Neurosci. 2002, 252: 219-225. 10.1007/s00406-002-0384-3.PubMedCrossRef
31.
go back to reference Rubia K, Overmeyer S, Taylor E, Brammer M, Williams SC, Simmons A, Bullmore ET: Hypofrontality in attention deficit hyperactivity disorder during higher-order motor control: a study with functional MRI. Am J Psychiatry. 1999, 156: 891-896.PubMedCrossRef Rubia K, Overmeyer S, Taylor E, Brammer M, Williams SC, Simmons A, Bullmore ET: Hypofrontality in attention deficit hyperactivity disorder during higher-order motor control: a study with functional MRI. Am J Psychiatry. 1999, 156: 891-896.PubMedCrossRef
32.
go back to reference Moll GH, Heinrich H, Trott G, Wirth S, Rothenberger A: Deficient intracortical inhibition in drug-naive children with attention-deficit hyperactivity disorder is enhanced by methylphenidate. Neurosci Lett. 2000, 284: 121-125. 10.1016/S0304-3940(00)00980-0.PubMedCrossRef Moll GH, Heinrich H, Trott G, Wirth S, Rothenberger A: Deficient intracortical inhibition in drug-naive children with attention-deficit hyperactivity disorder is enhanced by methylphenidate. Neurosci Lett. 2000, 284: 121-125. 10.1016/S0304-3940(00)00980-0.PubMedCrossRef
33.
go back to reference Tannock R: Attention deficit hyperactivity disorder: advances in cognitive, neurobiological, and genetic research. J Child Psychol Psychiatry. 1998, 39: 65-99. 10.1017/S0021963097001777.PubMedCrossRef Tannock R: Attention deficit hyperactivity disorder: advances in cognitive, neurobiological, and genetic research. J Child Psychol Psychiatry. 1998, 39: 65-99. 10.1017/S0021963097001777.PubMedCrossRef
34.
go back to reference Vaidya CJ, Austin G, Kirkorian G, Ridlehuber HW, Desmond JE, Glover GH, Gabrieli JD: Selective effects of methylphenidate in attention deficit hyperactivity disorder: a functional magnetic resonance study. Proc Natl Acad Sci U S A. 1998, 95: 14494-14499. 10.1073/pnas.95.24.14494.PubMedCentralPubMedCrossRef Vaidya CJ, Austin G, Kirkorian G, Ridlehuber HW, Desmond JE, Glover GH, Gabrieli JD: Selective effects of methylphenidate in attention deficit hyperactivity disorder: a functional magnetic resonance study. Proc Natl Acad Sci U S A. 1998, 95: 14494-14499. 10.1073/pnas.95.24.14494.PubMedCentralPubMedCrossRef
35.
go back to reference Cheon KA, Ryu YH, Kim YK, Namkoong K, Kim CH, Lee JD: Dopamine transporter density in the basal ganglia assessed with [123I]IPT SPET in children with attention deficit hyperactivity disorder. Eur J Nucl Med. 2003, 30: 306-311.CrossRef Cheon KA, Ryu YH, Kim YK, Namkoong K, Kim CH, Lee JD: Dopamine transporter density in the basal ganglia assessed with [123I]IPT SPET in children with attention deficit hyperactivity disorder. Eur J Nucl Med. 2003, 30: 306-311.CrossRef
36.
go back to reference Jucaite A, Fernell E, Halldin C, Forssberg H, Farde L: Reduced midbrain dopamine transporter binding in male adolescents with attention-deficit/hyperactivity disorder: association between striatal dopamine markers and motor hyperactivity. Biol Psychiatry. 2005, 57: 229-238. 10.1016/j.biopsych.2004.11.009.PubMedCrossRef Jucaite A, Fernell E, Halldin C, Forssberg H, Farde L: Reduced midbrain dopamine transporter binding in male adolescents with attention-deficit/hyperactivity disorder: association between striatal dopamine markers and motor hyperactivity. Biol Psychiatry. 2005, 57: 229-238. 10.1016/j.biopsych.2004.11.009.PubMedCrossRef
37.
go back to reference van Dyck CH, Quinlan DM, Cretella LM, Staley JK, Malison RT, Baldwin RM, Seibyl JP, Innis RB: Unaltered dopamine transporter availability in adult attention deficit hyperactivity disorder. Am J Psychiatry. 2002, 159: 309-312. 10.1176/appi.ajp.159.2.309.PubMedCrossRef van Dyck CH, Quinlan DM, Cretella LM, Staley JK, Malison RT, Baldwin RM, Seibyl JP, Innis RB: Unaltered dopamine transporter availability in adult attention deficit hyperactivity disorder. Am J Psychiatry. 2002, 159: 309-312. 10.1176/appi.ajp.159.2.309.PubMedCrossRef
38.
go back to reference Biederman J, Spencer T, Wilens T: Evidence-based pharmacotherapy for attention-deficit hyperactivity disorder. Int J Neuropharmacol. 2004, 7: 77-97. Biederman J, Spencer T, Wilens T: Evidence-based pharmacotherapy for attention-deficit hyperactivity disorder. Int J Neuropharmacol. 2004, 7: 77-97.
39.
go back to reference Mehta MA, Goodyer IM, Sahakian BJ: Methylphenidate improves working memory and set-shifting in AD/HD: relationships to baseline memory capacity. J Child Psychol Psychiatry. 2004, 45: 293-305. 10.1111/j.1469-7610.2004.00221.x.PubMedCrossRef Mehta MA, Goodyer IM, Sahakian BJ: Methylphenidate improves working memory and set-shifting in AD/HD: relationships to baseline memory capacity. J Child Psychol Psychiatry. 2004, 45: 293-305. 10.1111/j.1469-7610.2004.00221.x.PubMedCrossRef
40.
go back to reference Solanto MV: Neuropsychopharmacological mechanisms of stimulant drug action in attention-deficit hyperactivity disorder: A review and integration. Behav Brain Res. 1998, 94: 127-152. 10.1016/S0166-4328(97)00175-7.PubMedCrossRef Solanto MV: Neuropsychopharmacological mechanisms of stimulant drug action in attention-deficit hyperactivity disorder: A review and integration. Behav Brain Res. 1998, 94: 127-152. 10.1016/S0166-4328(97)00175-7.PubMedCrossRef
41.
go back to reference Bedard AC, Martinussen R, Ickowicz A, Tannock R: Methylphenidate improves visual-spatial memory in children with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry. 2004, 43: 260-268. 10.1097/00004583-200403000-00006.PubMedCrossRef Bedard AC, Martinussen R, Ickowicz A, Tannock R: Methylphenidate improves visual-spatial memory in children with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry. 2004, 43: 260-268. 10.1097/00004583-200403000-00006.PubMedCrossRef
42.
go back to reference Tannock R, Schachar R, Logan G: Methylphenidate and cognitive flexibility: dissociated dose effects in hyperactive children. J Abnorm Child Psychol. 1995, 23: 235-266. 10.1007/BF01447091.PubMedCrossRef Tannock R, Schachar R, Logan G: Methylphenidate and cognitive flexibility: dissociated dose effects in hyperactive children. J Abnorm Child Psychol. 1995, 23: 235-266. 10.1007/BF01447091.PubMedCrossRef
43.
go back to reference Tannock R, Schachar RJ, Carr RP, Chajczyk D, Logan GD: Effects of methylphenidate on inhibitory control in hyperactive children. J Abnorm Child Psychol. 1989, 17: 473-491. 10.1007/BF00916508.PubMedCrossRef Tannock R, Schachar RJ, Carr RP, Chajczyk D, Logan GD: Effects of methylphenidate on inhibitory control in hyperactive children. J Abnorm Child Psychol. 1989, 17: 473-491. 10.1007/BF00916508.PubMedCrossRef
44.
go back to reference Lou HC, Henriksen L, Bruhn P: Focal cerebral hypoperfusion in children with dysphasia and/or attention deficit disorder. Arch Neurol. 1984, 41: 825-829.PubMedCrossRef Lou HC, Henriksen L, Bruhn P: Focal cerebral hypoperfusion in children with dysphasia and/or attention deficit disorder. Arch Neurol. 1984, 41: 825-829.PubMedCrossRef
45.
go back to reference Sagvolden T, Russell VA, Aase H, Johansen EB, Farshbaf M: Rodent models of attention-deficit/hyperactivity disorder. Biol Psychiatry. 2005, 57: 1239-1247. 10.1016/j.biopsych.2005.02.002.PubMedCrossRef Sagvolden T, Russell VA, Aase H, Johansen EB, Farshbaf M: Rodent models of attention-deficit/hyperactivity disorder. Biol Psychiatry. 2005, 57: 1239-1247. 10.1016/j.biopsych.2005.02.002.PubMedCrossRef
46.
go back to reference Robbins TW, Everitt BJ: Neurobehavioural mechanisms of reward and motivation. Curr Opin Neurobiol. 1996, 6: 228-236. 10.1016/S0959-4388(96)80077-8.PubMedCrossRef Robbins TW, Everitt BJ: Neurobehavioural mechanisms of reward and motivation. Curr Opin Neurobiol. 1996, 6: 228-236. 10.1016/S0959-4388(96)80077-8.PubMedCrossRef
47.
go back to reference Sagvolden T: Behavioral validation of the spontaneously hypertensive rat (SHR) as an animal model of attention-deficit/hyperactivity disorder (AD/HD). Neurosci Biobehav Rev. 2000, 24: 31-39. 10.1016/S0149-7634(99)00058-5.PubMedCrossRef Sagvolden T: Behavioral validation of the spontaneously hypertensive rat (SHR) as an animal model of attention-deficit/hyperactivity disorder (AD/HD). Neurosci Biobehav Rev. 2000, 24: 31-39. 10.1016/S0149-7634(99)00058-5.PubMedCrossRef
48.
go back to reference Wiersema JR, van der Meere JJ, Roeyers H: ERP correlates of impaired error monitoring in children with ADHD. J Neural Transm. 2005 Wiersema JR, van der Meere JJ, Roeyers H: ERP correlates of impaired error monitoring in children with ADHD. J Neural Transm. 2005
49.
go back to reference Okamoto K, Aoki K: Development of a strain of spontaneously hypertensive rats. Jpn Circ J. 1963, 27: 282-293.PubMedCrossRef Okamoto K, Aoki K: Development of a strain of spontaneously hypertensive rats. Jpn Circ J. 1963, 27: 282-293.PubMedCrossRef
50.
go back to reference Leo D, Sorrentino E, Volpicelli F, Eyman M, Greco D, Viggiano D, di PU, Perrone-Capano C: Altered midbrain dopaminergic neurotransmission during development in an animal model of ADHD. Neurosci Biobehav Rev. 2003, 27: 661-669. 10.1016/j.neubiorev.2003.08.009.PubMedCrossRef Leo D, Sorrentino E, Volpicelli F, Eyman M, Greco D, Viggiano D, di PU, Perrone-Capano C: Altered midbrain dopaminergic neurotransmission during development in an animal model of ADHD. Neurosci Biobehav Rev. 2003, 27: 661-669. 10.1016/j.neubiorev.2003.08.009.PubMedCrossRef
51.
go back to reference Watanabe Y, Fujita M, Ito Y, Okada T, Kusuoka H, Nishimura T: Brain dopamine transporter in spontaneously hypertensive rats. J Nucl Med. 1997, 38: 470-474.PubMed Watanabe Y, Fujita M, Ito Y, Okada T, Kusuoka H, Nishimura T: Brain dopamine transporter in spontaneously hypertensive rats. J Nucl Med. 1997, 38: 470-474.PubMed
52.
go back to reference Ernst M, Zametkin AJ, Matochik JA, Pascualvaca D, Jons PH, Cohen RM: High midbrain [18F]DOPA accumulation in children with attention deficit hyperactivity disorder. Am J Psychiatry. 1999, 156: 1209-1215.PubMed Ernst M, Zametkin AJ, Matochik JA, Pascualvaca D, Jons PH, Cohen RM: High midbrain [18F]DOPA accumulation in children with attention deficit hyperactivity disorder. Am J Psychiatry. 1999, 156: 1209-1215.PubMed
53.
go back to reference Ernst M, Zametkin AJ, Matochik JA, Jons PH, Cohen RM: DOPA decarboxylase activity in attention deficit hyperactivity disorder adults. A [fluorine-18]fluorodopa positron emission tomographic study. J Neurosci. 1998, 18: 5901-5907.PubMed Ernst M, Zametkin AJ, Matochik JA, Jons PH, Cohen RM: DOPA decarboxylase activity in attention deficit hyperactivity disorder adults. A [fluorine-18]fluorodopa positron emission tomographic study. J Neurosci. 1998, 18: 5901-5907.PubMed
54.
go back to reference Carboni E, Silvagni A, Valentini V, Di CG: Effect of amphetamine, cocaine and depolarization by high potassium on extracellular dopamine in the nucleus accumbens shell of SHR rats. An in vivo microdyalisis study. Neurosci Biobehav Rev. 2003, 27: 653-659. 10.1016/j.neubiorev.2003.08.008.PubMedCrossRef Carboni E, Silvagni A, Valentini V, Di CG: Effect of amphetamine, cocaine and depolarization by high potassium on extracellular dopamine in the nucleus accumbens shell of SHR rats. An in vivo microdyalisis study. Neurosci Biobehav Rev. 2003, 27: 653-659. 10.1016/j.neubiorev.2003.08.008.PubMedCrossRef
55.
go back to reference De Jong W, Linthorst AC, Versteeg HG: The nigrostriatal dopamine system and the development of hypertension in the spontaneously hypertensive rat. Arch Mal Coeur Vaiss. 1995, 88: 1193-1196.PubMed De Jong W, Linthorst AC, Versteeg HG: The nigrostriatal dopamine system and the development of hypertension in the spontaneously hypertensive rat. Arch Mal Coeur Vaiss. 1995, 88: 1193-1196.PubMed
56.
go back to reference Linthorst AC, H. L, W. J, Versteeg DH: Effect of the dopamine D2 receptor agonist quinpirole on the in vivo release of dopamine in the caudate nucleus of hypertensive rats. Eur J Pharmacol. 1991, 201: 125-133. 10.1016/0014-2999(91)90335-N.PubMedCrossRef Linthorst AC, H. L, W. J, Versteeg DH: Effect of the dopamine D2 receptor agonist quinpirole on the in vivo release of dopamine in the caudate nucleus of hypertensive rats. Eur J Pharmacol. 1991, 201: 125-133. 10.1016/0014-2999(91)90335-N.PubMedCrossRef
57.
go back to reference Jones SR, Gainetdinov RR, Jaber M, Giros B, Wightman RM, Caron MG: Profound neuronal plasticity in response to inactivation of the dopamine transporter. Proc Natl Acad Sci U S A. 1998, 95: 4029-4034. 10.1073/pnas.95.7.4029.PubMedCentralPubMedCrossRef Jones SR, Gainetdinov RR, Jaber M, Giros B, Wightman RM, Caron MG: Profound neuronal plasticity in response to inactivation of the dopamine transporter. Proc Natl Acad Sci U S A. 1998, 95: 4029-4034. 10.1073/pnas.95.7.4029.PubMedCentralPubMedCrossRef
58.
go back to reference Russell VA, de Villiers A, Sagvolden T, Lamm M, Taljaard J: Differences between electrically-, ritalin- and D-amphetamine-stimulated release of [3H]dopamine from brain slices suggest impaired vesicular storage of dopamine in an animal model of Attention-Deficit Hyperactivity Disorder. Behav Brain Res. 1998, 94: 163-171. 10.1016/S0166-4328(97)00177-0.PubMedCrossRef Russell VA, de Villiers A, Sagvolden T, Lamm M, Taljaard J: Differences between electrically-, ritalin- and D-amphetamine-stimulated release of [3H]dopamine from brain slices suggest impaired vesicular storage of dopamine in an animal model of Attention-Deficit Hyperactivity Disorder. Behav Brain Res. 1998, 94: 163-171. 10.1016/S0166-4328(97)00177-0.PubMedCrossRef
59.
go back to reference Linthorst AC, Van den Buuse M, De Jong W, Versteeg DH: Electrically stimulated [3H]dopamine and [14C]acetylcholine release from nucleus caudatus slices: differences between spontaneously hypertensive rats and Wistar-Kyoto rats. Brain Res. 1990, 509: 266-272. 10.1016/0006-8993(90)90551-L.PubMedCrossRef Linthorst AC, Van den Buuse M, De Jong W, Versteeg DH: Electrically stimulated [3H]dopamine and [14C]acetylcholine release from nucleus caudatus slices: differences between spontaneously hypertensive rats and Wistar-Kyoto rats. Brain Res. 1990, 509: 266-272. 10.1016/0006-8993(90)90551-L.PubMedCrossRef
60.
go back to reference Printz MP, Jirout M, Jaworski R, Alemayehu A, Kren V: Genetic Models in Applied Physiology. HXB/BXH rat recombinant inbred strain platform: a newly enhanced tool for cardiovascular, behavioral, and developmental genetics and genomics. J Appl Physiol. 2003, 94: 2510-2522. 10.1063/1.1590051.PubMedCrossRef Printz MP, Jirout M, Jaworski R, Alemayehu A, Kren V: Genetic Models in Applied Physiology. HXB/BXH rat recombinant inbred strain platform: a newly enhanced tool for cardiovascular, behavioral, and developmental genetics and genomics. J Appl Physiol. 2003, 94: 2510-2522. 10.1063/1.1590051.PubMedCrossRef
61.
go back to reference Bendel P, Eilam R: Quantitation of ventricular size in normal and spontaneously hypertensive rats by magnetic resonance imaging. Brain Res. 1992, 574: 224-228. 10.1016/0006-8993(92)90820-Y.PubMedCrossRef Bendel P, Eilam R: Quantitation of ventricular size in normal and spontaneously hypertensive rats by magnetic resonance imaging. Brain Res. 1992, 574: 224-228. 10.1016/0006-8993(92)90820-Y.PubMedCrossRef
62.
go back to reference Mignini F, Vitaioli L, Sabbatini M, Tomassoni D, Amenta F: The cerebral cortex of spontaneously hypertensive rats: a quantitative microanatomical study. Clin Exp Hypertens. 2004, 26: 287-303. 10.1081/CEH-120034135.PubMedCrossRef Mignini F, Vitaioli L, Sabbatini M, Tomassoni D, Amenta F: The cerebral cortex of spontaneously hypertensive rats: a quantitative microanatomical study. Clin Exp Hypertens. 2004, 26: 287-303. 10.1081/CEH-120034135.PubMedCrossRef
63.
go back to reference Sabbatini M, Strocchi P, Vitaioli L, Amenta F: The hippocampus in spontaneously hypertensive rats: a quantitative microanatomical study. Neuroscience. 2000, 100: 251-258. 10.1016/S0306-4522(00)00297-9.PubMedCrossRef Sabbatini M, Strocchi P, Vitaioli L, Amenta F: The hippocampus in spontaneously hypertensive rats: a quantitative microanatomical study. Neuroscience. 2000, 100: 251-258. 10.1016/S0306-4522(00)00297-9.PubMedCrossRef
64.
go back to reference Tomassoni D, Bellagamba G, Postacchini D, Venarucci D, Amenta F: Cerebrovascular and brain microanatomy in spontaneously hypertensive rats with streptozotocin-induced diabetes. Clin Exp Hypertens. 2004, 26: 305-321. 10.1081/CEH-120034136.PubMedCrossRef Tomassoni D, Bellagamba G, Postacchini D, Venarucci D, Amenta F: Cerebrovascular and brain microanatomy in spontaneously hypertensive rats with streptozotocin-induced diabetes. Clin Exp Hypertens. 2004, 26: 305-321. 10.1081/CEH-120034136.PubMedCrossRef
65.
go back to reference Lehohla M, Kellaway L, Russell V: NMDA receptor function in the prefrontal cortex of a rat model for attention-deficit hyperactivity disorder. Metab Brain Dis. 2004, 19: 35-42. 10.1023/B:MEBR.0000027415.75432.ad.PubMedCrossRef Lehohla M, Kellaway L, Russell V: NMDA receptor function in the prefrontal cortex of a rat model for attention-deficit hyperactivity disorder. Metab Brain Dis. 2004, 19: 35-42. 10.1023/B:MEBR.0000027415.75432.ad.PubMedCrossRef
66.
go back to reference Lehohla M, Russell V, Kellaway L: NMDA-stimulated Ca2+ uptake into barrel cortex slices of spontaneously hypertensive rats. Metab Brain Dis. 2001, 16: 133-141. 10.1023/A:1012532709306.PubMedCrossRef Lehohla M, Russell V, Kellaway L: NMDA-stimulated Ca2+ uptake into barrel cortex slices of spontaneously hypertensive rats. Metab Brain Dis. 2001, 16: 133-141. 10.1023/A:1012532709306.PubMedCrossRef
67.
go back to reference Horn JL, Janicki PK, Franks JJ: Diminished brain synaptic plasma membrane Ca(2+)-ATPase activity in spontaneously hypertensive rats: association with reduced anesthetic requirements. Life Sci. 1995, 56: L427-L432. Horn JL, Janicki PK, Franks JJ: Diminished brain synaptic plasma membrane Ca(2+)-ATPase activity in spontaneously hypertensive rats: association with reduced anesthetic requirements. Life Sci. 1995, 56: L427-L432.
68.
go back to reference Malenka RC, Nicoll RA: Long-term potentiation--a decade of progress?. Science. 1999, 285: 1870-1874. 10.1126/science.285.5435.1870.PubMedCrossRef Malenka RC, Nicoll RA: Long-term potentiation--a decade of progress?. Science. 1999, 285: 1870-1874. 10.1126/science.285.5435.1870.PubMedCrossRef
69.
go back to reference Fisher SE, Francks C, McCracken JT, McGough JJ, Marlow AJ, MacPhie IL, Newbury DF, Crawford LR, Palmer CG, Woodward JA, Del'Homme M, Cantwell DP, Nelson SF, Monaco AP, Smalley SL: A genomewide scan for loci involved in attention-deficit/hyperactivity disorder. Am J Hum Genet. 2002, 70: 1183-1196. 10.1086/340112.PubMedCentralPubMedCrossRef Fisher SE, Francks C, McCracken JT, McGough JJ, Marlow AJ, MacPhie IL, Newbury DF, Crawford LR, Palmer CG, Woodward JA, Del'Homme M, Cantwell DP, Nelson SF, Monaco AP, Smalley SL: A genomewide scan for loci involved in attention-deficit/hyperactivity disorder. Am J Hum Genet. 2002, 70: 1183-1196. 10.1086/340112.PubMedCentralPubMedCrossRef
70.
go back to reference Ali MK, Bergson C: Elevated intracellular calcium triggers recruitment of the receptor cross-talk accessory protein calcyon to the plasma membrane. J Biol Chem. 2003, 278: 51654-51663. 10.1074/jbc.M305803200.PubMedCrossRef Ali MK, Bergson C: Elevated intracellular calcium triggers recruitment of the receptor cross-talk accessory protein calcyon to the plasma membrane. J Biol Chem. 2003, 278: 51654-51663. 10.1074/jbc.M305803200.PubMedCrossRef
71.
go back to reference Himelstein J, Newcorn JH, Halperin JM: The neurobiology of attention-deficit hyperactivity disorder. Front Biosci. 2000, 5: D461-D478.PubMedCrossRef Himelstein J, Newcorn JH, Halperin JM: The neurobiology of attention-deficit hyperactivity disorder. Front Biosci. 2000, 5: D461-D478.PubMedCrossRef
72.
go back to reference Wickens JR, Begg AJ, Arbuthnott GW: Dopamine reverses the depression of rat corticostriatal synapses which normally follows high-frequency stimulation of cortex in vitro. Neuroscience. 1996, 70: 1-5. 10.1016/0306-4522(95)00436-M.PubMedCrossRef Wickens JR, Begg AJ, Arbuthnott GW: Dopamine reverses the depression of rat corticostriatal synapses which normally follows high-frequency stimulation of cortex in vitro. Neuroscience. 1996, 70: 1-5. 10.1016/0306-4522(95)00436-M.PubMedCrossRef
73.
go back to reference Fiorillo CD, Tobler PN, Schultz W: Discrete coding of reward probability and uncertainty by dopamine neurons. Science. 2003, 299: 1898-1902. 10.1126/science.1077349.PubMedCrossRef Fiorillo CD, Tobler PN, Schultz W: Discrete coding of reward probability and uncertainty by dopamine neurons. Science. 2003, 299: 1898-1902. 10.1126/science.1077349.PubMedCrossRef
74.
go back to reference Schultz W: Predictive reward signal of dopamine neurons. J Neurophysiol. 1998, 80: 1-27.PubMed Schultz W: Predictive reward signal of dopamine neurons. J Neurophysiol. 1998, 80: 1-27.PubMed
75.
76.
go back to reference Wang M, Vijayraghavan S, Goldman-Rakic PS: Selective D2 receptor actions on the functional circuitry of working memory. Science. 2004, 303: 853-856. 10.1126/science.1091162.PubMedCrossRef Wang M, Vijayraghavan S, Goldman-Rakic PS: Selective D2 receptor actions on the functional circuitry of working memory. Science. 2004, 303: 853-856. 10.1126/science.1091162.PubMedCrossRef
77.
go back to reference Russell VA, de Villiers A, Sagvolden T, Lamm M, Taljaard J: Altered dopaminergic function in the prefrontal cortex, nucleus accumbens and caudate-putamen of an animal model of Attention- Deficit Hyperactivity Disorder - the spontaneously hypertensive rat. Brain Res. 1995, 676: 343-351. 10.1016/0006-8993(95)00135-D.PubMedCrossRef Russell VA, de Villiers A, Sagvolden T, Lamm M, Taljaard J: Altered dopaminergic function in the prefrontal cortex, nucleus accumbens and caudate-putamen of an animal model of Attention- Deficit Hyperactivity Disorder - the spontaneously hypertensive rat. Brain Res. 1995, 676: 343-351. 10.1016/0006-8993(95)00135-D.PubMedCrossRef
78.
go back to reference Linthorst AC, van Giersbergen PL, Gras M, Versteeg DH, De Jong W: The nigrostriatal dopamine system: role in the development of hypertension in spontaneously hypertensive rats. Brain Res. 1994, 639: 261-268. 10.1016/0006-8993(94)91739-6.PubMedCrossRef Linthorst AC, van Giersbergen PL, Gras M, Versteeg DH, De Jong W: The nigrostriatal dopamine system: role in the development of hypertension in spontaneously hypertensive rats. Brain Res. 1994, 639: 261-268. 10.1016/0006-8993(94)91739-6.PubMedCrossRef
79.
go back to reference de Villiers AS, Russell VA, Sagvolden T, Searson A, Jaffer A, Taljaard JJF: alpha2-Adrenoceptor mediated inhibition of [3H]dopamine release from nucleus accumbens slices and monoamine levels in a rat model for Attention Deficit Hyperactivity Disorder. Neurochem Res. 1995, 20: 357-363.CrossRef de Villiers AS, Russell VA, Sagvolden T, Searson A, Jaffer A, Taljaard JJF: alpha2-Adrenoceptor mediated inhibition of [3H]dopamine release from nucleus accumbens slices and monoamine levels in a rat model for Attention Deficit Hyperactivity Disorder. Neurochem Res. 1995, 20: 357-363.CrossRef
80.
go back to reference Russell VA: The nucleus accumbens motor-limbic interface of the spontaneously hypertensive rat as studied in vitro by the superfusion slice technique. Neurosci Biobehav Rev. 2000, 24: 133-136. 10.1016/S0149-7634(99)00056-1.PubMedCrossRef Russell VA: The nucleus accumbens motor-limbic interface of the spontaneously hypertensive rat as studied in vitro by the superfusion slice technique. Neurosci Biobehav Rev. 2000, 24: 133-136. 10.1016/S0149-7634(99)00056-1.PubMedCrossRef
81.
go back to reference Carey MP, Diewald LM, Esposito F, Pellicano MP, Gironi Carnevale UA, Sergeant JA, Papa M, Sadile AG: Differential distribution, affinity and plasticity of dopamine D-1 and D-2 receptors in the target sites of the mesolimbic system in an animal model of ADHD. Behav Brain Res. 1998, 94: 173-185. 10.1016/S0166-4328(97)00178-2.PubMedCrossRef Carey MP, Diewald LM, Esposito F, Pellicano MP, Gironi Carnevale UA, Sergeant JA, Papa M, Sadile AG: Differential distribution, affinity and plasticity of dopamine D-1 and D-2 receptors in the target sites of the mesolimbic system in an animal model of ADHD. Behav Brain Res. 1998, 94: 173-185. 10.1016/S0166-4328(97)00178-2.PubMedCrossRef
82.
go back to reference Kirouac GJ, Ganguly PK: Up-regulation of dopamine receptors in the brain of the spontaneously hypertensive rat: an autoradiographic analysis. Neuroscience. 1993, 52: 135-141. 10.1016/0306-4522(93)90188-L.PubMedCrossRef Kirouac GJ, Ganguly PK: Up-regulation of dopamine receptors in the brain of the spontaneously hypertensive rat: an autoradiographic analysis. Neuroscience. 1993, 52: 135-141. 10.1016/0306-4522(93)90188-L.PubMedCrossRef
83.
go back to reference Pedarzani P, Storm JF: Protein kinase A-independent modulation of ion channels in the brain by cyclic AMP. Proc Natl Acad Sci U S A. 1995, 92: 11716-11720.PubMedCentralPubMedCrossRef Pedarzani P, Storm JF: Protein kinase A-independent modulation of ion channels in the brain by cyclic AMP. Proc Natl Acad Sci U S A. 1995, 92: 11716-11720.PubMedCentralPubMedCrossRef
85.
go back to reference Dunah AW, Sirianni AC, Fienberg AA, Bastia E, Schwarzschild MA, Standaert DG: Dopamine D1-dependent trafficking of striatal N-methyl-D-aspartate glutamate receptors requires Fyn protein tyrosine kinase but not DARPP-32. Mol Pharmacol. 2004, 65: 121-129. 10.1124/mol.65.1.121.PubMedCrossRef Dunah AW, Sirianni AC, Fienberg AA, Bastia E, Schwarzschild MA, Standaert DG: Dopamine D1-dependent trafficking of striatal N-methyl-D-aspartate glutamate receptors requires Fyn protein tyrosine kinase but not DARPP-32. Mol Pharmacol. 2004, 65: 121-129. 10.1124/mol.65.1.121.PubMedCrossRef
86.
go back to reference Mangiavacchi S, Wolf ME: D1 dopamine receptor stimulation increases the rate of AMPA receptor insertion onto the surface of cultured nucleus accumbens neurons through a pathway dependent on protein kinase A. J Neurochem. 2004, 88: 1261-1271. 10.1046/j.1471-4159.2003.02248.x.PubMedCrossRef Mangiavacchi S, Wolf ME: D1 dopamine receptor stimulation increases the rate of AMPA receptor insertion onto the surface of cultured nucleus accumbens neurons through a pathway dependent on protein kinase A. J Neurochem. 2004, 88: 1261-1271. 10.1046/j.1471-4159.2003.02248.x.PubMedCrossRef
87.
go back to reference Wolf ME, Sun X, Mangiavacchi S, Chao SZ: Psychomotor stimulants and neuronal plasticity. Neuropharmacology. 2004, 47 Suppl 1: 61-79. 10.1016/j.neuropharm.2004.07.006.PubMedCrossRef Wolf ME, Sun X, Mangiavacchi S, Chao SZ: Psychomotor stimulants and neuronal plasticity. Neuropharmacology. 2004, 47 Suppl 1: 61-79. 10.1016/j.neuropharm.2004.07.006.PubMedCrossRef
88.
go back to reference Cepeda C, Buchwald NA, Levine MS: Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated. Proc Natl Acad Sci U S A. 1993, 90: 9576-9580.PubMedCentralPubMedCrossRef Cepeda C, Buchwald NA, Levine MS: Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated. Proc Natl Acad Sci U S A. 1993, 90: 9576-9580.PubMedCentralPubMedCrossRef
89.
go back to reference Chen G, Greengard P, Yan Z: Potentiation of NMDA receptor currents by dopamine D1 receptors in prefrontal cortex. Proc Natl Acad Sci U S A. 2004, 101: 2596-2600. 10.1073/pnas.0308618100.PubMedCentralPubMedCrossRef Chen G, Greengard P, Yan Z: Potentiation of NMDA receptor currents by dopamine D1 receptors in prefrontal cortex. Proc Natl Acad Sci U S A. 2004, 101: 2596-2600. 10.1073/pnas.0308618100.PubMedCentralPubMedCrossRef
90.
go back to reference Pedarzani P, Storm JF: Dopamine modulates the slow Ca(2+)-activated K+ current IAHP via cyclic AMP-dependent protein kinase in hippocampal neurons. J Neurophysiol. 1995, 74: 2749-2753.PubMed Pedarzani P, Storm JF: Dopamine modulates the slow Ca(2+)-activated K+ current IAHP via cyclic AMP-dependent protein kinase in hippocampal neurons. J Neurophysiol. 1995, 74: 2749-2753.PubMed
91.
go back to reference Bailey CH, Giustetto M, Huang YY, Hawkins RD, Kandel ER: Is heterosynaptic modulation essential for stabilizing Hebbian plasticity and memory?. Nat Rev Neurosci. 2000, 1: 11-20. 10.1038/35036191.PubMedCrossRef Bailey CH, Giustetto M, Huang YY, Hawkins RD, Kandel ER: Is heterosynaptic modulation essential for stabilizing Hebbian plasticity and memory?. Nat Rev Neurosci. 2000, 1: 11-20. 10.1038/35036191.PubMedCrossRef
92.
go back to reference Calabresi P, De Murtas M, Bernardi G: The neostriatum beyond the motor function: experimental and clinical evidence. Neuroscience. 1997, 78: 39-60. 10.1016/S0306-4522(96)00556-8.PubMedCrossRef Calabresi P, De Murtas M, Bernardi G: The neostriatum beyond the motor function: experimental and clinical evidence. Neuroscience. 1997, 78: 39-60. 10.1016/S0306-4522(96)00556-8.PubMedCrossRef
93.
go back to reference Kelley AE, Smith-Roe SL, Holahan MR: Response-reinforcement learning is dependent on N-methyl-D-aspartate receptor activation in the nucleus accumbens core. Proc Natl Acad Sci U S A. 1997, 94: 12174-12179. 10.1073/pnas.94.22.12174.PubMedCentralPubMedCrossRef Kelley AE, Smith-Roe SL, Holahan MR: Response-reinforcement learning is dependent on N-methyl-D-aspartate receptor activation in the nucleus accumbens core. Proc Natl Acad Sci U S A. 1997, 94: 12174-12179. 10.1073/pnas.94.22.12174.PubMedCentralPubMedCrossRef
94.
go back to reference Blond O, Crepel F, Otani S: Long-term potentiation in rat prefrontal slices facilitated by phased application of dopamine. Eur J Pharmacol. 2002, 438: 115-116. 10.1016/S0014-2999(02)01291-8.PubMedCrossRef Blond O, Crepel F, Otani S: Long-term potentiation in rat prefrontal slices facilitated by phased application of dopamine. Eur J Pharmacol. 2002, 438: 115-116. 10.1016/S0014-2999(02)01291-8.PubMedCrossRef
95.
go back to reference Chudasama Y, Robbins TW: Dopaminergic modulation of visual attention and working memory in the rodent prefrontal cortex. Neuropsychopharmacology. 2004, 29: 1628-1636. 10.1038/sj.npp.1300490.PubMedCrossRef Chudasama Y, Robbins TW: Dopaminergic modulation of visual attention and working memory in the rodent prefrontal cortex. Neuropsychopharmacology. 2004, 29: 1628-1636. 10.1038/sj.npp.1300490.PubMedCrossRef
96.
go back to reference Cardinal RN, Winstanley CA, Robbins TW, Everitt BJ: Limbic corticostriatal systems and delayed reinforcement. Ann N Y Acad Sci. 2004, 1021: 33-50. 10.1196/annals.1308.004.PubMedCrossRef Cardinal RN, Winstanley CA, Robbins TW, Everitt BJ: Limbic corticostriatal systems and delayed reinforcement. Ann N Y Acad Sci. 2004, 1021: 33-50. 10.1196/annals.1308.004.PubMedCrossRef
97.
go back to reference Grace AA: Dopamine. Psychopharmacology: The Fifth Generation of Progress. Edited by: Charney D, Coyle J, Davis K and Nemeroff C. 2002, Lippincott, Williams and Wilkins, Raven Press, 120-132. Grace AA: Dopamine. Psychopharmacology: The Fifth Generation of Progress. Edited by: Charney D, Coyle J, Davis K and Nemeroff C. 2002, Lippincott, Williams and Wilkins, Raven Press, 120-132.
98.
go back to reference Papa M, Sagvolden T, Sergeant JA, Sadile AG: Reduced CaMKII-positive neurones in the accumbens shell of an animal model of attention-deficit hyperactivity disorder. Neuroreport. 1996, 7: 3017-3020.PubMedCrossRef Papa M, Sagvolden T, Sergeant JA, Sadile AG: Reduced CaMKII-positive neurones in the accumbens shell of an animal model of attention-deficit hyperactivity disorder. Neuroreport. 1996, 7: 3017-3020.PubMedCrossRef
99.
go back to reference Papa M, Sergeant JA, Sadile AG: Differential expression of transcription factors in the accumbens of an animal model of ADHD. Neuroreport. 1997, 8: 1607-1612.PubMedCrossRef Papa M, Sergeant JA, Sadile AG: Differential expression of transcription factors in the accumbens of an animal model of ADHD. Neuroreport. 1997, 8: 1607-1612.PubMedCrossRef
100.
go back to reference Papa M, Sergeant JA, Sadile AG: Reduced transduction mechanisms in the anterior accumbal interface of an animal model of Attention-Deficit Hyperactivity Disorder. Behav Brain Res. 1998, 94: 187-195. 10.1016/S0166-4328(97)00179-4.PubMedCrossRef Papa M, Sergeant JA, Sadile AG: Reduced transduction mechanisms in the anterior accumbal interface of an animal model of Attention-Deficit Hyperactivity Disorder. Behav Brain Res. 1998, 94: 187-195. 10.1016/S0166-4328(97)00179-4.PubMedCrossRef
101.
go back to reference Taylor E: Clinical foundations of hyperactivity research. Behav Brain Res. 1998, 94: 11-24. 10.1016/S0166-4328(97)00165-4.PubMedCrossRef Taylor E: Clinical foundations of hyperactivity research. Behav Brain Res. 1998, 94: 11-24. 10.1016/S0166-4328(97)00165-4.PubMedCrossRef
102.
go back to reference Russell VA: The SHR rat as a model of attention deficit hyperactivity disorder. Attention Deficit Hyperactivity Disorder: From Genes to Animal Models to Patients. Edited by: Gozal D and Molfese DL. 2005, Totowa,NJ, Humana Press Inc., 79-95.CrossRef Russell VA: The SHR rat as a model of attention deficit hyperactivity disorder. Attention Deficit Hyperactivity Disorder: From Genes to Animal Models to Patients. Edited by: Gozal D and Molfese DL. 2005, Totowa,NJ, Humana Press Inc., 79-95.CrossRef
103.
go back to reference Arnsten AFT: Catecholamine modulation of prefrontal cortical cognitive function. Trends Cogn Sci. 1998, 2: 436-447. 10.1016/S1364-6613(98)01240-6.PubMedCrossRef Arnsten AFT: Catecholamine modulation of prefrontal cortical cognitive function. Trends Cogn Sci. 1998, 2: 436-447. 10.1016/S1364-6613(98)01240-6.PubMedCrossRef
104.
go back to reference Russell VA: Hypodopaminergic and hypernoradrenergic activity in prefrontal cortex slices of an animal model for attention-deficit hyperactivity disorder --- the spontaneously hypertensive rat. Behav Brain Res. 2002, 130: 191-196. 10.1016/S0166-4328(01)00425-9.PubMedCrossRef Russell VA: Hypodopaminergic and hypernoradrenergic activity in prefrontal cortex slices of an animal model for attention-deficit hyperactivity disorder --- the spontaneously hypertensive rat. Behav Brain Res. 2002, 130: 191-196. 10.1016/S0166-4328(01)00425-9.PubMedCrossRef
105.
go back to reference Aston-Jones G, Rajkowski J, Kubiak P, Alexinsky T: Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task. J Neurosci. 1994, 14: 4467-4480.PubMed Aston-Jones G, Rajkowski J, Kubiak P, Alexinsky T: Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task. J Neurosci. 1994, 14: 4467-4480.PubMed
106.
go back to reference Gelinas JN, Nguyen PV: Beta-adrenergic receptor activation facilitates induction of a protein synthesis-dependent late phase of long-term potentiation. J Neurosci. 2005, 25: 3294-3303. 10.1523/JNEUROSCI.4175-04.2005.PubMedCrossRef Gelinas JN, Nguyen PV: Beta-adrenergic receptor activation facilitates induction of a protein synthesis-dependent late phase of long-term potentiation. J Neurosci. 2005, 25: 3294-3303. 10.1523/JNEUROSCI.4175-04.2005.PubMedCrossRef
107.
go back to reference Arnsten AF, Goldman-Rakic PS: Alpha 2-adrenergic mechanisms in prefrontal cortex associated with cognitive decline in aged nonhuman primates. Science. 1985, 230: 1273-1276.PubMedCrossRef Arnsten AF, Goldman-Rakic PS: Alpha 2-adrenergic mechanisms in prefrontal cortex associated with cognitive decline in aged nonhuman primates. Science. 1985, 230: 1273-1276.PubMedCrossRef
108.
go back to reference Arnsten AF: Genetics of childhood disorders: XVIII. ADHD, Part. 2: Norepinephrine has a critical modulatory influence on prefrontal cortical function. J Am Acad Child Adolesc Psychiatry. 2000, 39: 1201-1203. 10.1097/00004583-200009000-00022.PubMedCrossRef Arnsten AF: Genetics of childhood disorders: XVIII. ADHD, Part. 2: Norepinephrine has a critical modulatory influence on prefrontal cortical function. J Am Acad Child Adolesc Psychiatry. 2000, 39: 1201-1203. 10.1097/00004583-200009000-00022.PubMedCrossRef
109.
go back to reference Kratochvil CJ, Heiligenstein JH, Dittmann R, Spencer TJ, Biederman J, Wernicke J, Newcorn JH, Casat C, Milton D, Michelson D: Atomoxetine and methylphenidate treatment in children with ADHD: a prospective, randomized, open-label trial. J Am Acad Child Adolesc Psychiatry. 2002, 41: 776-784. 10.1097/00004583-200207000-00008.PubMedCrossRef Kratochvil CJ, Heiligenstein JH, Dittmann R, Spencer TJ, Biederman J, Wernicke J, Newcorn JH, Casat C, Milton D, Michelson D: Atomoxetine and methylphenidate treatment in children with ADHD: a prospective, randomized, open-label trial. J Am Acad Child Adolesc Psychiatry. 2002, 41: 776-784. 10.1097/00004583-200207000-00008.PubMedCrossRef
110.
go back to reference Bymaster FP, Katner JS, Nelson DL, Hemrick-Luecke SK, Threlkeld PG, Heiligenstein JH, Morin SM, Gehlert DR, Perry KW: Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology. 2002, 27: 699-711. 10.1016/S0893-133X(02)00346-9.PubMedCrossRef Bymaster FP, Katner JS, Nelson DL, Hemrick-Luecke SK, Threlkeld PG, Heiligenstein JH, Morin SM, Gehlert DR, Perry KW: Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology. 2002, 27: 699-711. 10.1016/S0893-133X(02)00346-9.PubMedCrossRef
111.
go back to reference Argenti D, D'Mello AP: Design of a desipramine dosing regimen for the rapid induction and maintenance of maximal cortical beta-adrenoceptor downregulation. Neuropharmacology. 1994, 33: 1117-1124. 10.1016/0028-3908(94)90151-1.PubMedCrossRef Argenti D, D'Mello AP: Design of a desipramine dosing regimen for the rapid induction and maintenance of maximal cortical beta-adrenoceptor downregulation. Neuropharmacology. 1994, 33: 1117-1124. 10.1016/0028-3908(94)90151-1.PubMedCrossRef
112.
go back to reference DeLuca J, Burright R, Donovick PJ: Genotypic influences on lead-induced hyperactivity in mice. Behav Genet. 1989, 19: 171-181. 10.1007/BF01065902.PubMedCrossRef DeLuca J, Burright R, Donovick PJ: Genotypic influences on lead-induced hyperactivity in mice. Behav Genet. 1989, 19: 171-181. 10.1007/BF01065902.PubMedCrossRef
113.
go back to reference Lacroix D, Blier P, Curet O, de MC: Effects of long-term desipramine administration on noradrenergic neurotransmission: electrophysiological studies in the rat brain. J Pharmacol Exp Ther. 1991, 257: 1081-1090.PubMed Lacroix D, Blier P, Curet O, de MC: Effects of long-term desipramine administration on noradrenergic neurotransmission: electrophysiological studies in the rat brain. J Pharmacol Exp Ther. 1991, 257: 1081-1090.PubMed
114.
go back to reference Reja V, Goodchild AK, Phillips JK, Pilowsky PM: Tyrosine hydroxylase gene expression in ventrolateral medulla oblongata of WKY and SHR: a quantitative real-time polymerase chain reaction study. Auton Neurosci. 2002, 98: 79-84. 10.1016/S1566-0702(02)00037-1.PubMedCrossRef Reja V, Goodchild AK, Phillips JK, Pilowsky PM: Tyrosine hydroxylase gene expression in ventrolateral medulla oblongata of WKY and SHR: a quantitative real-time polymerase chain reaction study. Auton Neurosci. 2002, 98: 79-84. 10.1016/S1566-0702(02)00037-1.PubMedCrossRef
115.
go back to reference Myers MM, Whittemore SR, Hendley ED: Changes in catecholamine neuronal uptake and receptor binding in the brains of spontaneously hypertensive rats (SHR). Brain Res. 1981, 220: 325-338. 10.1016/0006-8993(81)91221-X.PubMedCrossRef Myers MM, Whittemore SR, Hendley ED: Changes in catecholamine neuronal uptake and receptor binding in the brains of spontaneously hypertensive rats (SHR). Brain Res. 1981, 220: 325-338. 10.1016/0006-8993(81)91221-X.PubMedCrossRef
116.
go back to reference Moron JA, Brockington A, Wise RA, Rocha BA, Hope BT: Dopamine uptake through the norepinephrine transporter in brain regions with low levels of the dopamine transporter: evidence from knock-out mouse lines. J Neurosci. 2002, 22: 389-395.PubMed Moron JA, Brockington A, Wise RA, Rocha BA, Hope BT: Dopamine uptake through the norepinephrine transporter in brain regions with low levels of the dopamine transporter: evidence from knock-out mouse lines. J Neurosci. 2002, 22: 389-395.PubMed
117.
go back to reference Russell V, Allie S, Wiggins T: Increased noradrenergic activity in prefrontal cortex slices of an animal model for attention-deficit hyperactivity disorder--the spontaneously hypertensive rat. Behav Brain Res. 2000, 117: 69-74. 10.1016/S0166-4328(00)00291-6.PubMedCrossRef Russell V, Allie S, Wiggins T: Increased noradrenergic activity in prefrontal cortex slices of an animal model for attention-deficit hyperactivity disorder--the spontaneously hypertensive rat. Behav Brain Res. 2000, 117: 69-74. 10.1016/S0166-4328(00)00291-6.PubMedCrossRef
118.
go back to reference Reja V, Goodchild AK, Pilowsky PM: Catecholamine-related gene expression correlates with blood pressures in SHR. Hypertension. 2002, 40: 342-347. 10.1161/01.HYP.0000027684.06638.63.PubMedCrossRef Reja V, Goodchild AK, Pilowsky PM: Catecholamine-related gene expression correlates with blood pressures in SHR. Hypertension. 2002, 40: 342-347. 10.1161/01.HYP.0000027684.06638.63.PubMedCrossRef
119.
go back to reference Tsuda K, Tsuda S, Masuyama Y, Goldstein M: Norepinephrine release and neuropeptide Y in medulla oblongata of spontaneously hypertensive rats. Hypertension. 1990, 15: 784-790.PubMedCrossRef Tsuda K, Tsuda S, Masuyama Y, Goldstein M: Norepinephrine release and neuropeptide Y in medulla oblongata of spontaneously hypertensive rats. Hypertension. 1990, 15: 784-790.PubMedCrossRef
120.
go back to reference Franowicz JS, Kessler LE, Borja CM, Kobilka BK, Limbird LE, Arnsten AF: Mutation of the alpha2A-adrenoceptor impairs working memory performance and annuls cognitive enhancement by guanfacine. J Neurosci. 2002, 22: 8771-8777.PubMed Franowicz JS, Kessler LE, Borja CM, Kobilka BK, Limbird LE, Arnsten AF: Mutation of the alpha2A-adrenoceptor impairs working memory performance and annuls cognitive enhancement by guanfacine. J Neurosci. 2002, 22: 8771-8777.PubMed
121.
go back to reference Stocker SD, Muldoon MF, Sved AF: Blunted fenfluramine-evoked prolactin secretion in hypertensive rats. Hypertension. 2003, 42: 719-724. 10.1161/01.HYP.0000082807.71659.4C.PubMedCrossRef Stocker SD, Muldoon MF, Sved AF: Blunted fenfluramine-evoked prolactin secretion in hypertensive rats. Hypertension. 2003, 42: 719-724. 10.1161/01.HYP.0000082807.71659.4C.PubMedCrossRef
122.
go back to reference Toot J, Dunphy G, Turner M, Ely D: The SHR Y-chromosome increases testosterone and aggression, but decreases serotonin as compared to the WKY Y-chromosome in the rat model. Behav Genet. 2004, 34: 515-524. 10.1023/B:BEGE.0000038489.82589.6f.PubMedCrossRef Toot J, Dunphy G, Turner M, Ely D: The SHR Y-chromosome increases testosterone and aggression, but decreases serotonin as compared to the WKY Y-chromosome in the rat model. Behav Genet. 2004, 34: 515-524. 10.1023/B:BEGE.0000038489.82589.6f.PubMedCrossRef
123.
go back to reference Pollier F, Sarre S, Aguerre S, Ebinger G, Mormede P, Michotte Y, Chaouloff F: Serotonin reuptake inhibition by citalopram in rat strains differing for their emotionality. Neuropsychopharmacology. 2000, 22: 64-76. 10.1016/S0893-133X(99)00092-5.PubMedCrossRef Pollier F, Sarre S, Aguerre S, Ebinger G, Mormede P, Michotte Y, Chaouloff F: Serotonin reuptake inhibition by citalopram in rat strains differing for their emotionality. Neuropsychopharmacology. 2000, 22: 64-76. 10.1016/S0893-133X(99)00092-5.PubMedCrossRef
124.
go back to reference Kaehler ST, Singewald N, Philippu A: Release of serotonin in the locus coeruleus of normotensive and spontaneously hypertensive rats (SHR). Naunyn Schmiedebergs Arch Pharmacol. 1999, 359: 460-465.PubMedCrossRef Kaehler ST, Singewald N, Philippu A: Release of serotonin in the locus coeruleus of normotensive and spontaneously hypertensive rats (SHR). Naunyn Schmiedebergs Arch Pharmacol. 1999, 359: 460-465.PubMedCrossRef
125.
go back to reference Durand M, Mormede P, Chaouloff F: Wistar-Kyoto rats are sensitive to the hypolocomotor and anxiogenic effects of mCPP. Behav Pharmacol. 2003, 14: 173-177.PubMedCrossRef Durand M, Mormede P, Chaouloff F: Wistar-Kyoto rats are sensitive to the hypolocomotor and anxiogenic effects of mCPP. Behav Pharmacol. 2003, 14: 173-177.PubMedCrossRef
126.
go back to reference Russell VA: Increased AMPA receptor function in slices containing the prefrontal cortex of spontaneously hypertensive rats. Metab Brain Dis. 2001, 16: 143-149. 10.1023/A:1012584826144.PubMedCrossRef Russell VA: Increased AMPA receptor function in slices containing the prefrontal cortex of spontaneously hypertensive rats. Metab Brain Dis. 2001, 16: 143-149. 10.1023/A:1012584826144.PubMedCrossRef
127.
go back to reference Russell VA, Wiggins TM: Increased glutamate-stimulated norepinephrine release from prefrontal cortex slices of spontaneously hypertensive rats. Metab Brain Dis. 2000, 15: 297-304. 10.1023/A:1011175225512.PubMedCrossRef Russell VA, Wiggins TM: Increased glutamate-stimulated norepinephrine release from prefrontal cortex slices of spontaneously hypertensive rats. Metab Brain Dis. 2000, 15: 297-304. 10.1023/A:1011175225512.PubMedCrossRef
128.
go back to reference Baker DA, Xi ZX, Shen H, Swanson CJ, Kalivas PW: The origin and neuronal function of in vivo nonsynaptic glutamate. J Neurosci. 2002, 22: 9134-9141.PubMed Baker DA, Xi ZX, Shen H, Swanson CJ, Kalivas PW: The origin and neuronal function of in vivo nonsynaptic glutamate. J Neurosci. 2002, 22: 9134-9141.PubMed
129.
go back to reference Glowinski J, Cheramy A, Romo R, Barbeito L: Presynaptic regulation of dopaminergic transmission in the striatum. Cell Mol Neurobiol. 1988, 8: 7-17. 10.1007/BF00712906.PubMedCrossRef Glowinski J, Cheramy A, Romo R, Barbeito L: Presynaptic regulation of dopaminergic transmission in the striatum. Cell Mol Neurobiol. 1988, 8: 7-17. 10.1007/BF00712906.PubMedCrossRef
130.
go back to reference Grace AA: Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience. 1991, 41: 1-24. 10.1016/0306-4522(91)90196-U.PubMedCrossRef Grace AA: Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience. 1991, 41: 1-24. 10.1016/0306-4522(91)90196-U.PubMedCrossRef
131.
go back to reference Howland JG, Taepavarapruk P, Phillips AG: Glutamate receptor-dependent modulation of dopamine efflux in the nucleus accumbens by basolateral, but not central, nucleus of the amygdala in rats. J Neurosci. 2002, 22: 1137-1145.PubMed Howland JG, Taepavarapruk P, Phillips AG: Glutamate receptor-dependent modulation of dopamine efflux in the nucleus accumbens by basolateral, but not central, nucleus of the amygdala in rats. J Neurosci. 2002, 22: 1137-1145.PubMed
132.
go back to reference Kulagina NV, Zigmond MJ, Michael AC: Glutamate regulates the spontaneous and evoked release of dopamine in the rat striatum. Neuroscience. 2001, 102: 121-128. 10.1016/S0306-4522(00)00480-2.PubMedCrossRef Kulagina NV, Zigmond MJ, Michael AC: Glutamate regulates the spontaneous and evoked release of dopamine in the rat striatum. Neuroscience. 2001, 102: 121-128. 10.1016/S0306-4522(00)00480-2.PubMedCrossRef
133.
go back to reference Maione S, Biggs CS, Rossi F, Fowler LJ, Whitton PS: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors modulate dopamine release in rat hippocampus and striatum. Neurosci Lett. 1995, 193: 181-184. 10.1016/0304-3940(95)11695-S.PubMedCrossRef Maione S, Biggs CS, Rossi F, Fowler LJ, Whitton PS: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors modulate dopamine release in rat hippocampus and striatum. Neurosci Lett. 1995, 193: 181-184. 10.1016/0304-3940(95)11695-S.PubMedCrossRef
134.
go back to reference Russell VA: In vitro glutamate-stimulated release of dopamine from nucleus accumbens core and shell of spontaneously hypertensive rats. Metab Brain Dis. 2003, 18: 161-168. 10.1023/A:1023819220840.PubMedCrossRef Russell VA: In vitro glutamate-stimulated release of dopamine from nucleus accumbens core and shell of spontaneously hypertensive rats. Metab Brain Dis. 2003, 18: 161-168. 10.1023/A:1023819220840.PubMedCrossRef
135.
go back to reference Pei L, Lee FJ, Moszczynska A, Vukusic B, Liu F: Regulation of dopamine D1 receptor function by physical interaction with the NMDA receptors. J Neurosci. 2004, 24: 1149-1158. 10.1523/JNEUROSCI.3922-03.2004.PubMedCrossRef Pei L, Lee FJ, Moszczynska A, Vukusic B, Liu F: Regulation of dopamine D1 receptor function by physical interaction with the NMDA receptors. J Neurosci. 2004, 24: 1149-1158. 10.1523/JNEUROSCI.3922-03.2004.PubMedCrossRef
136.
go back to reference Seeman P, Madras B: Methylphenidate elevates resting dopamine which lowers the impulse-triggered release of dopamine: a hypothesis. Behav Brain Res. 2002, 130: 79-83. 10.1016/S0166-4328(01)00435-1.PubMedCrossRef Seeman P, Madras B: Methylphenidate elevates resting dopamine which lowers the impulse-triggered release of dopamine: a hypothesis. Behav Brain Res. 2002, 130: 79-83. 10.1016/S0166-4328(01)00435-1.PubMedCrossRef
137.
go back to reference Myers MM, Musty RE, Hendley ED: Attenuation of hyperactivity in the spontaneously hypertensive rat by amphetamine. Behav Neural Biol. 1982, 34: 42-54. 10.1016/S0163-1047(82)91397-8.PubMedCrossRef Myers MM, Musty RE, Hendley ED: Attenuation of hyperactivity in the spontaneously hypertensive rat by amphetamine. Behav Neural Biol. 1982, 34: 42-54. 10.1016/S0163-1047(82)91397-8.PubMedCrossRef
138.
go back to reference Sagvolden T, Metzger MA, Schiørbeck HK, Rugland AL, Spinnangr I, Sagvolden G: The spontaneously hypertensive rat (SHR) as an animal model of childhood hyperactivity (ADHD): changed reactivity to reinforcers and to psychomotor stimulants. Behav Neural Biol. 1992, 58: 103-112. 10.1016/0163-1047(92)90315-U.PubMedCrossRef Sagvolden T, Metzger MA, Schiørbeck HK, Rugland AL, Spinnangr I, Sagvolden G: The spontaneously hypertensive rat (SHR) as an animal model of childhood hyperactivity (ADHD): changed reactivity to reinforcers and to psychomotor stimulants. Behav Neural Biol. 1992, 58: 103-112. 10.1016/0163-1047(92)90315-U.PubMedCrossRef
139.
go back to reference Russell VA: Dopamine hypofunction possibly results from a defect in glutamate-stimulated release of dopamine in the nucleus accumbens shell of a rat model for attention deficit hyperactivity disorder--the spontaneously hypertensive rat. Neurosci Biobehav Rev. 2003, 27: 671-682. 10.1016/j.neubiorev.2003.08.010.PubMedCrossRef Russell VA: Dopamine hypofunction possibly results from a defect in glutamate-stimulated release of dopamine in the nucleus accumbens shell of a rat model for attention deficit hyperactivity disorder--the spontaneously hypertensive rat. Neurosci Biobehav Rev. 2003, 27: 671-682. 10.1016/j.neubiorev.2003.08.010.PubMedCrossRef
140.
go back to reference Yang PB, Amini B, Swann AC, Dafny N: Strain differences in the behavioral responses of male rats to chronically administered methylphenidate. Brain Res. 2003, 971: 139-152. 10.1016/S0006-8993(02)04240-3.PubMedCrossRef Yang PB, Amini B, Swann AC, Dafny N: Strain differences in the behavioral responses of male rats to chronically administered methylphenidate. Brain Res. 2003, 971: 139-152. 10.1016/S0006-8993(02)04240-3.PubMedCrossRef
141.
go back to reference Russell VA, de Villiers AS, Sagvolden T, Lamm MCL, Taljaard JJF: Methylphenidate affects striatal dopamine differently in an animal model for attention-deficit hyperactivity disorder – the spontaneously hypertensive rat. Brain Res Bull. 2000, 53: 187-193. 10.1016/S0361-9230(00)00324-5.PubMedCrossRef Russell VA, de Villiers AS, Sagvolden T, Lamm MCL, Taljaard JJF: Methylphenidate affects striatal dopamine differently in an animal model for attention-deficit hyperactivity disorder – the spontaneously hypertensive rat. Brain Res Bull. 2000, 53: 187-193. 10.1016/S0361-9230(00)00324-5.PubMedCrossRef
142.
go back to reference Gallo A, Gonzalez-Lima F, Sadile AG: Impaired metabolic capacity in the perirhinal and posterior parietal cortex lead to dissociation between attentional, motivational and spatial components of exploration in the Naples High-Excitability rat. Behav Brain Res. 2002, 130: 133-140. 10.1016/S0166-4328(01)00427-2.PubMedCrossRef Gallo A, Gonzalez-Lima F, Sadile AG: Impaired metabolic capacity in the perirhinal and posterior parietal cortex lead to dissociation between attentional, motivational and spatial components of exploration in the Naples High-Excitability rat. Behav Brain Res. 2002, 130: 133-140. 10.1016/S0166-4328(01)00427-2.PubMedCrossRef
143.
go back to reference Viggiano D, Vallone D, Welzl H, Sadile AG: The Naples High- and Low-Excitability rats: selective breeding, behavioral profile, morphometry, and molecular biology of the mesocortical dopamine system. Behav Genet. 2002, 32: 315-333. 10.1023/A:1020210221156.PubMedCrossRef Viggiano D, Vallone D, Welzl H, Sadile AG: The Naples High- and Low-Excitability rats: selective breeding, behavioral profile, morphometry, and molecular biology of the mesocortical dopamine system. Behav Genet. 2002, 32: 315-333. 10.1023/A:1020210221156.PubMedCrossRef
144.
go back to reference Drolet G, Proulx K, Pearson D, Rochford J, Deschepper CF: Comparisons of behavioral and neurochemical characteristics between WKY, WKHA, and Wistar rat strains. Neuropsychopharmacology. 2002, 27: 400-409. 10.1016/S0893-133X(02)00303-2.PubMedCrossRef Drolet G, Proulx K, Pearson D, Rochford J, Deschepper CF: Comparisons of behavioral and neurochemical characteristics between WKY, WKHA, and Wistar rat strains. Neuropsychopharmacology. 2002, 27: 400-409. 10.1016/S0893-133X(02)00303-2.PubMedCrossRef
145.
go back to reference Hendley ED, Wessel DJ, Van Houten J: Inbreeding of Wistar-Kyoto rat strain with hyperactivity but without hypertension. Behav Neural Biol. 1986, 45: 1-16. 10.1016/S0163-1047(86)80001-2.PubMedCrossRef Hendley ED, Wessel DJ, Van Houten J: Inbreeding of Wistar-Kyoto rat strain with hyperactivity but without hypertension. Behav Neural Biol. 1986, 45: 1-16. 10.1016/S0163-1047(86)80001-2.PubMedCrossRef
146.
go back to reference Sagvolden T, Hendley ED, Knardahl S: Behavior of hypertensive and hyperactive rat strains: Hyperactivity is not unitarily determined. Physiol Behav. 1992, 52: 49-57. 10.1016/0031-9384(92)90432-2.PubMedCrossRef Sagvolden T, Hendley ED, Knardahl S: Behavior of hypertensive and hyperactive rat strains: Hyperactivity is not unitarily determined. Physiol Behav. 1992, 52: 49-57. 10.1016/0031-9384(92)90432-2.PubMedCrossRef
147.
go back to reference Magara F, Ricceri L, Wolfer DP, Lipp HP: The acallosal mouse strain I/LnJ: a putative model of ADHD?. Neurosci Biobehav Rev. 2000, 24: 45-50. 10.1016/S0149-7634(99)00051-2.PubMedCrossRef Magara F, Ricceri L, Wolfer DP, Lipp HP: The acallosal mouse strain I/LnJ: a putative model of ADHD?. Neurosci Biobehav Rev. 2000, 24: 45-50. 10.1016/S0149-7634(99)00051-2.PubMedCrossRef
148.
go back to reference Berger DF, Lombardo JP, Jeffers PM, Hunt AE, Bush B, Casey A, Quimby F: Hyperactivity and impulsiveness in rats fed diets supplemented with either Aroclor 1248 or PCB-contaminated St. Lawrence river fish. Behav Brain Res. 2001, 126: 1-11. 10.1016/S0166-4328(01)00244-3.PubMedCrossRef Berger DF, Lombardo JP, Jeffers PM, Hunt AE, Bush B, Casey A, Quimby F: Hyperactivity and impulsiveness in rats fed diets supplemented with either Aroclor 1248 or PCB-contaminated St. Lawrence river fish. Behav Brain Res. 2001, 126: 1-11. 10.1016/S0166-4328(01)00244-3.PubMedCrossRef
149.
go back to reference Holene E, Nafstad I, Skaare JU, Bernhoft A, Engen P, Sagvolden T: Behavioral effects of pre- and postnatal exposure to individual polychlorinated biphenyl congeners in rats. Environ Toxicol Chem. 1995, 14: 967-976.CrossRef Holene E, Nafstad I, Skaare JU, Bernhoft A, Engen P, Sagvolden T: Behavioral effects of pre- and postnatal exposure to individual polychlorinated biphenyl congeners in rats. Environ Toxicol Chem. 1995, 14: 967-976.CrossRef
150.
go back to reference Holene E, Nafstad I, Skaare JU, Sagvolden T: Behavioural hyperactivity in rats following postnatal exposure to sub- toxic doses of polychlorinated biphenyl congeners 153 and 126. Behav Brain Res. 1998, 94: 213-224. 10.1016/S0166-4328(97)00181-2.PubMedCrossRef Holene E, Nafstad I, Skaare JU, Sagvolden T: Behavioural hyperactivity in rats following postnatal exposure to sub- toxic doses of polychlorinated biphenyl congeners 153 and 126. Behav Brain Res. 1998, 94: 213-224. 10.1016/S0166-4328(97)00181-2.PubMedCrossRef
151.
go back to reference Silbergeld EK, Goldberg AM: Lead - induced behavioral dysfunction: an animal model of hyperactivity. Exp Neurol. 1974, 42: 146-157. 10.1016/0014-4886(74)90013-2.PubMedCrossRef Silbergeld EK, Goldberg AM: Lead - induced behavioral dysfunction: an animal model of hyperactivity. Exp Neurol. 1974, 42: 146-157. 10.1016/0014-4886(74)90013-2.PubMedCrossRef
152.
go back to reference Dalley JW, Theobald DE, Pereira EA, Li PM, Robbins TW: Specific abnormalities in serotonin release in the prefrontal cortex of isolation-reared rats measured during behavioural performance of a task assessing visuospatial attention and impulsivity. Psychopharmacology (Berl). 2002, 164: 329-340. 10.1007/s00213-002-1215-y.CrossRef Dalley JW, Theobald DE, Pereira EA, Li PM, Robbins TW: Specific abnormalities in serotonin release in the prefrontal cortex of isolation-reared rats measured during behavioural performance of a task assessing visuospatial attention and impulsivity. Psychopharmacology (Berl). 2002, 164: 329-340. 10.1007/s00213-002-1215-y.CrossRef
153.
go back to reference Barr CL, Feng Y, Wigg K, Bloom S, Roberts W, Malone M, Schachar R, Tannock R, Kennedy JL: Identification of DNA variants in the SNAP-25 gene and linkage study of these polymorphisms and attention-deficit hyperactivity disorder. Mol Psychiatry. 2000, 5: 405-409. 10.1038/sj.mp.4000733.PubMedCrossRef Barr CL, Feng Y, Wigg K, Bloom S, Roberts W, Malone M, Schachar R, Tannock R, Kennedy JL: Identification of DNA variants in the SNAP-25 gene and linkage study of these polymorphisms and attention-deficit hyperactivity disorder. Mol Psychiatry. 2000, 5: 405-409. 10.1038/sj.mp.4000733.PubMedCrossRef
154.
go back to reference Mill J, Curran S, Kent L, Gould A, Huckett L, Richards S, Taylor E, Asherson P: Association study of a SNAP-25 microsatellite and attention deficit hyperactivity disorder. Am J Med Genet. 2002, 114: 269-271. 10.1002/ajmg.10253.PubMedCrossRef Mill J, Curran S, Kent L, Gould A, Huckett L, Richards S, Taylor E, Asherson P: Association study of a SNAP-25 microsatellite and attention deficit hyperactivity disorder. Am J Med Genet. 2002, 114: 269-271. 10.1002/ajmg.10253.PubMedCrossRef
155.
go back to reference Wilson MC: Coloboma mouse mutant as an animal model of hyperkinesis and attention deficit hyperactivity disorder. Neurosci Biobehav Rev. 2000, 24: 51-57. 10.1016/S0149-7634(99)00064-0.PubMedCrossRef Wilson MC: Coloboma mouse mutant as an animal model of hyperkinesis and attention deficit hyperactivity disorder. Neurosci Biobehav Rev. 2000, 24: 51-57. 10.1016/S0149-7634(99)00064-0.PubMedCrossRef
156.
go back to reference Raber J, Mehta PP, Kreifeldt M, Parsons LH, Weiss F, Bloom FE, Wilson MC: Coloboma hyperactive mutant mice exhibit regional and transmitter- specific deficits in neurotransmission. J Neurochem. 1997, 68: 176-186.PubMedCrossRef Raber J, Mehta PP, Kreifeldt M, Parsons LH, Weiss F, Bloom FE, Wilson MC: Coloboma hyperactive mutant mice exhibit regional and transmitter- specific deficits in neurotransmission. J Neurochem. 1997, 68: 176-186.PubMedCrossRef
157.
go back to reference Jones MD, Williams ME, Hess EJ: Expression of catecholaminergic mRNAs in the hyperactive mouse mutant coloboma. Brain Res Mol Brain Res. 2001, 96: 114-121. 10.1016/S0169-328X(01)00281-9.PubMedCrossRef Jones MD, Williams ME, Hess EJ: Expression of catecholaminergic mRNAs in the hyperactive mouse mutant coloboma. Brain Res Mol Brain Res. 2001, 96: 114-121. 10.1016/S0169-328X(01)00281-9.PubMedCrossRef
158.
go back to reference Jones MD, Williams ME, Hess EJ: Abnormal presynaptic catecholamine regulation in a hyperactive SNAP-25-deficient mouse mutant. Pharmacol Biochem Behav. 2001, 68: 669-676. 10.1016/S0091-3057(01)00481-6.PubMedCrossRef Jones MD, Williams ME, Hess EJ: Abnormal presynaptic catecholamine regulation in a hyperactive SNAP-25-deficient mouse mutant. Pharmacol Biochem Behav. 2001, 68: 669-676. 10.1016/S0091-3057(01)00481-6.PubMedCrossRef
159.
go back to reference Jones MD, Hess EJ: Norepinephrine regulates locomotor hyperactivity in the mouse mutant coloboma. Pharmacol Biochem Behav. 2003, 75: 209-216. 10.1016/S0091-3057(03)00073-X.PubMedCrossRef Jones MD, Hess EJ: Norepinephrine regulates locomotor hyperactivity in the mouse mutant coloboma. Pharmacol Biochem Behav. 2003, 75: 209-216. 10.1016/S0091-3057(03)00073-X.PubMedCrossRef
160.
go back to reference Davids E, Zhang K, Kula NS, Tarazi FI, Baldessarini RJ: Effects of norepinephrine and serotonin transporter inhibitors on hyperactivity induced by neonatal 6-hydroxydopamine lesioning in rats. J Pharmacol Exp Ther. 2002, 301: 1097-1102. 10.1124/jpet.301.3.1097.PubMedCrossRef Davids E, Zhang K, Kula NS, Tarazi FI, Baldessarini RJ: Effects of norepinephrine and serotonin transporter inhibitors on hyperactivity induced by neonatal 6-hydroxydopamine lesioning in rats. J Pharmacol Exp Ther. 2002, 301: 1097-1102. 10.1124/jpet.301.3.1097.PubMedCrossRef
161.
go back to reference Davids E, Zhang K, Tarazi FI, Baldessarini RJ: Animal models of attention-deficit hyperactivity disorder. Brain Res Brain Res Rev. 2003, 42: 1-21. 10.1016/S0165-0173(02)00274-6.PubMedCrossRef Davids E, Zhang K, Tarazi FI, Baldessarini RJ: Animal models of attention-deficit hyperactivity disorder. Brain Res Brain Res Rev. 2003, 42: 1-21. 10.1016/S0165-0173(02)00274-6.PubMedCrossRef
162.
go back to reference Luthman J, Fredriksson A, Lewander T, Jonsson G, Archer T: Effects of d-amphetamine and methylphentdate on hyperactivity produced by neonatal 6-hydroxydopamine treatment. Psychopharmacology (Berl). 1989, 99: 550-557. 10.1007/BF00589907.CrossRef Luthman J, Fredriksson A, Lewander T, Jonsson G, Archer T: Effects of d-amphetamine and methylphentdate on hyperactivity produced by neonatal 6-hydroxydopamine treatment. Psychopharmacology (Berl). 1989, 99: 550-557. 10.1007/BF00589907.CrossRef
163.
go back to reference Shaywitz BA, Klopper JH, Gordon JW: Methylphenidate in 6-hydroxydopamine-treated developing rat pups Effects on activity and maze performance. Arch Neurol. 1978, 35: 463-469.PubMedCrossRef Shaywitz BA, Klopper JH, Gordon JW: Methylphenidate in 6-hydroxydopamine-treated developing rat pups Effects on activity and maze performance. Arch Neurol. 1978, 35: 463-469.PubMedCrossRef
164.
go back to reference Zhang K, Tarazi FI, Baldessarini RJ: Role of dopamine D(4) receptors in motor hyperactivity induced by neonatal 6-hydroxydopamine lesions in rats. Neuropsychopharmacology. 2001, 25: 624-632. 10.1016/S0893-133X(01)00262-7.PubMedCrossRef Zhang K, Tarazi FI, Baldessarini RJ: Role of dopamine D(4) receptors in motor hyperactivity induced by neonatal 6-hydroxydopamine lesions in rats. Neuropsychopharmacology. 2001, 25: 624-632. 10.1016/S0893-133X(01)00262-7.PubMedCrossRef
165.
go back to reference Zhang K, Davids E, Tarazi FI, Baldessarini RJ: Serotonin transporter binding increases in caudate-putamen and nucleus accumbens after neonatal 6-hydroxydopamine lesions in rats: implications for motor hyperactivity. Brain Res Dev Brain Res. 2002, 137: 135-138. 10.1016/S0165-3806(02)00436-4.PubMedCrossRef Zhang K, Davids E, Tarazi FI, Baldessarini RJ: Serotonin transporter binding increases in caudate-putamen and nucleus accumbens after neonatal 6-hydroxydopamine lesions in rats: implications for motor hyperactivity. Brain Res Dev Brain Res. 2002, 137: 135-138. 10.1016/S0165-3806(02)00436-4.PubMedCrossRef
166.
go back to reference Zhang K, Davids E, Tarazi FI, Baldessarini RJ: Effects of dopamine D4 receptor-selective antagonists on motor hyperactivity in rats with neonatal 6-hydroxydopamine lesions. Psychopharmacology (Berl). 2002, 161: 100-106. 10.1007/s00213-002-1018-1.CrossRef Zhang K, Davids E, Tarazi FI, Baldessarini RJ: Effects of dopamine D4 receptor-selective antagonists on motor hyperactivity in rats with neonatal 6-hydroxydopamine lesions. Psychopharmacology (Berl). 2002, 161: 100-106. 10.1007/s00213-002-1018-1.CrossRef
167.
go back to reference Gainetdinov RR, Caron MG: An animal model of attention deficit hyperactivity disorder. Mol Med Today. 2000, 6: 43-44. 10.1016/S1357-4310(99)01616-0.PubMedCrossRef Gainetdinov RR, Caron MG: An animal model of attention deficit hyperactivity disorder. Mol Med Today. 2000, 6: 43-44. 10.1016/S1357-4310(99)01616-0.PubMedCrossRef
168.
go back to reference Gainetdinov RR, Caron MG: Genetics of childhood disorders: XXIV. ADHD, Part 8: hyperdopaminergic mice as an animal model of ADHD. J Am Acad Child Adolesc Psychiatry. 2001, 40: 380-382. 10.1097/00004583-200103000-00020.PubMedCrossRef Gainetdinov RR, Caron MG: Genetics of childhood disorders: XXIV. ADHD, Part 8: hyperdopaminergic mice as an animal model of ADHD. J Am Acad Child Adolesc Psychiatry. 2001, 40: 380-382. 10.1097/00004583-200103000-00020.PubMedCrossRef
169.
go back to reference Trinh JV, Nehrenberg DL, Jacobsen JP, Caron MG, Wetsel WC: Differential psychostimulant-induced activation of neural circuits in dopamine transporter knockout and wild type mice. Neuroscience. 2003, 118: 297-310. 10.1016/S0306-4522(03)00165-9.PubMedCrossRef Trinh JV, Nehrenberg DL, Jacobsen JP, Caron MG, Wetsel WC: Differential psychostimulant-induced activation of neural circuits in dopamine transporter knockout and wild type mice. Neuroscience. 2003, 118: 297-310. 10.1016/S0306-4522(03)00165-9.PubMedCrossRef
170.
go back to reference Hironaka N, Ikeda K, Sora I, Uhl GR, Niki H: Food-reinforced operant behavior in dopamine transporter knockout mice: enhanced resistance to extinction. Ann N Y Acad Sci. 2004, 1025: 140-145. 10.1196/annals.1316.018.PubMedCrossRef Hironaka N, Ikeda K, Sora I, Uhl GR, Niki H: Food-reinforced operant behavior in dopamine transporter knockout mice: enhanced resistance to extinction. Ann N Y Acad Sci. 2004, 1025: 140-145. 10.1196/annals.1316.018.PubMedCrossRef
171.
go back to reference Gainetdinov RR, Jones SR, Caron MG: Functional hyperdopaminergia in dopamine transporter knock-out mice. Biol Psychiatry. 1999, 46: 303-311. 10.1016/S0006-3223(99)00122-5.PubMedCrossRef Gainetdinov RR, Jones SR, Caron MG: Functional hyperdopaminergia in dopamine transporter knock-out mice. Biol Psychiatry. 1999, 46: 303-311. 10.1016/S0006-3223(99)00122-5.PubMedCrossRef
172.
go back to reference Barr AM, Lehmann-Masten V, Paulus M, Gainetdinov RR, Caron MG, Geyer MA: The selective serotonin-2A receptor antagonist M100907 reverses behavioral deficits in dopamine transporter knockout mice. Neuropsychopharmacology. 2004, 29: 221-228. 10.1038/sj.npp.1300343.PubMedCrossRef Barr AM, Lehmann-Masten V, Paulus M, Gainetdinov RR, Caron MG, Geyer MA: The selective serotonin-2A receptor antagonist M100907 reverses behavioral deficits in dopamine transporter knockout mice. Neuropsychopharmacology. 2004, 29: 221-228. 10.1038/sj.npp.1300343.PubMedCrossRef
173.
go back to reference Levitan RD, Masellis M, Basile VS, Lam RW, Jain U, Kaplan AS, Kennedy SH, Siegel G, Walker ML, Vaccarino FJ, Kennedy JL: Polymorphism of the serotonin-2A receptor gene (HTR2A) associated with childhood attention deficit hyperactivity disorder (ADHD) in adult women with seasonal affective disorder. J Affect Disord. 2002, 71: 229-233. 10.1016/S0165-0327(01)00372-X.PubMedCrossRef Levitan RD, Masellis M, Basile VS, Lam RW, Jain U, Kaplan AS, Kennedy SH, Siegel G, Walker ML, Vaccarino FJ, Kennedy JL: Polymorphism of the serotonin-2A receptor gene (HTR2A) associated with childhood attention deficit hyperactivity disorder (ADHD) in adult women with seasonal affective disorder. J Affect Disord. 2002, 71: 229-233. 10.1016/S0165-0327(01)00372-X.PubMedCrossRef
174.
go back to reference Quist JF, Barr CL, Schachar R, Roberts W, Malone M, Tannock R, Basile VS, Beitchman J, Kennedy JL: Evidence for the serotonin HTR2A receptor gene as a susceptibility factor in attention deficit hyperactivity disorder (ADHD). Mol Psychiatry. 2000, 5: 537-541. 10.1038/sj.mp.4000779.PubMedCrossRef Quist JF, Barr CL, Schachar R, Roberts W, Malone M, Tannock R, Basile VS, Beitchman J, Kennedy JL: Evidence for the serotonin HTR2A receptor gene as a susceptibility factor in attention deficit hyperactivity disorder (ADHD). Mol Psychiatry. 2000, 5: 537-541. 10.1038/sj.mp.4000779.PubMedCrossRef
175.
go back to reference Berridge KC, Aldridge JW, Houchard KR, Zhuang X: Sequential super-stereotypy of an instinctive fixed action pattern in hyper-dopaminergic mutant mice: a model of obsessive compulsive disorder and Tourette's. BMC Biol. 2005, 3: 4-10.1186/1741-7007-3-4.PubMedCentralPubMedCrossRef Berridge KC, Aldridge JW, Houchard KR, Zhuang X: Sequential super-stereotypy of an instinctive fixed action pattern in hyper-dopaminergic mutant mice: a model of obsessive compulsive disorder and Tourette's. BMC Biol. 2005, 3: 4-10.1186/1741-7007-3-4.PubMedCentralPubMedCrossRef
176.
go back to reference Barbelivien A, Ruotsalainen S, Sirviö J: Metabolic alterations in the prefrontal and cingulate cortices are related to behavioral deficits in a rodent model of attention-deficit hyperactivity disorder. Cereb Cortex. 2001, 11: 1056-1063. 10.1093/cercor/11.11.1056.PubMedCrossRef Barbelivien A, Ruotsalainen S, Sirviö J: Metabolic alterations in the prefrontal and cingulate cortices are related to behavioral deficits in a rodent model of attention-deficit hyperactivity disorder. Cereb Cortex. 2001, 11: 1056-1063. 10.1093/cercor/11.11.1056.PubMedCrossRef
177.
go back to reference Puumala T, Ruotsalainen S, Jakala P, Koivisto E, Riekkinen PJ, Sirviö J: Behavioral and pharmacological studies on the validation of a new animal model for attention deficit hyperactivity disorder. Neurobiol Learn Mem. 1996, 66: 198-211. 10.1006/nlme.1996.0060.PubMedCrossRef Puumala T, Ruotsalainen S, Jakala P, Koivisto E, Riekkinen PJ, Sirviö J: Behavioral and pharmacological studies on the validation of a new animal model for attention deficit hyperactivity disorder. Neurobiol Learn Mem. 1996, 66: 198-211. 10.1006/nlme.1996.0060.PubMedCrossRef
178.
go back to reference Robbins TW: The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry. Psychopharmacology (Berl). 2002, 163: 362-380. 10.1007/s00213-002-1154-7.CrossRef Robbins TW: The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry. Psychopharmacology (Berl). 2002, 163: 362-380. 10.1007/s00213-002-1154-7.CrossRef
179.
go back to reference Koskinen T, Ruotsalainen S, Puumala T, Lappalainen R, Koivisto E, Mannisto PT, Sirvio J: Activation of 5-HT2A receptors impairs response control of rats in a five-choice serial reaction time task. Neuropharmacology. 2000, 39: 471-481. 10.1016/S0028-3908(99)00159-8.PubMedCrossRef Koskinen T, Ruotsalainen S, Puumala T, Lappalainen R, Koivisto E, Mannisto PT, Sirvio J: Activation of 5-HT2A receptors impairs response control of rats in a five-choice serial reaction time task. Neuropharmacology. 2000, 39: 471-481. 10.1016/S0028-3908(99)00159-8.PubMedCrossRef
180.
go back to reference Granon S, Passetti F, Thomas KL, Dalley JW, Everitt BJ, Robbins TW: Enhanced and impaired attentional performance after infusion of D1 dopaminergic receptor agents into rat prefrontal cortex. J Neurosci. 2000, 20: 1208-1215.PubMed Granon S, Passetti F, Thomas KL, Dalley JW, Everitt BJ, Robbins TW: Enhanced and impaired attentional performance after infusion of D1 dopaminergic receptor agents into rat prefrontal cortex. J Neurosci. 2000, 20: 1208-1215.PubMed
181.
go back to reference Lou HC: Etiology and pathogenesis of attention-deficit hyperactivity disorder (ADHD): significance of prematurity and perinatal hypoxic-haemodynamic encephalopathy. Acta Paediatr. 1996, 85: 1266-1271.PubMedCrossRef Lou HC: Etiology and pathogenesis of attention-deficit hyperactivity disorder (ADHD): significance of prematurity and perinatal hypoxic-haemodynamic encephalopathy. Acta Paediatr. 1996, 85: 1266-1271.PubMedCrossRef
182.
go back to reference Dell'Anna ME: Neonatal anoxia induces transitory hyperactivity, permanent spatial memory deficits and CA1 cell density reduction in developing rats. Behav Brain Res. 1999, 45: 125-134.CrossRef Dell'Anna ME: Neonatal anoxia induces transitory hyperactivity, permanent spatial memory deficits and CA1 cell density reduction in developing rats. Behav Brain Res. 1999, 45: 125-134.CrossRef
183.
go back to reference Dell'Anna ME, Luthman J, Lindqvist E, Olson L: Development of monoamine systems after neonatal anoxia in rats. Brain Res Bull. 1993, 32: 159-170. 10.1016/0361-9230(93)90070-R.PubMedCrossRef Dell'Anna ME, Luthman J, Lindqvist E, Olson L: Development of monoamine systems after neonatal anoxia in rats. Brain Res Bull. 1993, 32: 159-170. 10.1016/0361-9230(93)90070-R.PubMedCrossRef
184.
go back to reference Iuvone L, Geloso MC, Dell'Anna E: Changes in open field behavior, spatial memory, and hippocampal parvalbumin immunoreactivity following enrichment in rats exposed to neonatal anoxia. Exp Neurol. 1996, 139: 25-33. 10.1006/exnr.1996.0077.PubMedCrossRef Iuvone L, Geloso MC, Dell'Anna E: Changes in open field behavior, spatial memory, and hippocampal parvalbumin immunoreactivity following enrichment in rats exposed to neonatal anoxia. Exp Neurol. 1996, 139: 25-33. 10.1006/exnr.1996.0077.PubMedCrossRef
185.
go back to reference Gross J, Muller I, Chen Y, Elizalde M, Leclere N, Herrera-Marschitz M, Andersson K: Perinatal asphyxia induces region-specific long-term changes in mRNA levels of tyrosine hydroxylase and dopamine D(1) and D(2) receptors in rat brain. Brain Res Mol Brain Res. 2000, 79: 110-117. 10.1016/S0169-328X(00)00106-6.PubMedCrossRef Gross J, Muller I, Chen Y, Elizalde M, Leclere N, Herrera-Marschitz M, Andersson K: Perinatal asphyxia induces region-specific long-term changes in mRNA levels of tyrosine hydroxylase and dopamine D(1) and D(2) receptors in rat brain. Brain Res Mol Brain Res. 2000, 79: 110-117. 10.1016/S0169-328X(00)00106-6.PubMedCrossRef
186.
go back to reference Johansen EB, Aase H, Meyer A, Sagvolden T: Attention-Deficit/Hyperactivity Disorder (ADHD) behaviour explained by dysfunctioning reinforcement and extinction processes. Behav Brain Res. 2002, 130: 37-45. 10.1016/S0166-4328(01)00434-X.PubMedCrossRef Johansen EB, Aase H, Meyer A, Sagvolden T: Attention-Deficit/Hyperactivity Disorder (ADHD) behaviour explained by dysfunctioning reinforcement and extinction processes. Behav Brain Res. 2002, 130: 37-45. 10.1016/S0166-4328(01)00434-X.PubMedCrossRef
187.
go back to reference Bonci A, Bernardi G, Grillner P, Mercuri NB: The dopamine-containing neuron: maestro or simple musician in the orchestra of addiction?. Trends Pharmacol Sci. 2003, 24: 172-177. 10.1016/S0165-6147(03)00068-3.PubMedCrossRef Bonci A, Bernardi G, Grillner P, Mercuri NB: The dopamine-containing neuron: maestro or simple musician in the orchestra of addiction?. Trends Pharmacol Sci. 2003, 24: 172-177. 10.1016/S0165-6147(03)00068-3.PubMedCrossRef
188.
go back to reference Borgland SL, Malenka RC, Bonci A: Acute and chronic cocaine-induced potentiation of synaptic strength in the ventral tegmental area: electrophysiological and behavioral correlates in individual rats. J Neurosci. 2004, 24: 7482-7490. 10.1523/JNEUROSCI.1312-04.2004.PubMedCrossRef Borgland SL, Malenka RC, Bonci A: Acute and chronic cocaine-induced potentiation of synaptic strength in the ventral tegmental area: electrophysiological and behavioral correlates in individual rats. J Neurosci. 2004, 24: 7482-7490. 10.1523/JNEUROSCI.1312-04.2004.PubMedCrossRef
189.
go back to reference Dong Y, Saal D, Thomas M, Faust R, Bonci A, Robinson T, Malenka RC: Cocaine-induced potentiation of synaptic strength in dopamine neurons: behavioral correlates in GluRA(-/-) mice. Proc Natl Acad Sci U S A. 2004, 101: 14282-14287. 10.1073/pnas.0401553101.PubMedCentralPubMedCrossRef Dong Y, Saal D, Thomas M, Faust R, Bonci A, Robinson T, Malenka RC: Cocaine-induced potentiation of synaptic strength in dopamine neurons: behavioral correlates in GluRA(-/-) mice. Proc Natl Acad Sci U S A. 2004, 101: 14282-14287. 10.1073/pnas.0401553101.PubMedCentralPubMedCrossRef
190.
go back to reference Jones SR, Gainetdinov RR, Hu XT, Cooper DC, Wightman RM, White FJ, Caron MG: Loss of autoreceptor functions in mice lacking the dopamine transporter. Nat Neurosci. 1999, 2: 649-655. 10.1038/10204.PubMedCrossRef Jones SR, Gainetdinov RR, Hu XT, Cooper DC, Wightman RM, White FJ, Caron MG: Loss of autoreceptor functions in mice lacking the dopamine transporter. Nat Neurosci. 1999, 2: 649-655. 10.1038/10204.PubMedCrossRef
191.
go back to reference Carlezon WAJ, Nestler EJ: Elevated levels of GluR1 in the midbrain: a trigger for sensitization to drugs of abuse?. Trends Neurosci. 2002, 25: 610-615. 10.1016/S0166-2236(02)02289-0.PubMedCrossRef Carlezon WAJ, Nestler EJ: Elevated levels of GluR1 in the midbrain: a trigger for sensitization to drugs of abuse?. Trends Neurosci. 2002, 25: 610-615. 10.1016/S0166-2236(02)02289-0.PubMedCrossRef
Metadata
Title
Animal models of attention-deficit hyperactivity disorder
Authors
Vivienne A Russell
Terje Sagvolden
Espen Borgå Johansen
Publication date
01-12-2005
Publisher
BioMed Central
Published in
Behavioral and Brain Functions / Issue 1/2005
Electronic ISSN: 1744-9081
DOI
https://doi.org/10.1186/1744-9081-1-9

Other articles of this Issue 1/2005

Behavioral and Brain Functions 1/2005 Go to the issue