Skip to main content
Top
Published in: Cancer Microenvironment 1/2016

01-04-2016 | Original Article

Angiopoietins Modulate Survival, Migration, and the Components of the Ang-Tie2 Pathway of Chronic Lymphocytic Leukaemia (CLL) Cells In Vitro

Authors: Luis Mario Aguirre Palma, Hanna Flamme, Iris Gerke, Karl-Anton Kreuzer

Published in: Cancer Microenvironment | Issue 1/2016

Login to get access

Abstract

In actuality, chronic lymphocytic leukaemia (CLL) remains an incurable haematopoietic malignancy of high prevalence amongst elderly populations in the West. Malignant CLL cells characteristically accumulate in the peripheral blood, bone marrow, lymph nodes, and spleen of CLL patients. There is evidence that CLL cells express Ang2 and Tie1, two central components of the Ang-Tie2 pro-angiogenic pathway. Central to blood vessel development and maintenance, at present it remains unclear how the Ang-Tie2 pathway modulates CLL pathophysiology. Here we evaluate the status of the Ang-Tie2 pathway in CLL cells and assess Ang1 levels in plasma/cell medium from CLL samples. To understand how angiopoietins in the microenvironment regulate the components of Ang-Tie2 pathway, survival, migration, and metabolic fitness of CLL cells, we exposed CLL cells to recombinant angiopoietins. CLL plasma and CLL cells in culture present significant lower levels of Ang1. CLL cells simultaneously express Ang1, Ang2, and Tie1 mRNA, but lack that of Tie2 and its regulator, VE-PTP. Exposure to Ang1 confers survival advantage in the long-term, whereas Ang2 and trebananib, an angiopoietin blocker, proved detrimental. Angiopoietins differentially modulate expression of Ang1, Ang2, and Tie1 transcripts. Ang2, but not Ang1, induces the concomitant and transient expression of Tie2 and VE-PTP mRNA. Both angiopoietins, particularly Ang2, increase CLL-Tie1 expression and Ang1 clearly induces chemotaxis and transendothelial-like migration of CLL cells. Besides, changes in caspase and ATP content corroborate the sensitivity of CLL cells to angiopoietin exposure. Altogether, this work shows that angiopoietins regulate the fate of CLL cells in a Tie2-independent manner and highlights the potential of the Ang-Tie2 pathway as a therapeutic target in CLL research.
Literature
1.
go back to reference Folkman J (2001) Angiogenesis. In: Brenner S, Miller JH (eds) Encyclopedia of genetics. Academic, New York, pp 66–73CrossRef Folkman J (2001) Angiogenesis. In: Brenner S, Miller JH (eds) Encyclopedia of genetics. Academic, New York, pp 66–73CrossRef
2.
go back to reference Kay NE, Bone ND, Tschumper RC et al (2002) B-CLL cells are capable of synthesis and secretion of both pro- and anti-angiogenic molecules. Leukemia 16(5):911–919CrossRefPubMed Kay NE, Bone ND, Tschumper RC et al (2002) B-CLL cells are capable of synthesis and secretion of both pro- and anti-angiogenic molecules. Leukemia 16(5):911–919CrossRefPubMed
3.
go back to reference Hallek M (2013) Chronic lymphocytic leukemia: 2013 update on diagnosis, risk stratification and treatment. Am J Hematol 88(9):803–816CrossRefPubMed Hallek M (2013) Chronic lymphocytic leukemia: 2013 update on diagnosis, risk stratification and treatment. Am J Hematol 88(9):803–816CrossRefPubMed
4.
go back to reference Mauro FR, Foa R, Giannarelli D et al (1999) Clinical characteristics and outcome of young chronic lymphocytic leukemia patients: a single institution study of 204 cases. Blood 94(2):448–454PubMed Mauro FR, Foa R, Giannarelli D et al (1999) Clinical characteristics and outcome of young chronic lymphocytic leukemia patients: a single institution study of 204 cases. Blood 94(2):448–454PubMed
5.
go back to reference Peterson L, Kini AR, Kay N (2001) Angiogenesis is increased in B-cell chronic lymphocytic leukemia. Blood 97(8):2529–2530CrossRefPubMed Peterson L, Kini AR, Kay N (2001) Angiogenesis is increased in B-cell chronic lymphocytic leukemia. Blood 97(8):2529–2530CrossRefPubMed
6.
go back to reference Maffei R, Martinelli S, Santachiara R et al (2010) Angiopoietin-2 plasma dosage predicts time to first treatment and overall survival in chronic lymphocytic leukemia. Blood 116(4):584–592CrossRefPubMed Maffei R, Martinelli S, Santachiara R et al (2010) Angiopoietin-2 plasma dosage predicts time to first treatment and overall survival in chronic lymphocytic leukemia. Blood 116(4):584–592CrossRefPubMed
7.
go back to reference Maffei R, Martinelli S, Castelli I et al (2010) Increased angiogenesis induced by chronic lymphocytic leukemia B cells is mediated by leukemia-derived Ang2 and VEGF. Leuk Res 34(3):312–321CrossRefPubMed Maffei R, Martinelli S, Castelli I et al (2010) Increased angiogenesis induced by chronic lymphocytic leukemia B cells is mediated by leukemia-derived Ang2 and VEGF. Leuk Res 34(3):312–321CrossRefPubMed
8.
go back to reference Martinelli S, Kanduri M, Maffei R et al (2013) ANGPT2 promoter methylation is strongly associated with gene expression and prognosis in chronic lymphocytic leukemia. Epigenetics 8(7) Martinelli S, Kanduri M, Maffei R et al (2013) ANGPT2 promoter methylation is strongly associated with gene expression and prognosis in chronic lymphocytic leukemia. Epigenetics 8(7)
9.
go back to reference Aguayo A, Kantarjian H, Manshouri T et al (2000) Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood 96(6):2240–2245PubMed Aguayo A, Kantarjian H, Manshouri T et al (2000) Angiogenesis in acute and chronic leukemias and myelodysplastic syndromes. Blood 96(6):2240–2245PubMed
10.
go back to reference Augustin HG, Young Koh G, Thurston G, Alitalo K (2009) Control of vascular morphogenesis and homeostasis through the angiopoietin–Tie system. Nat Rev Mol Cell Biol 10(3):165–177CrossRefPubMed Augustin HG, Young Koh G, Thurston G, Alitalo K (2009) Control of vascular morphogenesis and homeostasis through the angiopoietin–Tie system. Nat Rev Mol Cell Biol 10(3):165–177CrossRefPubMed
11.
go back to reference Seegar TCM, Eller B, Tzvetkova-Robev D et al (2010) Tie1-Tie2 interactions mediate functional differences between angiopoietin ligands. Mol Cell 37(5):643–655CrossRefPubMedPubMedCentral Seegar TCM, Eller B, Tzvetkova-Robev D et al (2010) Tie1-Tie2 interactions mediate functional differences between angiopoietin ligands. Mol Cell 37(5):643–655CrossRefPubMedPubMedCentral
12.
go back to reference Papapetropoulos A, García-Cardeña G, Dengler TJ, Maisonpierre PC, Yancopoulos GD, Sessa WC (1999) Direct actions of Angiopoietin-1 on human endothelium: evidence for network stabilization, cell survival, and interaction with other angiogenic growth factors. Lab Invest J Tech Methods Pathol 79(2):213–223 Papapetropoulos A, García-Cardeña G, Dengler TJ, Maisonpierre PC, Yancopoulos GD, Sessa WC (1999) Direct actions of Angiopoietin-1 on human endothelium: evidence for network stabilization, cell survival, and interaction with other angiogenic growth factors. Lab Invest J Tech Methods Pathol 79(2):213–223
13.
go back to reference Jeansson M, Gawlik A, Anderson G et al (2011) Angiopoietin-1 is essential in mouse vasculature during development and in response to injury. J Clin Invest 121(6):2278–2289CrossRefPubMedPubMedCentral Jeansson M, Gawlik A, Anderson G et al (2011) Angiopoietin-1 is essential in mouse vasculature during development and in response to injury. J Clin Invest 121(6):2278–2289CrossRefPubMedPubMedCentral
14.
go back to reference Huang H, Bhat A, Woodnutt G, Lappe R (2010) Targeting the ANGPT–TIE2 pathway in malignancy. Nat Rev Cancer 10(8):575–585CrossRefPubMed Huang H, Bhat A, Woodnutt G, Lappe R (2010) Targeting the ANGPT–TIE2 pathway in malignancy. Nat Rev Cancer 10(8):575–585CrossRefPubMed
15.
go back to reference Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J (2000) Vascular-specific growth factors and blood vessel formation. Nature 407(6801):242–248CrossRefPubMed Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J (2000) Vascular-specific growth factors and blood vessel formation. Nature 407(6801):242–248CrossRefPubMed
16.
go back to reference Kawaguchi M, Sugaya M, Suga H et al (2013) Serum levels of Angiopoietin-2, but not Angiopoietin-1, are Elevated in Patients with Erythrodermic Cutaneous T-cell Lymphoma. Acta Derm Venereol Kawaguchi M, Sugaya M, Suga H et al (2013) Serum levels of Angiopoietin-2, but not Angiopoietin-1, are Elevated in Patients with Erythrodermic Cutaneous T-cell Lymphoma. Acta Derm Venereol
17.
go back to reference Moss A (2013) The angiopoietin:Tie 2 interaction: a potential target for future therapies in human vascular disease. Cytokine Growth Factor Rev Moss A (2013) The angiopoietin:Tie 2 interaction: a potential target for future therapies in human vascular disease. Cytokine Growth Factor Rev
18.
go back to reference Maisonpierre PC, Suri C, Jones PF et al (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277(5322):55–60CrossRefPubMed Maisonpierre PC, Suri C, Jones PF et al (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277(5322):55–60CrossRefPubMed
19.
go back to reference Barton WA, Tzvetkova-Robev D, Miranda EP et al (2006) Crystal structures of the Tie2 receptor ectodomain and the angiopoietin-2–Tie2 complex. Nat Struct Mol Biol 13(6):524–532CrossRefPubMed Barton WA, Tzvetkova-Robev D, Miranda EP et al (2006) Crystal structures of the Tie2 receptor ectodomain and the angiopoietin-2–Tie2 complex. Nat Struct Mol Biol 13(6):524–532CrossRefPubMed
20.
go back to reference Reiss Y, Droste J, Heil M et al (2007) Angiopoietin-2 impairs revascularization after limb ischemia. Circ Res 101(1):88–96CrossRefPubMed Reiss Y, Droste J, Heil M et al (2007) Angiopoietin-2 impairs revascularization after limb ischemia. Circ Res 101(1):88–96CrossRefPubMed
21.
go back to reference Barton WA, Tzvetkova D, Nikolov DB (2005) Structure of the Angiopoietin-2 receptor binding domain and identification of surfaces involved in Tie2 recognition. Structure 13(5):825–832CrossRefPubMed Barton WA, Tzvetkova D, Nikolov DB (2005) Structure of the Angiopoietin-2 receptor binding domain and identification of surfaces involved in Tie2 recognition. Structure 13(5):825–832CrossRefPubMed
22.
23.
24.
go back to reference Fachinger G, Deutsch U, Risau W (1999) Functional interaction of vascular endothelial-protein-tyrosine phosphatase with the angiopoietin receptor Tie-2. Oncogene 18(43):5948–5953CrossRefPubMed Fachinger G, Deutsch U, Risau W (1999) Functional interaction of vascular endothelial-protein-tyrosine phosphatase with the angiopoietin receptor Tie-2. Oncogene 18(43):5948–5953CrossRefPubMed
25.
go back to reference Nawroth R, Poell G, Ranft A et al (2002) VE-PTP and VE-cadherin ectodomains interact to facilitate regulation of phosphorylation and cell contacts. EMBO J 21(18):4885–4895CrossRefPubMedPubMedCentral Nawroth R, Poell G, Ranft A et al (2002) VE-PTP and VE-cadherin ectodomains interact to facilitate regulation of phosphorylation and cell contacts. EMBO J 21(18):4885–4895CrossRefPubMedPubMedCentral
26.
27.
go back to reference Nottebaum AF, Cagna G, Winderlich M et al (2008) VE-PTP maintains the endothelial barrier via plakoglobin and becomes dissociated from VE-cadherin by leukocytes and by VEGF. J Exp Med 205(12):2929–2945CrossRefPubMedPubMedCentral Nottebaum AF, Cagna G, Winderlich M et al (2008) VE-PTP maintains the endothelial barrier via plakoglobin and becomes dissociated from VE-cadherin by leukocytes and by VEGF. J Exp Med 205(12):2929–2945CrossRefPubMedPubMedCentral
28.
go back to reference Martinelli S, Maffei R, Castelli I et al (2008) Increased expression of Angiopoietin-2 characterizes early B-cell chronic lymphocytic leukemia with poor prognosis. Leuk Res 32(4):593–597CrossRefPubMed Martinelli S, Maffei R, Castelli I et al (2008) Increased expression of Angiopoietin-2 characterizes early B-cell chronic lymphocytic leukemia with poor prognosis. Leuk Res 32(4):593–597CrossRefPubMed
29.
go back to reference Aguayo A, Manshouri T, O’Brien S et al (2001) Clinical relevance of Flt1 and Tie1 angiogenesis receptors expression in B-cell chronic lymphocytic leukemia (CLL). Leuk Res 25(4):279–285CrossRefPubMed Aguayo A, Manshouri T, O’Brien S et al (2001) Clinical relevance of Flt1 and Tie1 angiogenesis receptors expression in B-cell chronic lymphocytic leukemia (CLL). Leuk Res 25(4):279–285CrossRefPubMed
30.
go back to reference Kay NE, Hamblin TJ, Jelinek DF et al (2002) Chronic lymphocytic leukemia. ASH Educ Program Book 2002(1):193–213 Kay NE, Hamblin TJ, Jelinek DF et al (2002) Chronic lymphocytic leukemia. ASH Educ Program Book 2002(1):193–213
31.
go back to reference Parikh SA, Kay NE, Shanafelt TD (2013) Monoclonal B-cell lymphocytosis: update on diagnosis, clinical outcome, and counseling. Clin Adv Hematol Oncol 11(11):720–729PubMed Parikh SA, Kay NE, Shanafelt TD (2013) Monoclonal B-cell lymphocytosis: update on diagnosis, clinical outcome, and counseling. Clin Adv Hematol Oncol 11(11):720–729PubMed
32.
go back to reference Venneri MA, Palma MD, Ponzoni M et al (2007) Identification of proangiogenic TIE2-expressing monocytes (TEMs) in human peripheral blood and cancer. Blood 109(12):5276–5285CrossRefPubMed Venneri MA, Palma MD, Ponzoni M et al (2007) Identification of proangiogenic TIE2-expressing monocytes (TEMs) in human peripheral blood and cancer. Blood 109(12):5276–5285CrossRefPubMed
33.
go back to reference Goon PKY, Lip GYH, Boos CJ, Stonelake PS, Blann AD (2006) Circulating endothelial cells, endothelial progenitor cells, and endothelial microparticles in cancer. Neoplasia 8(2):79–88CrossRefPubMedPubMedCentral Goon PKY, Lip GYH, Boos CJ, Stonelake PS, Blann AD (2006) Circulating endothelial cells, endothelial progenitor cells, and endothelial microparticles in cancer. Neoplasia 8(2):79–88CrossRefPubMedPubMedCentral
34.
go back to reference Horner A, Bord S, Kelsall AW, Coleman N, Compston JE (2001) Tie2 ligands Angiopoietin-1 and Angiopoietin-2 are coexpressed with vascular endothelial cell growth factor in growing human bone. Bone 28(1):65–71CrossRefPubMed Horner A, Bord S, Kelsall AW, Coleman N, Compston JE (2001) Tie2 ligands Angiopoietin-1 and Angiopoietin-2 are coexpressed with vascular endothelial cell growth factor in growing human bone. Bone 28(1):65–71CrossRefPubMed
35.
go back to reference Carlson TR, Feng Y, Maisonpierre PC, Mrksich M, Morla AO (2001) Direct cell adhesion to the angiopoietins mediated by integrins. J Biol Chem 276(28):26516–26525CrossRefPubMed Carlson TR, Feng Y, Maisonpierre PC, Mrksich M, Morla AO (2001) Direct cell adhesion to the angiopoietins mediated by integrins. J Biol Chem 276(28):26516–26525CrossRefPubMed
36.
go back to reference Maffei R, Bulgarelli J, Fiorcari S et al (2013) The monocytic population in chronic lymphocytic leukemia shows altered composition and deregulation of genes involved in phagocytosis and inflammation. Haematologica 98(7):1115–1123CrossRefPubMedPubMedCentral Maffei R, Bulgarelli J, Fiorcari S et al (2013) The monocytic population in chronic lymphocytic leukemia shows altered composition and deregulation of genes involved in phagocytosis and inflammation. Haematologica 98(7):1115–1123CrossRefPubMedPubMedCentral
37.
go back to reference Stapor PC, Sweat RS, Dashti DC, Betancourt AM, Murfee WL (2014) Pericyte dynamics during angiogenesis: new insights from new identities. J Vasc Res 51(3):163–174CrossRefPubMedPubMedCentral Stapor PC, Sweat RS, Dashti DC, Betancourt AM, Murfee WL (2014) Pericyte dynamics during angiogenesis: new insights from new identities. J Vasc Res 51(3):163–174CrossRefPubMedPubMedCentral
38.
go back to reference Cao Y, Sonveaux P, Liu S et al (2007) Systemic overexpression of Angiopoietin-2 promotes tumor microvessel regression and inhibits angiogenesis and tumor growth. Cancer Res 67(8):3835–3844CrossRefPubMed Cao Y, Sonveaux P, Liu S et al (2007) Systemic overexpression of Angiopoietin-2 promotes tumor microvessel regression and inhibits angiogenesis and tumor growth. Cancer Res 67(8):3835–3844CrossRefPubMed
39.
go back to reference ten Hacken E, Burger JA (2014) Molecular pathways: targeting the microenvironment in chronic lymphocytic leukemia—focus on the B-cell receptor. Clin Cancer Res 20(3):548–556CrossRefPubMed ten Hacken E, Burger JA (2014) Molecular pathways: targeting the microenvironment in chronic lymphocytic leukemia—focus on the B-cell receptor. Clin Cancer Res 20(3):548–556CrossRefPubMed
43.
go back to reference Fukuhara S, Sako K, Minami T et al (2008) Differential function of Tie2 at cell–cell contacts and cell–substratum contacts regulated by Angiopoietin-1. Nat Cell Biol 10(5):513–526CrossRefPubMed Fukuhara S, Sako K, Minami T et al (2008) Differential function of Tie2 at cell–cell contacts and cell–substratum contacts regulated by Angiopoietin-1. Nat Cell Biol 10(5):513–526CrossRefPubMed
44.
go back to reference Prezma T, Shteinfer A, Admoni L et al (2013) VDAC1-based peptides: novel pro-apoptotic agents and potential therapeutics for B-cell chronic lymphocytic leukemia. Cell Death Dis 4(9), e809CrossRefPubMedPubMedCentral Prezma T, Shteinfer A, Admoni L et al (2013) VDAC1-based peptides: novel pro-apoptotic agents and potential therapeutics for B-cell chronic lymphocytic leukemia. Cell Death Dis 4(9), e809CrossRefPubMedPubMedCentral
45.
go back to reference Kasahara A, Scorrano L (2014) Mitochondria: from cell death executioners to regulators of cell differentiation. Trends Cell Biol Kasahara A, Scorrano L (2014) Mitochondria: from cell death executioners to regulators of cell differentiation. Trends Cell Biol
46.
go back to reference Tao Z, Chen B, Tan X et al (2011) Coexpression of VEGF and Angiopoietin-1 promotes angiogenesis and cardiomyocyte proliferation reduces apoptosis in porcine myocardial infarction (MI) heart. Proc Natl Acad Sci 108(5):2064–2069CrossRefPubMedPubMedCentral Tao Z, Chen B, Tan X et al (2011) Coexpression of VEGF and Angiopoietin-1 promotes angiogenesis and cardiomyocyte proliferation reduces apoptosis in porcine myocardial infarction (MI) heart. Proc Natl Acad Sci 108(5):2064–2069CrossRefPubMedPubMedCentral
47.
go back to reference Dallabrida SM, Ismail N, Oberle JR, Himes BE, Rupnick MA (2005) Angiopoietin-1 promotes cardiac and skeletal myocyte survival through integrins. Circ Res 96(4):e8–e24CrossRefPubMed Dallabrida SM, Ismail N, Oberle JR, Himes BE, Rupnick MA (2005) Angiopoietin-1 promotes cardiac and skeletal myocyte survival through integrins. Circ Res 96(4):e8–e24CrossRefPubMed
48.
go back to reference Coxon A, Bready J, Min H et al (2010) Context-dependent role of Angiopoietin-1 inhibition in the suppression of angiogenesis and tumor growth: implications for AMG 386, an Angiopoietin-1/2-neutralizing peptibody. Mol Cancer Ther 9(10):2641–2651CrossRefPubMedPubMedCentral Coxon A, Bready J, Min H et al (2010) Context-dependent role of Angiopoietin-1 inhibition in the suppression of angiogenesis and tumor growth: implications for AMG 386, an Angiopoietin-1/2-neutralizing peptibody. Mol Cancer Ther 9(10):2641–2651CrossRefPubMedPubMedCentral
49.
go back to reference Herbst RS, Hong D, Chap L et al (2009) Safety, pharmacokinetics, and antitumor activity of AMG 386, a selective angiopoietin inhibitor, in adult patients with advanced solid tumors. J Clin Oncol 27(21):3557–3565CrossRefPubMed Herbst RS, Hong D, Chap L et al (2009) Safety, pharmacokinetics, and antitumor activity of AMG 386, a selective angiopoietin inhibitor, in adult patients with advanced solid tumors. J Clin Oncol 27(21):3557–3565CrossRefPubMed
Metadata
Title
Angiopoietins Modulate Survival, Migration, and the Components of the Ang-Tie2 Pathway of Chronic Lymphocytic Leukaemia (CLL) Cells In Vitro
Authors
Luis Mario Aguirre Palma
Hanna Flamme
Iris Gerke
Karl-Anton Kreuzer
Publication date
01-04-2016
Publisher
Springer Netherlands
Published in
Cancer Microenvironment / Issue 1/2016
Print ISSN: 1875-2292
Electronic ISSN: 1875-2284
DOI
https://doi.org/10.1007/s12307-016-0180-7

Other articles of this Issue 1/2016

Cancer Microenvironment 1/2016 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine